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THE C*-ALGEBRAS OF CODIMENSION
ONE FOLIATIONS WITHOUT HOLONOMY

TOSHIKAZU NATSUME

1. Introduction.

In the theory of noncommutative differential geometry, which is one of the
most interesting fields of C*-algebras, A. Connes canonically associates a
certain groupoid C*-algebra to a foliated manifold [2]. Its prototypes are
crossed products C*-algebras of abelian C*-algebras by actions of Lie groups.
In [6] we showed that the C*-algebra of a foliated bundle is stably isomorphic
to a reduced crossed product, by the action of the total holonomy group, of the
C*-algebra of continuous functions on the fibre. The structure of bundle gives
us a way to describe the C*-algebra of foliated bundle in term of total
holonomy group.

In the qualitative theory of foliations, there is an important class of
foliations, that is, codimension one foliations without holonomy. Some of them
are structurally more complicated than foliated bundles. Nevertheless, they
have nice structures similar to those of foliated bundles, where the total
holonomy group is replaced by the Novikov transformation [4], [7].

In the present paper, we show (Theorem 2.1) that the C*-algebra of a
codimension one foliation without holonomy on a closed manifold is stably
isomorphic to the crossed product of the C*-algebra of continuous functions
on the circle by a free abelian group of finite rank acting on the circle through
the Novikov transformation.

In this paper, all manifolds and foliations are assumed to be smooth. All
groupoids are also assumed to be locally compact Hausdorff spaces and to
satisfy the second axiom of countability.
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2. Novikov transformations.

Let # be a codimension one foliation without holonomy on a closed
manifold, namely a compact manifold X without boundary. In [7] S. P.
Novikov proved, among other things, that the universal covering manifold X of
X is diffeomorphic to L x R, where L is the universal covering manifold of a
leaf L of #, and that the leaves of # induced from # are given by L x {t},
teR. Let p: X > R be the projection onto the second factor. Since the
covering transformations preserve &, they induce a homomorphism

x: 7y (X) — Diff, (R)

by the rule p(g(x))=x(g)(p(x)) for g € n,(X) and x € X, where Diff, (R) is the
group of all orientation preserving difffomorphisms of R. The group =, (L) is
embedded in m, (X) and coincides with the kernel of x. Further, x(g) has no
fixed points unless it is the identity. From this Novikov concluded that Im (y)
~mu,(X)/n,(L) is a free abelian group of finite rank » (21). In particular, a
simply connected manifold cannot have a codimension one foliation without
holonomy.

We call y the Novikov transformation of & and r the rank of .

Let f,,. .., f, be generators of Im (y) (= Diff, (R)). Define a Z-action on R by
n(t)=f"(t) for n € Z, t € R. Since f; has no fixed points, this Z-action is free,
and the quotient manifold is identified with the circle S'. As the
difftomorphisms f,. .., f, commute with f;, they induce difftfomorphisms
fa- .., f. of S, respectively. Thus we obtain a homomorphism

¥ : m,(X) — Diff, ().

Notice that the image of i’ is a free abelian group of rank r—1. We call " also
the Novikov transformation of %.
The main result of this paper is:

THEOREM 2.1. Let & be a codimension one foliation without holonomy on a
closed manifold X. Then the C*-algebra C*(X,#) of (X,#) is stably
isomorphic to the crossed product C(S')x ,Z'~', where y' is the Novikov
transformation of F.

3. Topological groupoids associated with (X, %).
Let (X, %) be as in the previous section, and let r be the rank of #. For a
groupoid H, let a (respectively f): H — H° denote the map associating to each

point of H its domain (respectively range). '
Consider the covering X' =X/ (L) - X corresponding to the normal
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subgroup 7, (L) of n,(X). Then X’ is difffomorphic to L x R, and the leaves of
the foliation #’ induced from & are L x {t},t € R. Let G(¥) and G(F") be the
holonomy groupoids of # and & respectively. It is clear that they are locally
compact Hausdorff spaces and satisfy the second axiom of countability.

LeMMA 3.1. Let q: G(F') — G(F) be the natural projection. Then the triple
(G(F"),q, G(¥)) is a Galois covering space such that the covering transformation
group II, which is isomorphic to Z', is contained in the group Aut (G(Z")) of all
automorphisms of the groupoid G(F').

