ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, III

ERNST S. SELMER

The present paper is an immediate continuation of Selmer [7] and Selmer - Rödne [8]. All references to theorems and formulas from sections 1-13 are automatically to [7] or [8].

14. The sets of h_0 - and $(h_0 - 1)$ -representable numbers.

Let $A'_k = A_k \cup \{0\}$. The set (1.2) of h-representable numbers (at most h addends) may then in standard terminology be denoted by hA'_k . Our aim in the present section is to determine the sets $h_0A'_3$ and $(h_0 - 1)A'_3$.

We shall rely heavily on the results in Rödseth [6], and use his notation, with one exception: He operates with an integer r, $0 \le r < a_3$. To avoid confusion with our use of r, we shall replace his r by l.

Rödseth's Lemma 4 states that

$$t_{-1}^* = x_v(a_3 - 1) + y_v(a_3 - a_2), (x_v, y_v) \in X_v \cup Y_v.$$

We consider the numbers (all $\equiv l \pmod{a_3}$):

$$(14.1) (h_0 - t)a_3 - t_{-1}^* = (h_0 - t - x_v - y_v)a_3 + y_v a_2 + x_v \ge 0,$$

and claim that these belong to h_0A_3' for $t \ge 0$. This is trivial if $h_0 - t - x_v - y_v \ge 0$, since the coefficient sum $\Sigma = h_0 - t \le h_0$. It remains to show that the set

$$S_l = \{l, l+a_3, l+2a_3, ..., y_v a_2 + x_v - a_3\} \subset h_0 A_3'.$$

And this is proved by Rödseth, since S_l is just the sequence (4.1) of [6]. On the other hand, the numbers (14.1) do not belong to h_0A_3 if t = -t' < 0. Assume to the contrary that

$$(h_0 + t')a_3 - t_{-1}^* = x_3a_3 + x_2a_2 + x_1, \ \Sigma x_i = h' \le h_0.$$

As in section 3, we conclude that

$$t_{-1}^* - t'a_3 = (h_0 - h')a_3 + x_1(a_3 - 1) + x_2(a_3 - a_2)$$

has a representation by $\overline{A}_3 = \{a_3 - a_2, a_3 - 1, a_3\}$, cf. (2.15). (Rödseth uses $A_3^* = \overline{A}_3 \cup \{0\}$.) But this is a contradiction, since t_1^* is defined as the smallest integer in its residue class (mod a_3) with a representation by \overline{A}_3 .

Received June 6, 1984.

Letting (x_v, y_v) run through all lattice points of $X_v \cup Y_v$, we get all residue classes $l \pmod{a_3}$, and have the following

Тнеокем 14.1.

$$h_0A_3' = \bigcup_{(x_v, y_v) \in X_v \cup Y_v} \{ (h_0 - t - x_v - y_v)a_3 + y_va_2 + x_v \ge 0, t = 0, 1, \dots \}.$$

For use in the next section, we shall also determine $(h_0 - 1)A_3'$. Clearly

$$(h_0-1)A_3' \subset h_0A_3' - a_3 = \{n-a_3 | n \in h_0A_3'\}.$$

If A_3 is pleasant, it suffices to use regular representations, and clearly

$$(h_0-1)A_3'=(h_0A_3'-a_3)\cap N_0$$

(where $N_0 = \{0, 1, 2, ...\}$). For non-pleasant A_3 , however, we get problems with the number n_0 of (11.13):

$$n_0 = a_3 - r - 1 = (f - 1)a_2 + a_2 - 1 = n_{h_0 - 1}(A_3) + 1 \notin (h_0 - 1)A_3'$$

where $n_0 + a_3 = 2fa_2 + r - 1 \in h_0A_3'$, since $1 \le r \le a_2 - f - 1$ by (4.3). (For pleasant A_3 , it follows from (2.8) that $n_0 + a_3 = n_{h_0}(A_3) + 1 \notin h_0A_3'$.)

