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AN INEQUALITY FOR HILBERT SERIES
OF GRADED ALGEBRAS

RALF FROBERG

Introduction.

We study in this paper rings of the type R=k[X,,. ..., X,]/I, where I is a
homogeneous ideal and k is the field of complex numbers (in most cases any
field will do). Given the embedding dimension, the Krull dimension, the depth
and the degrees of a set of generators for I, we derive an inequality for the
Hilbert function of R. We conjecture that this inequality can not be improved
for Cohen-Macaulay rings, but we show by means of an example that the
inequality is not sharp in geﬁeral. We call a ring for which the inequality is an
equality extremal. In section 3 we give lots of examples of extremal rings. It
turns out that complete intersections are always extremal. Two classes of
almost complete intersections (one which is Cohen-Macaulay and one which is
not) also have extremal elements. These two classes are more closely studied in
section 4.

The study of extremal rings can in many respects easily be reduced to a
study of extremal rings of depth 0. For rings of depth 0 one can characterize the
complete intersections by means of their Koszul homology, R being a complete
intersection if and only if the multiplication map A"H(Kg) — H,(Kp) is
injective, where n=e.dimR, see [10]. We show that for the non-Cohen-
Macaulay almost complete intersections mentioned above, we have
A H,(Kg) — H(Kg) asinjective asit could be, i.e. that A""'H, (Kp) injects in
H,_{(Kp)

For any graded ring R, H (K ) is bigraded and given dim, H; ;(Kp) it is easy
to calculate the Hilbert function of R. But in general one can not deduce
dim, H; ;(Kg) from the Hilbert function of R. One instance when this is
possible is when one knows that there exists a minimal graded k(X ... X0
resolution of R which is pure, i.e. when there exists a minimal resolution

0->F - ...>F —kX,..,X,]> R—>0,

where all basis elements of a graded basis for F; are of the same degree for
i=1,...,r. For the extremal rings mentioned above we do not have pure
resolutions, but yet we can deduce not only the dimensions of H; ;(Kg) but also
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the structure of H(KR) as bigraded algebra from the Hilbert function. This
knowledge is used to show that their Poincaré series are rational and only
depend on the embedding dimension.

We conclude by showing that though the non-Cohen-Macaulay almost
complete intersections we study are close to complete intersections in some
respects, they are not even Buchsbaum rings.

We end the introduction with a conjecture and a question proposed by our

work.

ConJecture. If R is an Artinian graded k-algebra (or an Artinian local ring)
of embedding dimension n with A°*H,(Kp) injective in H,(Kp) for some
s>[n/2], then R is a complete intersection.

QuesTioN. Does there exist a graded k-algebra (or a local ring) R of depth 0
which is not a complete intersection with dim, H, (Kg)=r and with A" H,(Kpg)
injective in H,(Kg)?

0. Notations and conventions.

By a ring we mean a ring of type R=k[X,,. .., X,])/I, where k is the field of
complex numbers and [ is generated by forms f,, f,. . ., f, of degree >1. The
image of X, in R is denoted x;. The ring R is graded in the usual way,

R=@R‘,

iz0

we define

hg(i) = dim,R,, Hilbg(Z) = hr()Z
iz0

and correspondingly for modules. For a given set of generators for I, the
numerical character (n.c) of R is T=(n,d,g,D), if e.dimR=n, dimR=d,
depthR=g and if f,,. . ., f, is the given system of generators for I with deg f;
=d, then D=(d,,...,d,). Let |D|=r.

If AZ)=X,30a,Z' and B(Z)=Y,,,b,Z' are power series with integer
coefficients, let

[4@2)] = T, cZ'

iz0

where ¢;=a, if a;>0 for all j<i and c;=0 otherwise, and let
max \A(Z), B(Z)) = Y max(a,b)Z'.
i20

Let A(Z)>'B(Z) if for some i, we have a,=b, if i<i, and a; >b,. Let- A(2)
2B(2) if a;2 b, for all i.
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A form ¥, c;m’ of degree d in k[ X ,,. .., X ] is called generic if all monomials
of degree d in k[X,,...,X,] have coefficients ¢, which are algebraically
independent over Q. An ideal (fy,. . ., f)) is generated by generic forms if all f;
=Y cf’m! are generic forms and all cf? are algebraically independent over Q. If
I is generated by generic forms we call k[X,,. .., X,]/I generic.

A ring R of n.c. (n,d, g, D) has complete intersection defect def R =|D|—n+d.
If defR=0, R is a complete intersection and if defR=1, R is an almost
complete intersection. (Here we assume f},.. ., f, to be a minimal system of
generators for I=(f,,..., 1))

The Koszul complex of R is

Kg = R(T,,...,T,; dT,=x,> .

Its cycles, boundaries respectively homology are denoted by Z(Kg), B(Ky), and
H(Kpg) respectively. The homology H(Kjy) is not changed by a linear
transformation of the x;’s, nor by factoring out a non-zero divisor of degree
one. The complex Ky (and so Z(Ky), B(Kg) and H(Kp)) is bigraded. Besides
homological degree it has a grading induced by the grading of R (total degree).
We find it simpler in this context to refer to total degree minus homological
degree as ring degree, thus x,T,T; in Ky has total degree 3, homological
degree 2 and ring degree 1. The differential has degree 0, — 1 respectively +1 in
total, homological and ring degree respectively. If we have one index on K (or
Z(Kpg)or ...), we always mean homological degree. If we have two indexes the
first means homological degree and the second ring degree.
The Poincaré series of R is defined as

Pr(2) = ‘go dim, \Tor, (k, k))Z* .

Just as H(Kg), TorR (k, k) is bigraded, so we can define the Poincaré series in
two variables (homological and total). If y is a non-zero divisor of degree one
in R, we have Pg(Z)=(1+ Z)Pg;(2).

A homogeneous element y of positive degree in R=k[X,. .., X,]/I is called
a weak non-zero divisor if

Anng(Anngy) 2 (xg-- 5 %)

i.e. if Anng y is the socle of R. A sequence y,,. . .,y in R is called a weak regular
sequence if the image of y; in R/(yy,. . .,y;i-y) is a weak non-zero divisor for
i=1,...,k. R is called a Buchsbaum ring if any system of parameters for R
constitutes a weak regular sequence.

For an ideal Ik[X,,...,X,] we denote the length of a maximal regular
sequence in I by gr (I).
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1. The main theorem and a conjecture.
THeoReM. If R is of n.c. (n,d, g, (d,,. ..,d,)), then

1 r
Hilbg (Z) é -2 max ([.Dl (1-2z%/(1 —-Z)""], 1/(1 —Z)"‘) .

