DERIVATIONS, DYNAMICAL SYSTEMS, AND SPECTRAL RESTRICTIONS

AKITAKA KISHIMOTO* and DEREK W. ROBINSON

Abstract.

Let $(\mathfrak{A}, G, \alpha)$ be a C*-dynamical system with G locally compact abelian and consider a closed *-derivation δ commuting with α . If \mathfrak{A} is α -prime and $\widehat{G}/\Gamma(\alpha)$ compact, then $D(\delta)$ contains the spectral subspaces $\mathfrak{A}^{\alpha}(K)$ of α corresponding to compacts $K \subset \widehat{G}$ if, and only if, δ generates a bounded perturbation of a one-parameter subgroup ϱ of α_G . Alternatively if \mathfrak{A} is abelian and $G = \mathbb{R}$ the spectral condition $D(\delta) \supseteq \mathfrak{A}^{\alpha}(K)$ implies that δ generates a group β obtained from α by a rescaling of the corresponding flow.

1. Introduction.

In this paper we consider a C*-dynamical system $(\mathfrak{A}, G, \alpha)$, consisting of a C*-algebra \mathfrak{A} and a continuous action α of a locally compact abelian group G as *-automorphisms of \mathfrak{A} , together with a closed symmetric derivation δ of \mathfrak{A} which commutes with the action α of G. If the domain $D(\delta)$ of δ contains the spectral subspaces $\mathfrak{A}^{\alpha}(K)$ of α corresponding to compact subsets K of the dual \widehat{G} of G, then δ is automatically the generator of a strongly continuous one-parameter group of *-automorphisms of \mathfrak{A} . This is a consequence of two standard observations and a positivity argument developed in [3]. First one remarks that the restriction δ_K of δ to $\mathfrak{A}^{\alpha}(K)$ is a closed everywhere defined, hence bounded, operator which generates a uniformly continuous one-parameter group β^K on $\mathfrak{A}^{\alpha}(K)$. Second by differentiation of the function

$$t \mapsto \beta_{-t}^{K-K}(\beta_t^K(A)^*\beta_t^K(A))$$
,

where $A \in \mathfrak{A}^{\alpha}(K)$, and exploitation of the derivation property one deduces that

$$0 \le \beta_t^K(A)^*\beta_t^K(A) = \beta_t^{K-K}(A^*A).$$

Third, one uses the regularization and positivity argument of [3, Lemma 1.8], together with the norm density of $\{\mathfrak{A}^{\alpha}(K)\}_{K\subseteq\mathcal{G}}$, to conclude that β^{K} are the restriction to $\mathfrak{A}^{\alpha}(K)$ of a one-parameter group of *-automorphisms β of \mathfrak{A} .

Our main result establishes that if $\mathfrak A$ is α -prime and the quotient of $\widehat G$ by the Connes spectrum $\Gamma(\alpha)$ is compact, then the group constructed in the above manner is in fact a bounded perturbation of a one-parameter subgroup ϱ of α_G . Alternatively if $\mathfrak A$ is abelian and $G=\mathbb R$, then β is obtained from α by a rescaling of the corresponding flow, where the scale depends on the orbit. We also construct an example with $\mathfrak A$ non-abelian showing the restriction on $\Gamma(\alpha)$ is essential for our conclusion.

Finally we note that there have been many recent investigations of similar questions for compact abelian G (see for example [3], [4], and the references contained therein). Moreover Davies has recently shown [5] that the spectral condition $D(\delta) \supseteq \mathfrak{A}^{\alpha}(K)$ can be used to deduce that δ is a generator for a large class of non-compact, non-commutative G. The first two steps in his proof follow the outline given above but restrictions on G come from the regularity-positivity argument used in the third step (see [3, Remark 3]).

2. Derivations and subgroups.

Our principal result is the following theorem.