We shall show that n_0 is usually the *only* exception:

THEOREM 14.2. For A_3 non-pleasant, with $r \neq 1$ and $s \neq q$, we have

$$(14.3) (h_0-1)A_3' = (h_0A_3'-a_3) \cap \mathsf{N}_0 \setminus \{a_3-r-1\}.$$

To prove this, we replace h_0 by $h_0 - 1$ in the arguments leading to Theorem 14.1. The only critical point is whether now $S_l \subset (h_0 - 1)A'_3$.

To show that $S_l \subset h_0 A_3'$, Rödseth used his Lemma 5, which states that for $1 \le i \le v$, we have

$$(14.4) x_{i-1} + y_{i-1} + Q_i - 1 \le h_0 if P_i \le s_i$$

$$(14.5) x_i + v_i + R_i - 1 \le h_0 if P_i > s_i.$$

If these relations hold with strict inequalities, it follows that $S_l \subset (h_0 - 1)A'_3$.

We note that Rödseth's division algorithm for a_3/a_2 is the same as the one leading to our Theorem 6.1. In particular, we have $a_3 = q_1 a_2 - s_1$, hence $q_1 = q$, $s_1 = s$, and v > 0 for a non-pleasant A_3 , when $s \ge q$ by (2.10).

Studying Rödseth's proof of his Lemma 5, we observe the following facts:

1) For i = 1, when $P_1 = q_1 \le s_1$, we have equality in (14.4) if and only if (x_0, y_0) is the upper right corner of Y_0 :

$$(14.6) (x0, y0) = (s0 - 1, P1 - P0 - 1) = (a2 - 1, f - 1).$$

Then $y_0a_2 + x_0$ is just the number n_0 of (14.2).

2) For i > 1, hence $Q_i > 1$, a necessary condition for equality in (14.4) or (14.5) is $s_i = s_{i-1} - 1$ or $s_{i+1} = s_i - 1$, respectively. But then such a relation must hold from the start:

$$s = s_1 = s_0 - 1 = a_2 - 1$$
, hence $r = 1$

(cf. the recurrence relation $s_{j+1} = q_{j+1}s_j - s_{j-1}$, $q_{j+1} \ge 2$). If $r \ne 1$, we thus have strict inequalities in (14.4-5) for all i > 1.

In Rödseth's proof of $S_l \subset h_0 A_3'$, he divides S_l into "subsequences" between $y_{i-1}a_2 + x_{i-1}$ and

$$y_i a_2 + x_i = y_{i-1} a_2 + x_{i-1} + Q_i \left[\frac{x_{i-1}}{s_i} \right] a_3.$$

We have noted that the case i=1 needs a special treatment. Since $s_1=s$, $Q_1=1$, we must consider the numbers $za_3+y_0a_2+x_0$, $0 \le z < [x_0/s]$. Using the " a_3 -transfer" $a_3=qa_2-s$ of section 11, this may be written as

$$(14.7) za_3 + y_0a_2 + x_0 = (y_0 + zq)a_2 + x_0 - zs,$$

with positive constant term, and a coefficient sum

$$\Sigma = x_0 + y_0 - z(s - q) \le x_0 + y_0.$$

If $x_0 + y_0 < h_0$, then also $\Sigma < h_0$ for all z. If $x_0 + y_0 = h_0$, corresponding to the corner (14.6), then $\Sigma < h_0$ for z > 0 if s > q, but $\Sigma = h_0$ for all z when s = q.

If s = q, then v = 1 by Theorem 7.1, and the "subsequence" just completed covers the whole of S_l . If v > 1, we have seen that the remaining subsequences yield no problems if $r \neq 1$.

This completes the proof of (14.3), and also shows that if s = q, then (14.8)

$$(h_0-1)A_3' = (h_0A_3'-a_3) \cap \mathbb{N}_0 \setminus \left\{ta_3-r-1 \mid t=1,2,\ldots, \left[\frac{a_2-1}{s}\right]\right\}.$$

Here $ta_3 - r - 1 = n_0 + (t - 1)a_3 = n_0 + za_3$, with $0 \le z < [x_0/s] = [(a_2 - 1)/s]$. Note that we may use also $z = [x_0/s]$ in (14.7), but the resulting number is then contained in h_0A_3 but not in $h_0A_3 - a_3$.