If for a ring R of n.c. (n,d, g, (d,,. . .,d,)) we have equality in the theorem, we
call R extremal of n.c. (n,d,g, (dy,...,d,)).

Conjecture. If there is a Cohen-Macaulay ring (ie. d=g) of n.c
(n,d,d,(d,,...,d,)), then there also exists an extremal ring of n.c.
(n,d,d,d,,...,d,)).

OBservATION. It suffices (both in the theorem and the conjecture) to assume
g=0. For suppose the statements are proved for rings of depth <g. If R is of
n.c. (n,d,g,D) and g>0 there exists a non-zero divisor y of degree one in R.
Then the n.c. of R/y is (n—1,d—1,g—1, D), where D=(d,,...,d,) so

. 1 r
Hilbg,(Z) 2 ﬁ_;_Z)T‘_‘max (I;];]1 (1-2Z%/(1-2Zy? -(x—l)],
131 —Z)“‘““‘”)

1 ’ ) .
= Tz ([L (1-z%/1 -2y ] 1/(1-2y )

SO

L Hilbg, (2)

Hilba(2) = ——

1 r .
2 -2/ -2y |, 1/(1-2)*"¢
2 gy (| [1 -2y -2r-< | i -2¢-2)
because the series are non-negative.
In the sequel we always assume g=0.

PRrOOF OF THE THEOREM. a) Hilbg (Z2)=1/(1 — Z): Since dim R =d there exist
d algebraically independent (over k) elements of degree one in R, say y,,. .., Vs
SO

Hilbg (2) 2 Hilby,  ,1(2) = 1/(1-2).
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b) Hilbg (2) 2 [fl 0 —Z“)/(l—zr] -
i=1

We need some easy lemmas.

Lemma L If R=k[X,,..., X, )/(fis. .., f;) and S=k[X,,...,X,1/(81- - -» &)
where (g,,...,8,) is generated by generic forms with degg,=deg f, then
Hilbg (Z) < Hilbg (Z2).

PROOF. h((g35- - -, &,)) is the number of linearly independent m,g;, where m, is
a monomial in k[X,,...,X,] of degree k—degg; and analogously for

h((f1s- - -, f))- But if {m, f;: seS} are linearly independent, then {mg;;
s € S} are linearly independent because a non-trivial relation of the latter
specializes to a relation of the former. This means

Hilby = .y (Z2) 2 Hilb(,, . (Z)
which gives Hilbg(Z) < Hilbg (Z),

LEMMA 2. If R is a graded ring, f a form of degree d in R and Hilbg(Z)
=2i§0 aiZi, then

Hllenan(Z) g Z max (ai—aHd,O)Z‘ .

i20

Proor. R R,,, is a linear map between vector spaces. Ker f has
dimension at least dim R;,—dimR;,;=a;—a;,,.

LeEMMA 3. If 350 a,Z" has non-negative coefficients, then

(1-2% ¥ aZ'+ Y max(a,—a;,,0Z""" 2 l:(l—Z‘) Y a,Z‘].

i2z0 i20 iz0
PROOF.
(1-29 Y a,Z'+) max (@,—a;440Z'*¢
= z (a‘—a;_d)zi-f'z max (a,_d—a,,O)Z‘
= Z (ai—al—d)zi_z min (a,—a,-,0Z' 2 [(1 -2 Z az.
LeEmMA 4.

[(1—2"')['_1l (l—Z“)/(l—Z)"]] = [‘I:I‘ (1—2"‘)/(1—2)"]-
i=1 =

Math. Scand. 56 - 9



122 RALF FROBERG

Proor. Let
H: (1-Z%/(1-2y = ¥ a,Z".
Then l
i[:[, 1=2H/(1-2) = ¥ (@-0;_4)Z",
50
[I'l, 1-z4a-2r | = T ez,

where ¢;=a;,—a;_,, if a;>a;_,, for all j<i and c;=0 otherwise. Furthermore

r—1 ]
[ [ a=-z%/(-2zy| =Y bz,
i=1 .
where b;=a; if a;>0 for all j<i and b;=0 otherwise, so

r—1
(l—Z"')[il_'l1 (l—Z"‘)/(l—Z)"] =Y (bi—b;_,)Z!

and

r—1
[(1--2"')[};[l (l—Z"‘)/(l—Z)"] =Y eZ,

where e;=b,—b;_4=a;,—a;_, if a;>a;_, and a;>0 for all j<i and ¢;=0
otherwise. But for the first index i, for which a; <0 we also have g, <a; _, so
c;=e, for all i.

Proor oF (b). Suppose we have proved the inequality

Hilbg(Z) 2 []'[ (l—Z“)/(l—Z)"]
i=1
for generic rings of n.c. (d,,...,d,) with s<r. Now let

R = k[X,,...., X, 1/ (815 --8)
be generic and
R = Kk[X,,.... X, /(81 - -+ 8-1) -
Since

0— Anngg, » R *# R > R—-0
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is exact we have
Hilbg (2) = (1—Z)Hilbg (2)+ Z* Hilbaungg (Z) -
Let Hilbg/(Z) = ) a,Z'. Lemma 2 gives
Hilby e, (2) 2 Y max (g,—a;,,,0)Z¢
$0
Hilbg(2) 2 (1-Z%) Y a,Z'+ Y. max (a,—a;,,,0)Z'**
=[(1-Z* Y aZ] (Lemma 3)

1 . Lo s
i (1-2y "[[] (1= Z4y/(1 - 2 (by 1r}duct|on since R’ is
i=1 generic)

- [[] (1-z")/(1—2)~] (Lemma 4) .
i=1

Since the inequality is proved for generic rings, it is proved for all rings
according to Lemma 1.

Norte. If we can prove that there are extremal rings of n.c.
(n,0,0, (d,,. . .,d,_,)), we have the real inequality in the theorem for all rings of
nc. (n,d,0,,(dy,...,d,), not only the lexicographical.

The following observation is due to L. Avramov.

PROPOSITION 5. Let F be a prime field and c;; indeterminates over F. Let g,
=3 c;jm;; be a generic form of degree d; for 1<Si<r. Then (g,,...,g,) is a prime
ideal in F(c,)[X,,...,X,] if and only if r<n—1.