Proor. First notice that the action of Z"=~=,(X)/n,(L) on X' gives us an
action as groupoid automorphisms.

By the definition of the topology of holonomy groupoid, the projection g is a
covering map in a usual sense. It is evident that the action of Z" on G(%') is
free, and that, through this action, Z" is contained in II.

Let y,9" € G(#’) have the same image in G(%). We only have to show that
there exists a g € Z" such that g(y)=y". Put a(y)=x, a(y’)=x', f(y)=y, and (y’)
=)'. Notice that q(x)=q(x’), ¢(y)=¢g()'). Since q: X' — X is a Galois covering
space, there exists a g € Z" such that g(x)=x". Since g(y) and y’ are on the same
leaf, and q(g(y))=q()), by the construction of X’ we have g(y)=y'. This shows
that g(y)=y’, because &' is without holonomy.

REMARK 3.2. Let G(F) be the holonomy groupoid of #. Then G(¥) is a
Galois covering space of G(£), but the covering transformation group is not
contained in Aut (G(£)) in general.

Suppose now that a discrete group II is acting on a groupoid G’ with space
of units X’ as groupoid automorphisms. We construct a new groupoid G’ x IT
as follows.

Consider the cartesian product G’ x I1. Define a,8: G'x II —» X' by

a(y,8) = a(g”'(y) and

B(y.8) = BG).

For (y,,81), (¥2,82) € G’ x I1, the composite (y,,8,) (¥,,8,) is defined by

(1,81) (072, 82) = (71(81(y2)): 8182)

if and only if a(y,,g,)=p(y,,g,). With these structures, G’ x I becomes a
topological groupoid with space of units X".

REMARK 3.3. To show that G’ x IT is actually a groupoid, we must use the fact
that IT acts on G’ as groupoid automorphisms.
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For a continuous map p from a topological space Y to the space G° of units
of G, we denote by Y x oG the space of all pairs (y,y) € Yx G such that p(y)
=pB(y). By an action of G on the right on Y with respect to p, we mean a
continuous map from Y x 0 G to Y such that, if the image of (y,y) is denoted by
Yy y) Y=y @), y-u=y for u e G° and p(y,y)=a(y).

In a similar way, an action on the left is defined.

LEMMA 3.4. Let G’ be a topological groupoid furnished with an action of a
discrete group Il as groupoid automorphisms. Assume that the action is free.
Then the quotient space G is a topological groupoid, which is equivalent to the
groupoid G' x II in the sense of [3, 2.3.2].

Proor. It is obvious that G is a topological groupoid. Let X, X’ be the spaces
of units of G, G’ respectively. Define maps p: G’ — X and p': G' —» X' by

pky) = n(x(y)) and
Py = BG),

where 7 is the quotient map from G’ onto G.
For any x € X’ and y € G with n(x)= (), there exists a unique y’ € G’ such
that B(y')=x and =n(y’)=y. By j(x,y) we denote this unique lift of y with

B (x,y)=x.
With respect to p,the groupoid G acts on the right on G’ by

Yy = y9(®)y)

whenever p(y’) = B(y). Similarly, with respect to p’, the groupoid G’ x IT acts on
the left on G’ by

.8y = 7))

whenever a(y, g)=p'(y'). These actions commute with each other.

For x € X', the action of G preserves p'~'(x) and is free and transitive. Let
i: X' —> G’ be the natural inclusion. The map poi gives rise to a space X' x x G,
which is a right G-space. Then there exists a G-equivariant homeomorphism

h: G — X'x xG

which covers the identity mapping of X'. This shows that p': G' » X' is a
principal G-bundle in the sense of [3, Definition 2. 2.2].

For x € X, the action of G'xII on G’ preserves p~'(x) and is free and
transitive. Let U be an open subset of X evenly covered by % X’ — X, and let
x be a continuous section for n° defined on U. The section s is regarded as a
local section for p’: G' — X. Using the map p’os, define a space (G’ x IT) x x- U,
which is a left (G’ x IT)-space. Define a map h: (G'xII)x x U — p~1(U) by
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h((y’g)’x) =7-

Then h is a (G’ x II)-equivariant homeomorphism. This means that p: G’ — X
is locally trivial. Hence, p: G’ — X is a principal (G’ x IT)-bundle.
Consequently, the space G’ defines an equivalence between G’ x IT and G as
defined in 2.3 of [3].