We finally treat the case r=1. A modification of Rödseth's method then seems to become rather complicated. However, we can settle the case directly by a more elementary application of a_3 -transfers. With r=1, the only such transfers which may reduce the coefficient sum are of the form

$$(14.9) ea_3 = (ef + 1)a_2 - (a_2 - e), e = 1, 2, \dots$$

As in section 11, we start with the regular representations

$$(14.10) n = e_3 a_3 + e_2 a_2 + e_1, \ e_1 \le a_2 - 1, \ e_2 \le f - 1.$$

For r = 1, it is unnecessary to consider $e_2 = f$, since already $fa_2 + 1$ gives a new a_3 .

For the *n* of (14.10), we shall decide if $n \in h_0 A_3'$. If $\Sigma_e = \Sigma e_i \le h_0$, we are finished. If $\Sigma_e > h_0$, we must try a transfer (14.9) with $e \le e_3$. The transfer is possible only if it yields a non-negative constant term, that is, if $e_1 \ge a_2 - e$.

Similarly, we shall decide if $n' \in (h_0 - 1)A'_3$, where

$$(14.11) n' = n - a_3 = (e_3 - 1)a_3 + e_2a_2 + e_1 (e_3 > 0),$$

with $\Sigma'_e = \Sigma_e - 1$, hence no problem if $\Sigma_e \leq h_0$. If an a_3 -transfer (14.9) is necessary and possible in (14.10), and yields a new $\Sigma \leq h_0$, then the same transfer gives $\Sigma' \leq h_0 - 1$ in (14.11), provided it is possible, that is, if $e \leq e_3 - 1$. It is easily seen that this combination of conditions fails only in the case

(14.12)
$$n = e_3 a_3 + (f-1)a_2 + a_2 - e_3, \ \Sigma = h_0 + 1.$$

Thus $n' = n - a_3 \notin (h_0 - 1)A'_3$ if $n' = e_3 a_3 - e_3 - 1$.

For the *n* of (14.12), we must use $e = e_3$ in (14.9), and get $n = (e_3 + 1) fa_2$, hence

$$n \in h_0 A_3' \Leftrightarrow (e_3 + 1)f \leq h_0 = a_2 + f - 2 \Leftrightarrow e_3 \leq \left\lceil \frac{a_2 - 2}{f} \right\rceil.$$

We have thus shown that if r = 1, then

(14.13)

$$(h_0-1)A_3' = (h_0A_3'-a_3) \cap \mathbb{N}_0 \setminus \left\{ t(a_3-1)-1 \middle| t=1, 2, \dots, \left\lceil \frac{a_2-2}{f} \right\rceil \right\}.$$

For t = 1, we get $t(a_3 - 1) - 1 = a_3 - 2 = n_0$.

No problems arise if we have s = q and r = 1 simultaneously. Then $s = q = a_2 - 1$, $f = q - 1 = a_2 - 2$, and the "subtrahends" $\{\cdot\}$ in (14.8) and (14.13) both consist of n_0 only.

The results (14.3), (14.8) and (14.13) imply that, but for the specified exceptions with t > 1 for r = 1 or s = q, the integers $\ge a_3$ with a representation in at most h_0 addends from A_3 have such a representation containing a_3 .

In particular, $[0, n_{h_0}(A_3)] \subset h_0 A_3'$. It then follows from (14.3) that (14.14)

$$r \neq 1$$
, $s \neq q \Rightarrow [0, n_{h_0}(A_3) - a_3] \setminus \{a_3 - r - 1\} \subset (h_0 - 1)A_3'$.

This was first observed numerically for a large number of bases A_3 , and gave the impetus for the investigations in this section.