Proor.  (g4,...,g) can not be prime if r2m since
F(c;)[Xy,...,X,)/ (8- - ., &) is then Artinian. If r<Sn—1 we use Theorem 1.1
in [7], which shows that (g,,. . ., g,) is prime in F[c,]J[X,,. .., X,] if and only if
grl,(A)=r+2—t for 1<t<r, where I,(A) is the ideal generated by all ¢ x ¢t-
minors of the matrix

X4, . . X4 0 0
0 ...0 X%.. .Xx%0... 0
A= :
0 X010 L0

0o ... ...0 XY, X%
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The condition grI,(A)=r+2—t for 1 <t=<r is easily verified if r<n—1. (Pick
from the first ¢t rows the columns which contains X%:,..., X% fori=1,...,r+2
—t. These t minors gives the elements

XF=1d4 for i=1,...,r+2—t,

which obviously gives a regular sequence.) But if (g,,...,g,) is prime in
FlcJ[Xy,...,X,] it is also prime in F(c)[X,...,X,].

2. Minimal systems of generators.

In the theorem we only suppose that the f;’s are forms of certain degrees, we
do not suppose that the f’s constitute a minimal system of generators for
(fis- - -» f))- In fact, if for some j

max ([H (1-2z%/1 —Z)"], 1/a —Z)")
i=1

— max ([1‘[ (1-z%a —Z)"], 1/(1 —Z)‘) :
i
we have no reason to believe that if kK[ X ,, ..., X, 1/(f;, - . .,f,) is extremal of n.c.
(n,d,0, (d,,. . .,d,), then (f},...,f,) is minimally generated. It could be as the
following example shows: k[X,,X,1/(X? X,X,,X3) is extremal of n.c.
(2,0,0,(2,2,3)) (as is k[ X, X,1/(X%, X3, X?)) despite the fact that

[(1-2%*(1-2%/(1-2)] = [(1-2*/(1-2)7].

On the other hand for the n.c. (2,0,0, (2,2, 4)), there is no extremal ring with a
minimal set of generators: If deg f; =deg f,=2 and fi,f, have no common
factor they constitute a regular sequence and every element of degree 4 in
k[X,, X,1/(f1.f2) is zero, so e.g. k[X,,X,1/(X% X3 X?) is extremal. If f,, f,
have a common factor of degree one, we can after a linear change of
coordinates assume f; =X?, f,=X,X, so in this case the only possibility for
n.c. (2,0,(2,2,4) is k[X,, X,]/(X3, X ,X,, X3) which is not extremal.
We could, however, say something positive in this context.

LemMMA 6. If, for all j we have

max ([ IT a-z4a —zr], 1/t —Z)‘)

i=1

+ max ([H (1-2Z/(1- 21, 1/(1—2)‘)

i=1
i*j
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and that k[X,,. .., X,J/(f,,. . ., f;) is extremal of n.c. (n,d, 0(d,,. . .,d,)), then the
fi’s constitute a minimal system of generators.

Proor. Let

R = k[Xy.... X, ]/(fis-. . f) and Ry = k[Xy.. ., X,/ (frse o0 Jpe s f) -
Then

Hilbg (Z) 2 max ([ [ (1—2‘1)/(1-2)"], 1/(1-2)‘) > Hilbg(2).
i=1
i*j

ProposiTiON 7. For d>0 we have

max ([ H (1-2%/(1 —Z)"], 1/ —z)d)

i=1
i*j

# max ([[:[ (1-2Z%/(1 —Z)"], 1/(1 —Z)‘)

i=1

SJor all jif rsn—d+1. For d=0 we have

[.-I:l, 1=z —Z)"] * [,['11 (1-2z4/(1 —Z)"]
for all j if r<n ::d if d,,,=max{d,,d,,...,d,,,}, then

[Tl a-za-2v] + [ T[ a-z970-2r]
for all j if and ;:lly ifd, ,S30-1d;—n.

Proor. Let d>0 and s<n—d. Then
[1’ (1—2‘*')/(1-2)"] = [[ 1+Z+... +zdl-1)/(1-2)~-']
i=1 i=1
=l Q+z+...+2%Y1-2y—* 2 1/0-2y* 2 1/1-2)*
i=1
with the first inequality strict for all terms but the first. Then we have

(1—2Z4%+) f[ I+Z+...+2%7)
i=1
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max ([sﬁ (1-2Z%/(1 -Z)"], 1/(1- Z)‘)

i=1
+ max ([n -2z —zr], 11— Z)‘)
i=1
= IT A+Z+...+ 24 1y —zp-s
i=1
as long as s<n—d. For s=n—d

Il a-z4/a-2r 2 ya-2y,

but all coefficients large enough in

s+1 s+1

[T Q-z%1-2r = [] A+Z+...+2Z% )1 -2)y"!
i=1 i=1

are smaller than the corresponding coefficient in 1/(1 —2Z)¢, so

"f—ld (1-2%/(1-2Z)" = max ([[_d (1—Z")/(I—Z)”],l/(l—Z)‘)
i=1 i=1

4+ max ([ f[ (1-2z%/(1- Z)"], 1/(1 —Z)")

i=
i*

-

Now suppose d=0. As above

[1 A+zZ+... 4241 -2zp= = [ A-2Z%/1-2p
i=1 i=1

+ Tl a-z%-2r = T] (+Z+...+20 Y a-zp-""
i=1 =1

as long as s+1=n. Now let s=n+1. Then

n+1 n

ITa-z%@a-2y=00-2[] Q+Z+...+2%Y
i=1 i=1

= (1=Z%Y1+nZ+... +Z5=1%) & 1 4+nZ+ ...+ 254"
if and only if d,,, <37, d;—n. Of course, if this inequality is true when d,, ,

=max {d,,...,d, .}, it is true also for every renumbering of the d;’s.

COROLLARY. Suppose

max ([ﬁ a —Z“)/(l —Z)":I, 1/(1 -—Z)‘) + max ([ fl 1§ —-Zd')/(l —Z)”], /(1 _Z)d

i=1 i=1
i%j
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for every j but
k
max ([ [T a-z%q —Z)"], 1/(1- Z)‘)
i=1
= max ([ [T -z —Z)"], 1 —Z)‘) ,
i=1

for m=k+1,...,r

Then, to find an extremal ring of n.c. (n,d,0, (d, . . .,d,)) it is sufficient to find
an extremal ring of n.c. (n,d,0,(d,,...,d,)) (which then has a minimally
generated ideal).

Proor. If k[ X ,,. .., X,)/(f,- - ., f) is extremal of n.c. (n,4d,0, (d,,. . .,d,)) one
can adjoin any forms f;,,,..., f, which already lies in (f},..., fy) to get an
extremal ring of n.c. (n,d,0, (d,,...,d,). This is possible since for k+1Sisr,
deg f;=d;2min, ¢, d; follows from the assumption.