Theorem 2.1. Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system with G a locally compact abelian group. Assume that \mathfrak{A} is α -prime and $\widehat{G}/\Gamma(\alpha)$ is compact, where \widehat{G} is the dual of G and $\Gamma(\alpha)$ denotes the Connes spectrum of α . Further let δ be a closed symmetric derivation which commutes with α .

The following conditions are equivalent:

1.
$$D(\delta) \supseteq \bigcup_{K \text{ compact}} \mathfrak{A}^{\alpha}(K)$$
,

where $\mathfrak{A}^{\alpha}(K)$ denotes the spectral subspaces of α ,

2. There is a strongly continuous one-parameter subgroup ϱ of α_G with generator δ_{ϱ} such that $\delta - \delta_{\varrho}$ has bounded closure.

PROOF $1 \Rightarrow 2$. First from condition 1 it follows that δ generates a strongly continuous one-parameter group of *-automorphisms β of \mathfrak{A} , by the argument sketched in the introduction. Second define an action γ of $G \times R$ by

$$\gamma_{(g,t)} = \alpha_g \circ \beta_t.$$

The Connes spectrum $\Gamma(\gamma)$ of γ is a closed subgroup of $(G \times R)^{\hat{}} = \hat{G} \times R$, and the rest of the proof follows from analysis of $\Gamma(\gamma)$.

The basic idea is best illustrated by the case $G = \mathbb{R}$. Then $\Gamma(\gamma)$ is a closed subgroup of \mathbb{R}^2 and one argues that $\Gamma(\gamma) \neq \{0\}$ because $\Gamma(\alpha) \neq \{0\}$. But $\Gamma(\gamma) \cap (I \times \mathbb{R})$ is compact for each closed interval I because of the domain assumption on δ . Consequently

$$\Gamma(\gamma) \subseteq \{(p, \lambda p) ; \varrho \in \mathbb{R}\}$$
 for some $\lambda \in \mathbb{R}$.

It then follows that $\delta - \lambda \delta_{\alpha}$ is bounded and ϱ is identified as the subgroup $t \mapsto \alpha_{\lambda t}$.

Now let us return to the general case.

First define π_1 as the projection of $\widehat{G} \times \mathbb{R}$ onto \widehat{G} and let $H = \pi_1(\Gamma(\gamma))$. If K is a compact subset of \widehat{G} with $K \cap H = \emptyset$ then $\operatorname{Sp}(\gamma) \cap K \times \mathbb{R}$ is compact because δ is bounded on $\mathfrak{A}^{\alpha}(K)$. Now by definition

$$\Gamma(\gamma) \, = \, \bigcap_{\mathscr{B} \, \in \, \mathscr{H}^{\gamma}(\mathfrak{A})} \, \mathrm{Sp} \, (\gamma|_{\mathscr{B}}) \; ,$$

where $\mathscr{H}^{\gamma}(\mathfrak{U})$ denotes the non-zero γ -invariant hereditary subalgebras of \mathfrak{U} . Therefore since

$$(\operatorname{Sp}(\gamma) \cap K \times R) \cap \Gamma(\gamma) = \emptyset$$

and $\mathfrak A$ is γ -prime [4], there is a $\mathscr B \in \mathscr H^{\gamma}(\mathfrak A)$ such that

$$\operatorname{Sp}(\gamma|_{\mathscr{B}}) \cap (\operatorname{Sp}(\gamma) \cap K \times R) = \emptyset$$
,

i.e.,

$$\operatorname{Sp}(\gamma|_{\mathscr{A}}) \cap K \times \mathsf{R} = \varnothing$$
.

Thus Sp $(\alpha|_{\mathscr{B}}) \cap K = \emptyset$ which implies that $\Gamma(\alpha) \subset H$. Note that π_1 is injective on $\Gamma(\gamma)$, because Sp $(\gamma) \cap \{0\} \times R$ is bounded.

Next for each $\sigma \in \Gamma(\alpha)$, let $\varrho(\sigma) \in R$ be such that $(\sigma, \varrho(\sigma)) \in \Gamma(\gamma)$. The map $\varrho \colon \Gamma(\alpha) \to R$ is a continuous homomorphism since $\Gamma(\gamma)$ is closed and ϱ is locally bounded.