As in Rödseth [6], let $\Lambda(n)$ denote the number of addends in a minimal representation of n by a given basis A_k . We clearly have

$$\Lambda(n_h(A_k) - (x+1)a_k + 1) \ge h - x, \ \Lambda(n_h(A_k) - xa_k) \ge h - x,$$

since otherwise addition of $(x+1)a_k$ or xa_k would yield a contradiction. This raises the question whether there are integers x > 0 such that for the interval of length a_k :

$$[n_h(A_k) - (x+1)a_k + 1, \ n_h(A_k) - xa_k] \subset (h-x)A_k'.$$

We have just seen that this holds with x = 1 if k = 3, $h = h_0$, A_3 non-pleasant, $r \neq 1$, $s \neq q$. Already for x = 2, however, it is easy to find counterexamples:

$$A_3 = \{1, 7, 11\}, h_0 = 6, n_6(A_3) = 48; \Lambda(17) = 5.$$

We have made the interesting observation that for *Frobenius-dependent A*₃ with r > 1, (14.15) holds also with larger x:

PROPOSITION 14.1. Let A_3 be Frobenius-dependent, with r > 1. In the notation (5.8), let

$$(p-1)a_2 \le n \le n_{h_0}(A_3), \ x = \left\lceil \frac{n_{h_0}(A_3) - n}{a_3} \right\rceil.$$

Then

$$n \in (h_0 - x)A_3'$$

A proof will be published elsewhere.

15. The cases with $n_h(A_4) = n_h(A_3)$.

In (3.3), we raised the question of basis extensions which do not increase the h-range. We shall solve this question completely in the case

$$(15.1) n_h(A_4) = n_h(A_3 \cup \{a_4\}) = n_h(A_3), \ a_4 > a_3.$$

Even if A_4 enters the formulation, the results depend entirely on the properties of A_3 .

We see from (3.4) that the regular h-range g_h always increases by a basis extension (assuming admissible bases). The same argument shows that if A_3 is pleasant, then

$$n_h(A_4) \ge g_h(A_4) > g_h(A_3) = n_h(A_3),$$

so that we may assume non-pleasant A_3 in (15.1).

If $a_4 > n_{h_0}(A_3) + 1$, then A_4 is not admissible for $h = h_0$ (where $h_0 = a_2 + f - 2$ refers to A_3). If then $h = h'_0 > h_0$ is the smallest h for which A_4 is admissible, we trivially have $n_h(A_4) = n_h(A_3)$ for $h < h'_0$. On the other hand, it follows from (2.14) that

$$n_{h'_0}(A_4) \ge a_4 + n_{h'_0-1}(A_3) = a_4 + n_{h'_0}(A_3) - a_3 > n_{h'_0}(A_3).$$

Similarly, it follows from (2.13-14) that

$$n_{h'}(A_4) \ge n_{h'}(A_3), h' \ge h'_0 \Rightarrow n_h(A_4) > n_h(A_3), h > h'.$$

We may therefore restrict the problem (15.1) to the case

$$(15.2) n_{h_0}(A_4) = n_{h_0}(A_3), \ a_3 < a_4 \le n_{h_0}(A_3) + 1.$$

Note that a similar simplification does not apply to larger bases, since the analogue of (2.14) does not necessarily hold for k > 3.

We already know one case of (15.2), resulting from the basis A_{h+2} of section 3:

$$(15.3) a_2 = h_0 + 1, a_3 = h_0 + 2, a_4 = \alpha a_2 + a_3, \ 1 \le \alpha \le h_0 - 1.$$

To solve the general problem, we note that

$$n_{h_0}(A_4) = n_{h_0}(A_3) \Leftrightarrow n_{h_0}(A_3) + 1 \notin h_0 A_4'$$

(15.4)
$$\Leftrightarrow n_{h_0}(A_3) + 1 - \delta a_4 \notin (h_0 - \delta)A_3', \ \delta = 1, 2, ..., h_0.$$