3. Examples of extremal rings.

1. If R is a complete intersection, i.e. R is of n.c. (n,0,0,D) with |D|=n, we
have

Hilbg (2) = ‘[[1 (1-2%/ -2y

that is R is extremal.

2. R. Stanley (private communication) has shown that there are extremal
rings of n.c. (n,0,0,D) for each D with |D|=n+1. These are almost complete
intersections if

n+1
d} = d,—n— max {d
(o (4} S 3 dimne o
otherwise complete intersections (not mmlmally generated) according to
Proposition 7. He interpretes k[ X,. .., X,1/(X 4. ...,X%) as the cohomology
ring of .

Phi—lx pha-lyx  xPh!

and uses the hard Lefschetz theorem to get an element S of degree one
which is “nearly a non-zerodivisor”. It is easy to see that
k[X,,...,X,]/(X%,. .., X% S%+1) is extremal. (In fact in the cohomology ring
the X,’s and S have degree 2, but we could divide all degrees by 2.
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3. We now show that
R = k[X,,..., X, /(X4 Xd— X X0t XX, Xb"1
. .,X:‘:i—X,,_ZX:"-l—19Xn—-lX:'—1)

is an almost complete intersection which is extremal of n.c. (1, 1,0, (d,,. . .,d,)).
(Cf. [4] where this ring for (dy,...,d,)=(2,2,...,2) is studied.) Let

R = KXy XD/ X~ (XS X — X, X,
n—1
It is easy to see that R’ is a complete intersection (so Hilbg (Z)=TT/Z]
(1-2Z%/(1—-2)") and that the monomials xix%...xb-yx) with i, <d,,...,
i,_,<d,_, and j arbitrary is a k-basis for R". Now let f=x,_,x»~! in R’

0— Anng f> R LR ->R—-0
is exact and x§*"!'x%27! ... x%-171xJ is a k-basis for Anng f. Since
Hilbg(2) = (1-Z%) Hilbg (2) + Z* Hilb sy, ,(2)
and
Hilbagng ((Z) = Zh+di+ - +ds==1y 1 _ 7)
we have that R is extremal of n.c. (n,1,0, (d,,...,d,)).

4.1If (g,,. . ., g,) is generated by generic forms of degree d in k[ X,,...,X,] M.
Hochster has shown (not published) that {X,g;} are linearly independent if

they are not too many, i.e. if
n+d
rm = ,
- (d+1>

and consequently that {X,g;} generate everything in degree d+1 if

n+d
> )
"e <d+1)

Now suppose R=k[X,,...,X,1/(g:..-,8) With (g,,...,8) generated by
generic forms of degree d and

> n+d "
d+1
Then

~2
Hilbg (2) = 1+nz+<";1)zz+...+(":fl )z'*—l

+(("+Z“)—r)z‘,
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Figure 1

ie. R is extremal of n.c. (10,0, (d,d,...,d)), where |(d,d,...,d)|=r.

5. We will show that for n=2 there exist extremal rings of all possible
numerical characters. First we consider the Artinian case, ie. rings of n.c.
(2,0,0, (d,. . .,d,). Suppose d;<d,<...=<d, and that

[ﬁ (l—Z"‘)/(l-—Z)’] * [[j[ (1—2“)/(1-2)2]
i=1 i=1

for all j, which is sufficient according to section 2. We will make this condition
on the d;’s more explicit below. We will show that there, for each n.c. exist
extremal rings which are monomial rings, i.e. of type k[ X, Y1/(f},. . ., f,) with
the f’s monomials. Our method is to find a monomial ring with minimal
multiplicity for each n.c. and show that these are extremal. Chose f; = X' and
=YY% Now let

R = k[X,Y]/(X*, Y% m,,...,m,),
where m; is a monomial of degree d,. Let
m, = Xeyd-e,

Then R can be represented in a two-dimensional coordinate system as in Fig. 1
(we now suppose d, <d, <d, for all i>2, but have no other restriction). Let p,
=(e,d;—e),i=3,...,r. Itis easy to see that the multiplicity of R is exactly the
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area of the non-shaded region in Fig. 1. To minimize the multiplicity thus is to
solve the following geometrical problem: Minimize the non-shaded area in the
rectangle {(X,Y); 0SX <d,,05Y <d,} with the constraints that one corner
P, lies in an integer point on the line X + Y=d,, one corner p, lies in an integer
point on the line X + Y=d, as.o. But this is equivalent to maximizing the
shaded area within the rectangle with the same constraints. We first solve the
problem without restriction on integer solutions. The shaded area in the
rectangle is:

Ales,...,e,)
= (d,—d;)(d;— (d3—ey))+ (e3—ey)(dy— (dy—eg))+ ... +
+(e,-1—e)d,—(d,—¢)) = —ed—e2—... —e*+ese,+eses+e,_1e,+

+e3(d, +d;—d,)+e,(dy—ds)+es(ds—de)+ ... +e,_1(d,_—d)+e(d,—d)).

04 _oA _ _o4_
des de, T de,
gives the linear system of equations
—2 1 00...0 0]|[es] [de—ds—d]
1 —2 l 0 0 0 e4 ds—d4
0 1-21 0 o0 . dg—ds
0 0 ...1-2 1 . d,—d,_,
0o 0 ..o 1-2llel L 4-4 |

or Ae=d, which has a unique solution since det4=1/(1-r)=*0.
The condition for the g;’s to lic on the same line X+ Y=D is

di+d;—e; = e;+d,—e, = e, +ds—es = ... = e,_;+d,—e, = ¢,+d,,

which turns out to be exactly the same linear system of equations as above.
It is easy to see that

r-2r-3...21

A"t =1/1-7)
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A simple calculation gives D=(d,+d,+...+d,)/(r—1). This means in
particular that, if D is an integer, (x,y)”~'=0 but dim, (x, y)?~2=r—1 for R.
We first make the assumption that D is an integer, that is Y_, d,=0mod
(r—1), and show that R is extremal, i.e. that

Hilbg (Z) = [Dl (1-2z4/(1 —2)2] :

where R is the monomial ring of minimal multiplicity we just have constructed.
We renumber the d;’s and assume in the sequel that d, <d, < ... <d,. Now

i

[ a-z%q —2)2]

1

= [(1+Z+...+Z‘l“)(1+Z+...+Z‘z") f[ (1-—2")]
i=3

(1+2Z+32%+ ... +d,Z% ' +d Z%+ ... +d, 2%+ (d, - 1)2%+ . ..
+2Z4% 473 4 Zdi+d,-2) f[ a -—Z")] .
i=3

We first determine the coefficient ap,_, for Z2~! (of course d, < D—1<d, +d,):
ap_y = (dy+d,—D)— (D—dy)—(D—dy)—...—(D—d)
=d,+dy+...+d,—(—1)D = 0.
The coefficient aj,_, for ZP~2is
ap_, = (dy+d,—D+1)—(D—d3—1)—...—(D—d,~1) = r—1.