Let $\hat{\varrho} \colon \mathbb{R} \to \hat{F}(\alpha) = G/\Gamma(\alpha)^{\perp}$ be the dual map. Since $\Gamma(\alpha)^{\perp} = (\hat{G}/\Gamma(\alpha))^{\hat{}}$ and the group $\hat{G}/\Gamma(\alpha)$ is compact by assumption it follows that $\Gamma(\alpha)^{\perp}$ is discrete. Therefore any one-parameter subgroup of $G/\Gamma(\alpha)^{\perp}$ lifts to a one-parameter group of G, in particular $\hat{\varrho}$ lifts to G. Let ϱ^* denote this lifting and define g by $g(t) = -\varrho^*(t)$. Then g is a continuous homomorphism of \mathbb{R} into G.

Now define

$$I = \{(g(t), t) ; t \in \mathbb{R}\}.$$

We claim that $\operatorname{Sp}(\gamma)/I^{\perp}$ is bounded in $\widehat{I} \cong \mathbb{R}$. If it is not bounded there exists a sequence $(\sigma_n, \varrho_n) \in \operatorname{Sp}(\gamma)$ such that the characters

$$t \mapsto \langle (g(t), t), (\sigma_n, \varrho_n) \rangle$$

of R are unbounded. Since replacing (σ_n, ϱ_n) by $(\sigma_n, \varrho_n) + (\sigma, \varrho)$ with $(\sigma, \varrho) \in \Gamma(\gamma)$ does not change the character, and $\hat{G}/\Gamma(\alpha)$ is compact, we can assume that σ_n varies over some compact subset K of \hat{G} , with $K + \Gamma(\alpha) = \hat{G}$. This shows that (ϱ_n) must be unbounded. Since $\operatorname{Sp}(\gamma) \cap K \times R$ is bounded this is a contradiction.

Since Sp $(\alpha_{g(t)} \circ \beta_t)$ is the closure of Sp $(\gamma)/I^{\perp}$ this implies that $t \mapsto \alpha_{g(t)} \circ \beta_t$ is uniformly continuous. Thus condition 2 is satisfied with $\varrho_t = \alpha_{-g(t)}$.

 $2 \Rightarrow 1$. This is straightforward.

COROLLARY 2.2. Let α be a strongly continuous one-parameter group of *-automorphisms of the C*-algebra $\mathfrak A$, with infinitesimal generator δ_{α} and assume that $\mathfrak A$ is α -prime and $\Gamma(\alpha) \neq \{0\}$. Further let δ be a closed symmetric derivation which commutes with α .

The following conditions are equivalent

- 1. $D(\delta) \supseteq D(\delta_{\alpha})$,
- 2. $D(\delta) \supseteq \bigcup_{K \text{ compact}} \mathfrak{A}^{\alpha}(K),$
- 3. there exist $\lambda \in \mathbb{R}$ and a bounded symmetric derivation δ' of A such that

$$\delta = \lambda \delta_{\alpha} + \delta' .$$

PROOF $1 \Rightarrow 2$ is trivial and $3 \Rightarrow 1$ by definition. But $2 \Rightarrow 3$ is a special case of Theorem 2.1.

One can also obtain analogues of Theorem 2.1 and Corollary 2.2 for abelian C*-algebras.

Theorem 2.3. Let $\mathfrak{A} = C_0(X)$ be an abelian C*-algebra with spectrum X and α a strongly continuous one-parameter group of *-automorphisms of \mathfrak{A} with infinitesimal generator δ_{α} . Further let S_t denote the one-parameter group of homeomorphisms of X corresponding to α , i.e.

$$(\alpha, f)(x) = f(S_t x), \quad f \in C_0(X), \ x \in X$$

and introduce X_0 by

$$X_0 = \{x \in X ; S_t x = x \text{ for all } t\}$$
.