In most cases, it suffices to consider $\delta = 1$. Since

$$N = n_{h_0}(A_3) + 1 - a_4 \in [0, n_{h_0}(A_3) - a_3] \subset (h_0 A_3' - a_3) \cap \mathbb{N}_0,$$

(15.4) fails already for $\delta = 1$ if N does not belong to the exceptions in (14.3), (14.8) or (14.13). These cases have the common exception n_0 of (14.2), and $N = n_0$ does in fact lead to a general solution of (15.2):

(15.5)
$$a_4 = \hat{a}_4 = n_{h_0}(A_3) - a_3 + r + 2 = n_{h_0}(A_3) - n_{h_0 - 1}(A_3)$$
$$\Rightarrow n_{h_0}(A_4) = h_{h_0}(A_3).$$

This is clear since we cannot use $\delta \ge 2$ in (15.4):

$$2\hat{a}_4 > n_{h_0}(A_3) + 1 \Leftrightarrow n_{h_0}(A_3) > 2a_3 - 2r - 3$$

which always holds by (2.8). – Note that $\hat{a}_4 = a_3$ if A_3 is pleasant.

If $a_4 \neq \hat{a}_4$, a necessary condition for (15.2) is that N equals one of the exceptions in (14.8) or (14.13), with t > 1 (since t = 1 corresponds to n_0).

We start with (14.13), hence r = 1. Then $n_{h_0}(A_3)$ is given by (2.28), and we find that we must choose

(15.6)
$$a_4 = a_3 + \tau(a_3 - 1), \ \tau = 1, 2, ..., \left\lceil \frac{a_2 - 2}{f} \right\rceil - 1$$

(while $\tau = [(a_2 - 2)/f]$ corresponds to \hat{a}_4). We shall see that this is also sufficient for (15.2) to hold.

We consider a representation

$$(15.7) n_{h_0}(A_3) + 1 = x_4 a_4 + x_3 a_3 + x_2 a_2 + x_1,$$

and must show that $\sum x_i > h_0$. This is trivial if $x_4 = 0$, so we can assume $x_4 > 0$, and observe that

$$h_{h_0}(A_3) + 1 \equiv 0, \ a_4 \equiv a_3 \equiv 1 \pmod{a_3 - 1} = fa_2.$$

With $x_2 = xf + x_2'$, $0 \le x_2' < f$, (15.7) then gives

$$x_4 + x_3 + x_1 \equiv (f - x_2')a_2$$
, hence $x_4 + x_3 + x_1 \ge (f - x_2')a_2$
 $x_4 + x_3 + x_2 + x_1 \ge x_4 + x_3 + x_2' + x_1 \ge (f - x_2')a_2 + x_2'$
 $\ge a_2 + f - 1 = h_0 + 1$,

as required. – In particular, we get the known case (15.3) from (15.5–6) with f = 1.

We next consider (14.8), hence s = q, $a_3 = q(a_2 - 1)$. By (2.29), we now have two possibilities for $n_{h_0}(A_3)$:

$$n_{h_0}(A_3) = \left(\left[\frac{a_2 - 1}{s}\right] + 2\right)a_3 - r - \begin{cases} 2, & \text{if } s \nmid (a_2 - 1) \\ 3, & \text{if } s \mid (a_2 - 1). \end{cases}$$

These two cases must be considered separately.

If $s \not | (a_2 - 1)$, we find that we must choose

(15.8)
$$a_4 = (\tau + 1)a_3, \ \tau = 1, 2, ..., \left\lceil \frac{a_2 - 1}{s} \right\rceil - 1$$

(while $\tau = [(a_2 - 1)/s]$ corresponds to \hat{a}_4). Again, this is also sufficient for (15.2) to hold:

We consider a representation (15.7). Since $a_3 | a_4$, we get

$$x_2a_2 + x_1 \equiv n_{h_0}(A_3) + 1 \equiv -r - 1 = -a_2 + f \pmod{a_3} = q(a_2 - 1),$$

from which we draw two conclusions:

1)
$$x_2a_2+x_1 \ge a_3-r-1$$

2)
$$x_2a_2 + x_1 \equiv x_2 + x_1 \equiv f - 1 \pmod{a_2 - 1}$$
.