We will now check the coefficients of Hilbg (Z), by means of calculating
D-2

[n (- (1 -zy] ~ Y ez
i=1 i=0
In the interval [0,d, —1], a; increases by 1 (a;=i+1).
In the interval [d, —1,d,—1], a; is constant (a;=d,).
In the interval [d,—1,d;—1], a; decreases by 1 (ag,_14;=d; —i).
In the interval [dy—1,d, —1], a; decreases by 2 (d4,_1+3=a,,_ —2i
=d‘ +dz"'d3‘—2i).
In general, in the interval [d;_, —1,d;—1], a; decreases by k—2 and

ad*_l+i = adk_l"‘i(k"‘z) = d1+-.. +dk-l—(k_2)dk_i(k—2)

which one directly sees is the correct Hilbert series for R.
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X+Y=[D]+1
X+Y=D
X+Y=[D]

X+ Y=d4
X+ Y=d2=d3

Figure 2

Now let

™M~

d; = kmod (r—1), k=+0.

i=1

Then the solution of the geometrical problem does not give integer values. One
has to move the points according to Figure 2 (in the figure, d, =10, d, =12, d,
=d, =13, d,=14).

The points g,,. . ., g, is moved up to the line X + Y=[D]+1and ¢z, ..., 4,
down to the line X + Y=[D]. Let the monomial ring corresponding to this
construction be R. We will check that

Hilbg (Z) = [i[[l (1-2‘*)/(1—2)2] =YaZ.
The coefficient for Z[?] in
‘[_']l A-2Z9(1-2Z7 = 1+Z+... +Z5 Y1 +Z+... +2Z%7Y) ;l:ls (1-2%
is
dy+dy—[D]—1— ([D]—dy+1)— ([D]—ds+1)— ... — ([D]—d,+1)
=d,+dy+...+d,—(r—1)[D]—-1 = k=1—(r—=1) = k—r < 0
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s0 app)=0. The coefficient for Z[P1-1 jg
d,+d,—[D]—-([D]-d3)—...—([D]-d,)
= dy+dy+...+d,—(r—1)[D] = k.

The remaining coefficients are checked as above. We are ready with the
Artinian case.

Now let nc. R=(2,1,0,(dy,...d,) and let R'=k[X,Y]/(m,,...,m,) be
extremal of n.c. (2,0,0, (d, —1,...,d,—1)). (The case d, =2 is easily handled, so
we could assume d;—1>1). We will show that

R = k[X,Y)/(Xm,, Xm,,...,Xm,)

is extremal of nc. (2,1,0,(dy,...,d,). It is obvious that nc. R is
(2,1,0,(d,,. . .,d,).
First one easily observes that one has

Hilbg (2)— Z Hilbg. (2) = 1/(1-2) .

(Draw a picture.) Now we know that
Hmmm=[nu—rﬂwuaﬂ.
i=1

By checking the coefficients in [[T;-; (1—2Z%)/(1—Z)*] and using the
connection between Hilbg (Z) and Hilbg (Z) above it is easy to see that

mwxw)=[ﬁ u—ﬂwu—aﬂ,
i=1

i.e. that R is extremal.
Finally we make the condition

j=1 j
[ [ a-z%q —2)2] + [H 1-z4/a ~Z)2]
i=1 i=1
for all j more explicit. From the calculations above it is apparant that (ifd, =d,
<...<d,) the inequality is equivalent to d;< (d; +. .. +d;_,)/(j—2)-2if (d,
+...+d;_,)/(j—2) is an integer and d;<[(d,+...+d;-)/(j—2)]-1
otherwise.

6. The term extremal has been used by P. Schenzel in [9]. His extremal
Cohen-Macaulay rings are extremal in our sense of nc. (n,d,d,(f, f5-.., /)
where

—d+k—1
Mﬁwm=C ' )
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for some n,d, k. But his extremal Gorenstein rings are not extremal in our
sense.

For the rest of this section we suppose D= (2,2,. . .,2), i.e. all generators for I
are of degree 2, and we write for short n.c. R=(n,d,r) for (n,d,0,(2,2,...,2)
with |(2,...,2)|=r, that is n.c. R=(n,d,r) if

R = k[X;,...,X,)/(81---»8) »
degg,=2 for i=1,...,r, dimR=d and depth R=0.
7.
k[Xy X1/ (X5 X5, XL X X0+ XX o+ o+ Xy -1 X 2pw2)

is extremal of n.c. (n,0,n+1), see [4]. (This is of course a special case of 2.
above.) These rings have some odd feature if we allow char (k)+0. From [4] it
follows that they have different Hilbert series in all characteristics p for p
<[n/2] but their Hilbert series coincide if char (k)=0 or char (k)=p>[n/2].

8. If dim R=d, we have

so if R is extremal of n.c. (n,d,r), we have

C)-)

Hilbg (2) = max ([(1-2%""/(1-2)),1/(1-Z)).

Now suppose
, n+1\ (d+1
=, N

kX4, . . X /(X4 ., X0 (Xgs. . ., X,)) is extremal of n.c.

i)

9. n=3. This is completely covered by the examples above but for the n.c.
(3,1,4). k[X,,X,, X31/(X3,X,X,, X% X,X,) is extremal of nc. (3,1,4).

10. n=4. This is covered but for the n.c’s (4,2,3), (4,2,4), (4,1,5), 4,2,5),
4,1,6), (4,2,6), (4,1,7), and (4,1,8).
We can give examples of extremal rings for all these types but (4,2,3). Let

since
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R = k[XI’XZ’X39X4]/I .

N.c. I
(42,4 (X]-X, X0 X5—X X3, X, X4, X,X,)

41,5 (XT—X,X4 X3—X3X0 X3~ X, X0, X, X — X, X3, X, X))

(4,2,5) (X}—-X,X4 X2, X, X3, X,X,,X,X5)

41,6) (X}, X3—X1 X0, X3~ X, X0 X1 X2, X2 X3, X3X,)

4,2,6) (X1,X3,X,X5 X, X0, X,X3,X,X,)

41,7 (XL X3L,X:-X, X4 X1 X2 X1 X X2 X3, X3 X,)

4,1,8) (X1, X3-X1 X4, X3, X, X0, X, X5, X, X5, X, X4, X2 X,)

We will show in an appendix that there is no extremal ring of n.c. (4,2, 3).
11. N.c. (n,0,r) is covered for n< S5, but for the case (5,0,7)

K[Xg o XV (X5 X2 XL X X+ X3 X, X X5+ X, X3+ X3 X5+ X, Xs)

is extremal in this case.