From Lemma 3.4, it follows that the groupoid G(&') (respectively R x Z") is
equivalent to G(%) (respectively S' x Z'1).

LeMMA 3.5. The groupoid G(¥') x II is equivalent to R x Z'.

Proor. Recall that X'=~R x L, and that G(F')=~R x L x L. with a(t, x, )
=(t,y), B(t,x,y)=(t,x). The space X' x Z" is a right (R x Z"), left (G(F") x II)-
space by the following actions:

(t.x,8) (871 (),h) = (t,x,8h),
,x,y,8) txg = (t,x,y,g'g) if gtx) = (t,y).
Define maps ¢,: X' xZ" — R and ¢q,: X' xZ" — X' by

q:(t,x,8 =g~ '),
q2(t,x’g) = (t’ X) .

It is easy to see that the space X’ x Z" together with the maps g, and g, defines
an equivalence between G’ x IT and R x Z".

4. Proof of the theorem.

A smooth density for & gives rise to a left Haar system {4}, x for G(%).
The C*-algebra C*(X, %) is nothing but the reduced groupoid C*-algebra
C*(G(#)) with respect to this left Haar system.

Canonical invariant measures on the discrete groups Z" and Z"~! induce
left Haar systems for the groupoids R x Z" and S x Z"~, respectively. The
corresponding reduced groupoid C*-algebras are nothing but the reduced
crossed products Co(R)x , Z" and C(S*)x . Z"~*, respectively.

Let (G', 7, G) be as in Lemma 3.4, and let {§’},. x be a left Haar system for G.
Then {} induces a left Haar system {A*}, .y for G’, which is invariant under
the action of I1. Since (G’ x IT)*=G"* x II for x € X', the Haar system {A*} with
a canonical invariant measure on IT defines a left Haar system {A*}, 4 for G'.

Since the foliation & is without holonomy, the C*-algebras associated to
G(#), G(F)xII, RxZ", and S' x Z""! are all separable. Consequently, to
show that they are stably isomorphic, it suffices to show that they are strongly
Morita equivalent [1]. Then the main theorem follows from the following
propositions.
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ProrosiTiON 4.1. Let (G',n,G) be as in Lemma 3.4 together with left Haar
systems considered above. Then C}¥(G' x II) is strongly Morita equivalent to
CX(G).

PROPOSITION 4.2. The C*-algebra C}(G’ x I) is strongly Morita equivalent to
CrRxZ.

Proor oF ProposiTiON 4.1. We show that the equivalence G’ given in the
proof of Lemma 3.4 actually gives us a strong Morita equivalence. First recall
that G itself is a topological groupoid with a left Haar system {A*; x € X'}.
Thus C,(G') becomes a pre-C*-algebra.

Define a right action of C.(G) on C.(G') by

€N = Lw L0 (™) dXO )
for fe C.(G), ¢ € C,(G'). Define a linear map P from C,(G’) onto C,.(G) by
(PO = (Z); e .

The map P induces a C,(G)-valued inner product {-, ) on C.(G’) by
> = P(E*n).

or, more explicitly

&Em = ¥ J E6 b T 06 ) dATG)
xeng (BG) J G*

for &,n € C,(G') and y € G. The linear map P is continuous for the inductive

limit topology. Since C,(G’) contains an approximate identity for the inductive

limit topology [8, 1.9. Proposition, p. 56], the linear span of the range of <+, - )

is dense in C,(G).

Let (u, #, L) be a representation of the groupoid G, and let (¢, #",L’) be the
representation of G’ induced from (u, #,L) by n: G’ — G ([8, 1.6 Definition, p.
52], [2, Definition IV 1, p. 68]). Let f € C.(G') be fixed. Let K be the support of
f, and let ¢ be the characteristic function of the compact set o(K) in X'. For
&, n e I'(#), define &, € ['(H') by

g(x) = p(x)¢(n(x),
n(x) = e (n(x) -
Then we have (L(P(f)¢n)=(L'(f)¢,n'), in particular
(L(P(f)EE) = (L'(N)E,¢) -
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Therefore, for any fe C.(G') and ¢ € I'(5#), we have

(LKAMGE 2z 0.