Assuming $\sum x_i \le h_0$ in (15.7), hence $x_4 > 0$, we get $x_2 + x_1 < h_0 = (f-1) + (a_2 - 1)$, so $x_2 + x_1 = f - 1$, and

$$x_2a_2 + x_1 \le (f-1)a_2 = a_3 - r - a_2$$

contradicting the first conclusion.

If $s | (a_2 - 1)$, hence $m = (a_2 - 1)/s$ an integer, we find that we must choose

$$a_4 = (\tau + 1)a_3 - 1, \ \tau = 1, 2, \dots, \frac{a_2 - 1}{s} - 1 = m - 1.$$

Now (15.4) holds for $\delta = 1$, and we examine $\delta = 2$:

$$n_{h_0}(A_3) + 1 - 2a_4 = (m - 2\tau)a_3 - r = (m - 2\tau - 1)a_3 + fa_2.$$

If $\tau \ge \left[\frac{1}{2}(m+1)\right]$, this expression is negative, and an examination of (15.4) for $\delta \ge 2$ is unnecessary, so (15.2) holds. If $\tau < \left[\frac{1}{2}(m+1)\right]$, however, the right hand side belongs to $(h_0 - 2)A_3'$, and (15.4) fails for $\delta = 2$. Thus (15.2) is satisfied only if

(15.9)
$$a_4 = (\tau + 1)a_3 - 1, \ \tau = \left[\frac{1}{2}(m+1)\right], \dots, m-1; \ m = \frac{a_2 - 1}{s}.$$

Summing up, we have the following

THEOREM 15.1. For non-pleasant A_3 , the equality (15.2) holds if and only if we have one of the cases:

(15.5) for arbitrary
$$A_3$$
,

(15.6) for
$$r = 1$$
,

(15.8–9) for
$$s = q$$
.

Based on computations by Mossige, this result was conjectured long before a proof was found. The cases r=1 or s=q are also proved in Krätzig-Berle [4, Kap. 4], the "if" part along the lines above, the "only if" part by explicit representations for $n_{h_0}(A_3) + 1$ from h_0A_4 in the remaining cases.

16. The cases with $n_h(A_3 \cup \{a\}) = n_h(A_3)$, $a < a_3$.

In analogy with (3.3), it is quite natural to ask for cases when

(16.1)

$$n_h(A_k^*) = n_h(A_{k-1} \cup \{a\}) = n_h(A_{k-1}), \ 1 < a < a_{k-1}, \ a \notin A_{k-1},$$

assuming admissible bases.

We need a particular result for the similar problem regarding regular h-ranges:

$$(16.2) 1 < a < a_2 \Rightarrow g_h(A_k^*) > g_h(A_{k-1}).$$

The proof is simple: It follows from Hofmeister [1, Satz 1] that the constant term of the regular representation for $g_h(A_k)$ equals $a_2 - 2$ for all admissible A_k . We conclude that the constant term $a_2 - 1$ of $g_h(A_{k-1}) + 1$ has a regular representation in at most $a_2 - 2$ addends 1 and $a \le a_2 - 1$.

In particular, $g_h(A_3^*) > g_h(A_2)$, and hence also $n_h(A_3^*) > n_h(A_2)$. The first possibility for (16.1) thus occurs when k = 4:

$$(16.3) n_h(A_4^*) = n_h(A_3 \cup \{a\}) = n_h(A_3), \ 1 < a < a_3, \ a \neq a_2.$$

As in the preceding section, a study of this equality depends entirely on the properties of A_3 .

If $h = h_0^*$ is the smallest h for which A_4^* is admissible, we clearly have $h_0^* \le h_0$ (where again $h_0 = a_2 + f - 2$ refers to A_3). To be "fair" to A_3 , we restrict the examination of (16.3) to $h \ge h_0$.