4. Two types of extremal almost complete intersections.

In this section we make a closer study of extremal rings of numerical
chacters (n,0,0, (d,,. . .,d, ) and (n,1,0,(d,,...,d,), ie. of extremal almost
complete intersections of dimension 0 and 1 respectively. For short we call
these rings of type 0 and rings of type 1, respectively. For these rings let

n+1 n
c=Y d-(n+1) and c= ) d-n
i=1 i=1

respectively. (In the first case we way as well suppose max {d;} <372 Ld—n
i.e. that we have minimally generated ideals.) o
Before going into details on rings of types 0 and 1, we begin with a general

lemma.

LemMa 8. If (f,,. .., f) is an ideal generated by forms of degree 21 in a
graded ring R (or is a proper ideal of a local ring) and if gr (fy,. . ., f;) =S5, there is
aset {f,...,f.} such that (f4,....,f)=,.. S f)and f,. .., [, is a regular
sequence.

ProoF. This is certainly well-known. Use avoidance of primes.
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CoroLLARY 1. If R is a ring of type O, then R can be represented as

R = k[xb' . "Xn]/(flr . "f;H-l)
with f,,..., f, a k[X,,. .., X,])-sequence.

PRrOOF.

gr (fi,...s freq) = height (f,.. ., fL41) = n
(k[X4,. .., X,] being Cohen-Macaulay) so the lemma applies.

CoRroLLARY 2. If R is a ring of type 1, then R can be represented as

R =k[Xy....X ) (fis s [
with f,..., fo—, a k[X,,.. ., X,]-sequence.

Proor. Since dimR=1 we have height(f,..., f,)Sn—1 and there is an
element y of degree one in R for which y/#0 for all j. But

Hile(Z)=]'"[ A+Z+... 429" Y4+ Z+Y1-2),

i=1

so R/y is Artinian, thus height(f;,.. ., f,,y)=n, so height(f,,...,f)=n—1.
Thus

gr (fi,- .., f)=height(fi,..., f) = n—1,
so the lemma applies.
Lemma 9. If R=k[Y,,..., Y, )/(fi,. .., f,) is a ring of type 1, we can make a

linear change of coordinates (x,,. . .,X)= (J1,- . ., y)C so that x} 40 for all j and
so that Anngx*~'=(x,,...,%,_ )

Proor. Since dim R =1 there is a y of degree one in R such that )’ 4:0. for all
Jj- Since hg(i)=1 if i=c we have that the element left in degree i>c is y*. Now
0— Anngy ! > RLH5 R Ry 150
is exact so
Hilbg)-1(Z) = (1—2Z°"")Hilbg (2)+Z° ! Hilbpyy, -1 (2) .
But

Hilbg-1(2) = [] A+Z+... 424 Y)-2Z°-2Z"",
i=1
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so a simple calculation shows that
Hilbapn, -1 (Z2) = (n—1)Z+... .
Now take a k-basis x,,. . .,x,_; for Anng y*~! in degree 1 and extend it with x,

=y to get a basis for R as k-algebra.

Lemma 10. If R=k[X,,...,X,1/(f},-.-,f,) is a ring of type 1 we have
H,;(Kp=0if jzc.

Proor. We assume R represented as in the previous lemma. Let m} be a
Koszul monomial T} -...-Tj of homological degree i and let j2c. Then

m= ;c}x{,m'

5 ci ek,

is a typical element in K ; since x} is a k-basis for the elements of degree j in R.
We see that m is a cycle if and only if m is a k-linear combination of x/ times
Koszul monomials in Ty,. .., T,_,, since xJ*! 40 and x;x! =0 if i <n. But then

m = d(z c}xf,"T,m})
]
since dm< (x,,. . .,x,_)Kg and xS~ (x,,...,x,_,)=0.

Lemma 11, If R=k[X,,...,X,)/(f1s-- s fu+1) is a ring of type O, where
Jis+ - -5 [ is a regular sequence, then

R = k[Xla' . -’Xm Y]/(fl’ . "j;nj;u+l_ Yd"')

is a complete intersection (d,,,=deg f,. )

PROOF. f,,... f, is a regular sequence in k[X,,...,X,], so fi,...,f, is a
regular sequence in k[X,,. .., X,, Y]. But f,,, — Y%*1 is obviously a non-zero
divisor in k[X,,...,X,, Y1/ (f1s- - s fo

Lemma 12. If R=k[X,,...,X,)/(f1>-- ., f) is a ring of type 1, where
Sise s fo—y is a regular sequence, then

R = kX s X Y)Y (fe s fom1 Jo= YY)

is a complete intersection (d,=deg f,).
Proor. Analogous.

ProposiTION 13. If R=k[X,. .., X, J/(f1,. .., f») is of type 1, then

Math. Scand. 56 - 10
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a) In ring degree <c—1 H(Kg)= A\ H,(Kp)

b) In ring degree c—1, u: N\ H,(Kg) —» H(Kp) is injective
) In ring degree >c—1, H(Kg)=0.

PRrooF. ¢) is lemma 10. Let R and R’ be as in Lemma 12. Then the natural
map Kg — Kg — 0 has kernel (y, T,)Kg,, where dT,=y. This gives the long
exact sequence of homology

. > Hi,j((y9 Ty)KR') g Hi.j(KR') g HI,J(KR)
- Hi-x,]n((}’, T)Kg)— ....

We first show that H; ;((y, T)Kg)=0 if j<c. Suppose z belongs to
K, j((y, T,)Kg). Then there is a unique way to write z=T,u+ yv, where no
Koszul monomial in v is divisible by T,. Suppose z is a cycle. In (y, T))K,

z ~z—d(Tyw) = Tu+y—yo+Tdv = T,(u—dv) = T,w.

But d(T,w)=yw—T,dw=0, so dw=0, so yw=0. So it suffices to show that
Anng y starts in degree c. We next determine Hilb,,, ., (Z). Since

0—- Amngpy-*> R - R—-0
is exact, we have

Hilbg (Z) = (1—2)Hilbg (Z)+ Z Hilbpgg,, (Z) .
Hilbg (2) = i[_”]l A+Z+...+2Z2% Y4+ Z*Y(1-2)
and
Hilbg (Z) = i]:"[l A+Z+...+2Z%Y
gives

Hilbppg,., (2) = Z9/(1-2)

so H; ;((y, T,)Kg)=0 for j <c. The long exact homology sequence gives a) and
b). Observe that the map H(Kg) — H(Kp) is a map of algebras since the
kernel is an ideal and that H(Kg)=~ A H;(Kp), since R is a complete
intersection.