This means that {f, f) is positive (cf. [8, p. 84]). It is not difficult to see that
the inner product <-, - ) is definite. With this inner product, C.(G’) becomes a
right-C,(G)-rigged space [9, Definition 2.8, p. 197].

Let E be the Hilbert C*-module, over C*(G), obtained by completing C,(G')
with respect to the norm:

11 = IKEEIF for L e CG),

and let Z(E) be the space of all bounded linear operators on the Hilbert C*-
module E ([5, 1.13], [9, Definition 2.3]).
Define a left action of C,(G’ x IT) on C.(G') by

Ry = Zn . f6. 98~ ¢/~ ) d¥O () .
ge ()

Then, by a direct computation, we see that this action gives rise to a
(continuous) homomorphism

j:CHG' xIT) > Z(E).
Since C*(G) acts on L?(G”, ) for y € X, we can define a Hilbert space
E®cs L (G 1)

(cf. [5 p. 522]). For any x € X', there exists an isometry from
E®croL*(G™™, p™™) onto L*(G*xII,Z*) such that j(f)®1=R,(f) for
fe C.(G x IT), where R, is the right regular representation of C (G’ x IT) on
L%((G' x IT)*, 2%). Indeed, for

f®€ € Cc(Gr)®L2 (Gn(x), #n(x)) s
define Y (f®¢) by

(/@98 = RAMOW >

where f5(y')=f(g~'(¥)), R, is the right regular representation of C.(G') on
L2(G'*, ¥), and ¢ is regarded in a natural way as an element of L?(G'*, A*). Then
¥ extends to the required isometry. Consequently, we have that

1Ol 2 il 2 11 -
Therefore j is an isometric embedding of C*(G' x II) into Z(E).
To finish the proof, it suffices to show that the image j(C*(G’ x IT)) coincides

with the two sided ideal J¢"(E) of all compact operators on E. For &1 € C.(G'),
define f'e C (G’ x IT) by
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fong) = Lm M~ 07y d¥OG) .

A simple calculation shows that j(f )=0;,, Thus )¢ (E) is contained in
J(CHG x D).

To see that these two spaces coincide, it is sufficient to show that the image
of a function of the form @y (¢, € C.(G' x I)) is contained in X" (E), because
C.(G' x IT) has an approximate identity. We may assume that the supports of ¢
and ¢ are contained in G’ x {g} and G’ x {h} respectively. Moreover, using a
partition of unity, we may further assume that the support of  is contained in
an open subset U x {h} of G’ x {h} such that

k(U)x{B) N Ux{h)) = & il k*e.
Then, put £(y)=0(y,g) and n(y)=y(h(y),h) to obtain

i) = b, .

Therefore j(C}(G' x II))= 2 (E). This shows that E is a C*(G' x IT)—C*(G)-
imprimitivity bimodule.

PRrOOF OF PROPOSITION 4.2. As in the proof of Proposition 4.1, we show that
the equivalence given in the proof of Lemma 3.5 gives rise to an imprimitivity
bimodule establishing a strong Morita equivalence.

Let H,H' denote the groupoids R x Z", X’ x IT respectively. Define a right
action of C,(H) on C.(H') by

ENEx8 = X ,xghf((gh) ™ ehh™) .

Recall that the space X' is diffeomorphic to R x L, and that for ¢t € R there
exists a measure v on {t} x L induced from the smooth density for the
foliation &#. Notice that the family of these measures is invariant under the
action of the covering transformation group.

Define a linear map P: C.(H') —» C.(H) by

(Po)(t,8) = j £, x,g)dv'(x),

{e}xL
and define a C,(H)-valued inner product on C.(H') by
&ny = P(E*n).
More explicitly,

&g = Y ‘[ E(RE(t, %) R~ (R~ (6, x),h ™ g)dv' (x) .
{te}xL

hell
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We can show that, by an argument similar to the one used in the proof of
Proposition 4.1, that C.(H’) becomes a right-C,(H)-rigged space.
Define a left action of C.(G' x IT) on C,(H’) by

(), x,8) = j P f@ R R (8, x,8)) dA4 DY) .

me

Then this action induces an injection
J:CXG' xII) » L(E)

with j(C*(G’ x IT))=A"(E'), where E' is the Hilbert C*-module obtained by
completing C.(H’). Therefore C*(G'xIT) and C*(H) are strongly Morita
equivalent.

Thus Theorem 2.1 is proved.
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