Before doing this, we just mention the analogous problem for regular h-ranges. By (16.2), we must then assume $a_2 < a < a_3$, and it is not difficult to prove that for $h \ge h_0$:

(16.4)
$$g_h(A_4^*) = g_h(A_3) \Leftrightarrow a = fa_2 + \rho, \ 0 \le \rho < r.$$

(My original proof is reproduced in Krätzig-Berle [4, p. 27].)

Similar arguments show that (16.3) is impossible with pleasant A_3 . With $n_h(A_4^*) \ge g_h(A_4^*)$ and $n_h(A_3) = g_h(A_3)$, equality in (16.3) could only occur under the conditions of (16.4). But by (2.8-9), we then have

$$n_h(A_3) + 1 = (h - h_0 + 2)a_3 - r - 1 = (h - h_0)a_3 + 1 \cdot a + fa_2 + r - \rho - 1$$

with a coefficient sum $\leq h$ except in the one case $r = a_2 - 1$, $\rho = 0$, hence $f \geq 2$. But then

$$n_h(A_3) + 1 = (h - h_0)a_3 + 2a + a_2 - 2, \ \Sigma \le h.$$

In what follows, we may thus assume non-pleasant A_3 in (16.3).

Since A_3 and A_4^* have a common largest element a_3 , it is possible to use

Meures' result (2.16), which in combination with (2.13) shows that for $h \ge h_0 - 1$:

$$n_h(A_k) \leq ha_k - g(\overline{A}_k) - 1$$
,

with equality if $h \ge h_1$ ("stabilization", cf. section 3). For non-pleasant A_3 , we know that $h_1 = h_0$. For A_4^* , we put $h_1 = h_1^*$. With

$$\overline{A}_3 = \{a_3 - a_2, a_3 - 1, a_3\}, \ \overline{A}_4^* = \overline{A}_3 \cup \{a_3 - a\},\$$

we thus get, for $h \ge h_0$:

$$n_h(A_3) = ha_3 - g(\overline{A}_3) - 1, \ n_h(A_4^*) \le ha_3 - g(\overline{A}_4^*) - 1.$$

Since trivially $n_h(A_4^*) \ge n_h(A_3)$, this shows that

(16.5)
$$g(\overline{A}_4^*) = g(\overline{A}_3) \Rightarrow n_h(A_4^*) = n_h(A_3) \text{ for } h \ge h_0$$

$$(16.6) h \ge h_1^*: n_h(A_4^*) = n_h(A_3) \Rightarrow g(\overline{A}_4^*) = g(\overline{A}_3).$$

We obviously have $g(\overline{A}_4^*) \leq g(\overline{A}_3)$. With strict inequality, $g(\overline{A}_3)$ has a representation by \overline{A}_4^* :

$$g(\overline{A}_3) = x_1(a_3 - a) + x_2(a_3 - a_2) + x_3(a_3 - 1) + x_4a_3.$$

It follows that

$$n_{h_0}(A_3) + 1 = h_0 a_3 - g(\overline{A}_3) = (h_0 - \Sigma x_i)a_3 + x_1 a + x_2 a_2 + x_3$$

has a representation by A_4^* with coefficient sum $h_0 - x_4 \le h_0$, provided that $\sum x_i \le h_0$. We thus have the following partial converse of (16.5):

(16.7)
$$g(\overline{A}_3) \in h_0 \overline{A}_4^* \Rightarrow n_h(A_4^*) > n_h(A_3) \text{ for } h \ge h_0.$$

We only proved this for $h = h_0$ above, but the general result with $h \ge h_0$ then follows immediately from (2.13-14).