CoroLLArY. If R=k[X,,...,X,)/(};,.-..f,) is of type 1, we have
p: A" 'H, (Kg) — H,_,(Kp) injective.
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Proor. Follows from a) and b).

THEOREM 14. If R is of type 1, H(K ) is completely determined as a bigraded
algebra by the numerical characters of R. Namely, let nc. R=(n,1,0,
dy,. . .,d,)), then as a bigraded algebra

H(Kp) = ((/\ V)//"\ V> W,

where V is a vectorspace with a basis v,,. . .,v, with v; of bidegree (1,d;—1),
where o stands for trivial extension, and where W is a vectorspace with a basis
wd, 2<i<nand 1<j< (322) and W2 =0, and where w? has bidegree (i,c—1).
Proor. For any graded algebra S we have
Hilbg (Z) = ) (—1)'dim H, ;(K9Z'*i/(1-Z)",

n=e.dim S. If R is of type 1 we have

Hilbg(2) = [] (1-Z%/(1-2+21/(1 - 2)

i=1

(1"1 (1—2")+Z°“(1—Z)"*')/u—zr.
i=1

If we subtract the contribution of AJ/H,(Kg), jSn—1, we have
(H=H/®} 'A’H,)

Z (_l)idimkgi,j(KR)Zi+j = z (—1)'dim, Hi,j(KR)zi+]

(i, J) @D
jze-1 j=c=1
$ n—1\) iiert
= (_1)nz¢+n+zc+1(1_z)n = Z (__1)‘ ; Zite
i=0

. (P 1) jive-1

igz (=D (i_2>z

L)

. n—1
dim, H; ., (Kg) = i—2

for 2<i<n,i+n—1.Since H, ;(Kg)=0for j>c—1 an element in W annihilates
anything of positive ring degree, that is V- W=W?=0.

CoroLLARY. If R=k[X,,...,X,)/(f1,.. ., f;) is of type 1, SocR is of k-
dimension n—1 and is situated in degree c—1.
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Proor. Soc R~ H,(Kp).

Rings of type 0 are computationally harder to handle. We choose to make
restrictions on their numerical characters to be able to draw nice conclusions
instead of getting general but complicated ones.

Prorposition 15. If R=k[X,,..., X, 1/(f15- - -5 fa+1) is of type O with n even
and deg f;=d for all i, d even, then
a) In ring degree <(c—1)/2, H(Kg)= N H,{Kp).
b) In ring degree (c—1)/2, u: N\ H (Kg) — H(Ky) is injective.
c) In ring degree > (c—1)/2, H(Kg)=0.
Proor.

Hilbg(Z2) = [(1-ZH(1+Z+...+271].

dn—n

A+Z+...+2¢y = ¥ oz,
i=0

It is easily shown by induction that q;_, <aq; for i< (dn—n)/2 and that

Qan—ny2+i = Qan-ny2-i -

This gives hg((dn—n+d)/2)=0 but hg((dn—n+d)/2—1)+0. But (c—1)/2=((n
+1)(d—1)—1)/2 so even Ky is zero in ring degree > (c—1)/2 which gives c).
The proof of a) and b) is completely analogous to the proof in Proposition 13.

COROLLARY. If R is as in Proposition 15, we have
w A Hy(KQ — Hyp(Kp)
injective.
Proor. Follows from a) and b).

THEOREM 16. If R is as in Proposition 15, H(K g) is completely determined as a
bigraded algebra by the numerical characters of R. Namely

H(Ky) = (( A V)/"’X‘V> W

with V a (n+ 1)-dimensional vectorspace in bidegree (1,d—1), W in bidegrees
(i, (c—1)/2) for i=2,...,n and with W?=0.
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ProOF. Analogous to the proof of Theorem 14.

THeEOREM 17. If R is of type 1, then Pg(u,v) only depends on the numerical
characters of R and is rational. In fact if R is of n.c. (n,1,0, dy,...,d),

Pr(u,v)
= 1_[ (1+uvd;)/( "[ (1_uzvd;)_uiivc—l((l+uv)u—1___un—lvu—l)_u2+nvn)
i=1 i=1

in particular

PR(Z) = (1+2/((1-Z~Z>((1 + Z)"* = 2 1) - 2+2)

Proor. We will show that there exists a ring homomorphism s: H(Kp)
— Z(Kp) such that

H(Kg) % Z(Kgp) — H(Kp)

is the identity, where the last map is the natural projection. This is sufficient to
have a rational correspondance between Pg(Z) and Py k,\(Z, Z), see [1]. Then
we will show that Py (4, v) is rational. To construct the map s we need two
lemmas.

LEMMA 18. If R is of type 1, then any element z in (Z(Kp)); .-, is homologous
to an element in S (Kp), ,, where S=SocR.

Proor. We let R be represented as in Lemma 9. We have shown that S has k-
dimension n—1 and is situated in degree c — 1. But hg(c—1)=n and x¢~! is not
in the socle, so x¢~! and S k-generates R,_;. Now let

n—1

zZ = x:_luo+ Z s.i“j,
i=1

where u; € (Kg); o for j=0,...,n—1ands; € S. As in lemma 9 it is clear that u,
is a k-linear combination of Koszul monomials in Ty,. .., T,_,, but if m is such
a Koszul monomial we have dx¢"2T,m=x%"'m+0, where o € S*Kp.

LemMma 19. If R=k[X,.. ., X,)/(fs,. - -, f,) is of type 1 and represented as in
Lemma 9, we have f; € (X,,...,X,-y) for i=1,...,n.

PROOF. Let f;=c,X%+f,, where f} € (Xy,. . ., X,-4). Then cx*= —f}, but the
right hand side belongs to (xy,...,X,—;)=Anngx{™! and the left hand side
does not unless ¢;=0.
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We now continue the proof of the theorem. We know that

H(Kg) = (( A H,(KR))/ A Hl(KR))aW.

Now let R be represented as in Lemma 9. Then we can lift a basis of H, (Kg) to
elements of the type 3}_, r,T;, where r; € (x,,...,x,_,) according to Lemma
19. We extend this multiplicatively to a lifting of (A H(Kg)/ A"H,(Kp).
Then a basis of Wis lifted as in Lemma 18. This lifting of H(Kg) gives the map
s. Now H(Kp) is an M-ring (see [5]) modulo the nth power of the
augmentation ideal, hence Py (4, v) and thus P can be calculated (see [8]).