There is one trivial case of equality in (16.3):

(16.8)
$$f = 1, a_2 = h_0 + 1, a_3 = h_0 + r + 1, a = a_2 - tr \ge 2$$

(16.9)
$$\Rightarrow n_h(A_4^*) = n_h(A_3) \text{ for } h \ge h_0.$$

This follows from (16.5), since \overline{A}_3 and \overline{A}_4^* are "equivalent" as Frobenius bases:

$$\overline{A}_3 = \{r, a_3 - 1, a_3\}, \ \overline{A}_4^* = \{r, (t+1)r, a_3 - 1, a_3\}.$$

The second element of \overline{A}_{4}^{*} is a multiple of the first one.

We assume that A_3 is non-pleasant. If it is also non-dependent, it follows from Theorem 10.1 that

$$n_{h_0}(A_4^*) \ge n_{h_0}(A_3) \ge (h_0 + 1)a_2 - a_3.$$

Let $1 < a < a_2$. We then get $h_1^* \le h_0$ by Theorem 3.1, and can combine (16.5–6) to an equivalence for non-dependent A_3 . And for Frobenius-dependent A_3 , Krätzig-Berle [4, p. 23] shows very simply that we always have $n_h(A_4^*) > n_h(A_3)$ except in the already settled cases (16.8), hence

$$(16.10) 1 < a < a_2 : g(\overline{A}_4^*) = g(\overline{A}_3) \Leftrightarrow n_h(A_4^*) = n_h(A_3).$$

Based on extensive computations by Mossige, I conjectured the following results:

THEOREM 16.1. Let $a_2 < a < a_3$. Then

$$n_h(A_4^*) > n_h(A_3) \text{ for } h \ge h_0.$$

THEOREM 16.2. Let $1 < a < a_2$. In addition to (16.8), there is one more case of equality in (16.9):

$$f = 1, a_2 = h_0 + 1, a_3 = h_0 + r + 1, a = tr + 1$$

$$h_0 = \tau r + \rho, \ 0 \le \rho < r - 1, \ \tau \ge \rho$$

$$r \equiv -1 \ (\text{mod } \rho + 1), \ t = 1, 2, \dots, \left\lceil \frac{\tau + 1}{\rho + 1} \right\rceil.$$

Both theorems were proved in the Master's thesis [2] of my student Kirfel. He used the methods of Rödseth [5] for determining the Frobenius number $g(\overline{A}_3)$. A shortened version [3] is submitted for publication.

Another student of mine, Krätzig-Berle, gave an independent and very elegant proof of Theorem 16.1 in her Diplomarbeit [4, Satz 3.1]. Using the inequalities of Theorems 10.2-5, she could determine a h_0 -representation by A_0^* of $n_{h_0}(A_3) + 1$.

We note that the bases A_3 of Theorem 16.2 satisfy the conditions (8.1-2), and so $n_h(A_3)$ can be determined explicitly by (8.3). It is fairly straightforward (cf. [4, Satz 2.3]) to show that this *h*-range is not increased when extending the basis with a = tr + 1. The hard problem is of course to show that all other cases (except (16.8)) lead to an increase of the *h*-range.

REFERENCES

- G. Hofmeister, Über eine Menge von Abschnittsbasen, J. Reine Angew. Math. 213 (1963), 43-57.
- C. Kirfel, Erweiterung dreielementiger Basen bei konstanter Frobeniuszahl und Reichweite, Master's thesis, Dept. of Math., Univ. of Bergen, 1982.
- 3. C. Kirfel, Erweiterung dreielementiger Basen bei konstanter Frobeniuszahl, II, Math. Scand., to appear.

- E. Krätzig-Berle, Zum Reichweitenproblem für dreielementige Basen, Diplomarbeit, Mainz, 1983.
- Ö. Rödseth, On a linear diophantine problem of Frobenius, J. Reine Angew. Math. 301 (1978), 171-178.
- 6. Ö. Rödseth, On h-bases for n, Math. Scand. 48 (1981), 165-183.
- 7. E. S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
- 8. E. S. Selmer and A. Rödne, On the postage stamp problem with three stamp denominations, II, Math. Scand. 53 (1983), 145-156.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BERGEN N-5000 BERGEN NORWAY