THEOREM 20. If R=Kk[X,,..., X, 1/ (fi5- - -» o +1) is of type O with n even and d,
=d for all i, d even, Pg(u,v) only depends on n and d and is rational.

Proor. The method of proof is the same as in Theorem 17. Now we can
make any lift of a  basis for H,(Kgp) and extend it to
( A H(Kg)/ A™**! H,(Kpg) and make any lift of a basis for W to get the map
s. The rest of the proof is analogous to the proof of Theorem 17.

One way to interprete Proposition 13 is to say that with respect to its Koszul
homology a ring of type 1 is close to being Cohen-Macaulay. We will now
show that in another respect a ring of type 1 is far from being Cohen-Macaulay.

THEOREM 21. A ring of type 1 of embedding dimension 23 is not Buchsbaum.

Proor. Let R=k[X,,... X, 1/(fis. .., f) with fi,. . ., f,_ a regular sequence
and n2 3. There is a linear form Y such that f,,. . ., f,_,, Y is regular sequence
so that k[X,,...,X,)/(fis- - -» fa-1, Y) is Artinian. Then the image yin Rof Y
is a parameter since R/y is Artinian since k[X,,...,X,}/(fi,-...fpY) is
Artinian. Now suppose

Anngy = Anng(x,,...,x,) = SocR.
Since

0—> Anngy—-> R R—-> R/y— 0
is exact we have

Hilbg), (Z) = (1— Z)Hilbg (Z)+ Z Hilbsec (2)

= (1—2)(f1 A+Z+... +Z“")+Z‘“/(l—-Z))+(n—1)Z“ .
i=1
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But if some d;>2 or n>3 the coefficient of Z°~! is negative and we have a
contradiction. But if d;=2 for all i and n=3 there are only two extremal
rings (2D, namely K[Xy, X5 X3)/(X3, X3~ X X5, X,X,) and
k[X, X2, X31/(X1, X5, (X, + X,)X5, X3+ X, X5+ X2). But in these rings x; is
a parameter annihilated by x, and by (x, +x,) respectively, and the socle is
generated by two elements of degree 2.

Note. We have assumed the field k to be the complex numbers. In fact, any
field will do except in examples 2 and 7 where char k=0 is needed, and in
Theorem 21, where k algebraically closed is needed.

ArpEnDIX. We will show that there exists no extremal ring of n.c.
(4,2,0,(2,2,2)). (There exist rings of this n.c,, e.g. k[X,...,XJ/(X}-X% X3
—-X2 X,X,—X,X,),see [6].) Suppose k[ X ,,. .., X,]/(/f1, f2, f5) were extremal
with f,, f, a k[X,,. .., X,]-sequence. Exactly as in section 4 one sees that R’
=k[X,,..., X, YV (S, [ fs—Y?) is a complete intersection. As before one
calculates

Hilb ., (Z2) = Z’+...

and has Kp~Kp in ring degrees <6. If s e SocR, then degs<6, since
dim R/s=2 and

Hilbg,,(Z) = Hilbg(2)—2%8*,

which is too small if deg s> 6. The same argument shows that the socle has k-
dimension 1. We have shown that H, ;(Kg)=0 if j>6. Next we will show that
H, ;(Kg) and H, ;(Kg) are zero for j>6. Suppose

Z = rl Tl T2T3 +r2T1 T2T4 +I‘3Tl T3T4+r‘T2T3T4

is a homogeneous cycle of ring degree m>6 and that x;, x, are algebraically
independent. Then we have

ro= i cxa .
j=0
We can reduce Z with a boundary to get a hqmologous cycle
Z = X3y, T3+ T\ LT+ T\ T, T+ 1 T, T, T,
Now

dzZ' = (Cx;‘+l+r,2x4)T1T2+... =0

gives c=ry=0, so
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Z' = r\T\T;3T,+r,T, T, T, ,
hence
dZ' = x,rsT\ T3+ x4, T, T3+ ... =0
gives ry=r,=0. Now let
Z =TT+, T\ T+ rT Ty +r, T, T+ rs Ty Ty +r6 TS T,

be a homogeneous cycle of ring degree m>6. We can reduce Z by a boundary
to

Z’ = Cx';TlT3+r'3T1T4+rQT2T3+r'5,T2T4+rgT3T4 .
The coefficient of T; in dZ'=0 gives c=r3=0, so
ZI = rl4T2T3+r,5T2T4+r,6T3T4 .

The coefficient of T, in dZ' is — x3r; + x,rs so we could reduce by a boundary
to get Z' ~Z" =rgT5T,. Finally dZ" =0 gives r¢ =0. Using the same method as
before we have

dim, Ho(KR),dim, H, (Kg), dim, H,(K g), dim, H3(Kg), dim, H,(K,))
= (1,3,4,3,1).

But this is impossible according to [3].

REFERENCES

1. L. L. Avramov, Small homomorphisms of local rings, J. Algebra 50 (1978), 400-453.

2. J. Backelin and R. Froberg, Studies on some k-algebras giving the Poincaré series of graded k-
algebras of length <7 and local rings of embedding dimension 3 with m*=0, Preprint no. 9,
Matematiska Institutionen, Stockholms Universitet, 1978.

. E. G. Evans and P. Griffith, The syzygy problem, Ann. of Math. 114 (1981), 323-333.

. R. Froberg, Extremal almost complete intersections, Preprint no. 18, Matematiska
Institutionen, Stockholms Universitet, 1981.

5. R. Froberg, Some complex constructions with applications to Poincaré series, in Séminarire
d’algébre Paul Dubreil (Proc. Paris, 1979-78), ed. M. P. Malliarin, (Lecture Notes in Math. -
740), pp. 272-284, Springer-Verlag, Berlin - Heidelberg - New York, 1979.

6. T. H. Gulliksen, Tout idéal premier d’'un anneau nothérien est associé a un idéal engendré par
trois éléments, C. R. Acad. Sci. Paris Sér A 271 (1970), 1206-1207.

7. C. Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), 113-119.

. C. Lofwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-

algebra, Preprint no. 5, Matematiska Institutionen, Stockholms Universitet, 1976.
9. P. Schenzel, Uber die freien Auflosungen extremaler Cohen-Macaulay-Ringe, J. Algebra 64
(1980), 93-101.
10. H. Wiebe, Uber homologische Invarianten lokaler Ringe, Math. Ann. 179 (1969), 257-274.

W

[-

MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
BOX 6701

11385 STOCKHOLM

SWEDEN