Finally let δ be a closed symmetric derivation on \mathfrak{A} .

The following two conditions are equivalent:

- 1. a. δ commutes with α ,
 - b. $D(\delta) \supseteq \bigcup_{K \text{ compact }} \mathfrak{A}^{\alpha}(K),$

where $\mathfrak{A}^{\alpha}(K)$ denotes the spectral subspaces of α .

- 2. a. δ is a generator.
 - b. there exists a continuous real-valued S-invariant function l on $X \setminus X_0$ such that the flow T_t defined by $\exp\{t\delta\}$ on X is given by

$$T_t x = S_{l(x)t} x$$
 if $x \in X \setminus X_0$
= x if $x \in X_0$,

c. the function l is bounded on the set $\{x \in X; p(x) > \varepsilon\}$ for any $\varepsilon > 0$ where

$$p(x) = \inf\{t > 0 ; S_t x = x\},$$

with the convention that $\inf \emptyset = \infty$.

PROOF $1 \Rightarrow 2$. It follows from the argument sketched in the introduction that δ generates a strongly continuous one-parameter group of *-automorphisms β . Now define $\gamma_{(s,t)} = \alpha_s \circ \beta_t$ for $(s,t) \in \mathbb{R}^2$.

Next suppose \mathfrak{A} is γ -prime, then Sp (γ) is a closed subgroup of \mathbb{R}^2 . If Sp (γ) = $\{0\}$, then $\mathfrak{A} = \mathbb{C}$ and $\beta_t = \alpha_{\lambda t}$ for any $\lambda \in \mathbb{R}$. If, however, Sp (γ) \neq $\{0\}$, then Sp (γ) \cong \mathbb{R} , or \mathbb{C} , and there is a $\lambda \in \mathbb{R}$ such that

$$\operatorname{Sp}(\gamma) \subseteq \{(\varrho, \lambda \varrho) ; \varrho \in \mathbb{R}\}$$

since the other possibilities Sp $(\gamma) \cong \mathbb{R}^2$, \mathbb{Z}^2 , or $\mathbb{R} \times \mathbb{Z}$ and Sp $(\gamma) \subset \{0\} \times \mathbb{R}$ are excluded by condition 1b as in the proof of Theorem 2.1. In this case the group $t \mapsto \alpha_{\lambda t} \circ \beta_{-t}$ has a trivial spectrum, and hence $\beta_t = \alpha_{\lambda t}$.

Now let us return to the general case.

If $S_{(s,t)}^{\gamma} = S_s \circ T_t$ denotes the group of homeomorphisms of X corresponding to γ , let Y denote the closure of a γ -orbit in X. Then the action $\dot{\alpha}, \dot{\beta}, \dot{\gamma}$, on $C_0(Y)$ induced by α , β , γ , satisfy the same properties as α , β , γ , on $C_0(X)$. (For example let $f \in C_0(Y)$ have compact $\dot{\alpha}$ -spectrum and let f_1 be an extension of f to a function in $C_0(X)$. Since there is a continuous function g whose Fourier transform \hat{g} has compact support and which satisfies

$$f(x) = \int dt g(t) f(S_t x), \quad x \in Y,$$

the function f_2 defined by

$$f_2(x) = \int dt g(t) f_1(S_t x), \quad x \in X,$$

is an extension of f with compact α -spectrum. Hence $f_2 \in D(\delta_\beta)$, which implies that $f \in D(\delta_\beta)$ by restriction. Here we gave used δ_β and δ_β to denote the generators of β and β respectively.) But $\mathfrak{A} = C_0(Y)$ is $\dot{\gamma}$ -prime and hence there exists a $\lambda \in \mathbb{R}$ such that

$$T_{s}x = S_{\lambda s}x, \quad x \in Y,$$

by the reasoning of the previous paragraph. Thus if Y is the closure of the γ -orbit through x one has $T_t x = x$ for $x \in X_0$ and one can define a unique real function l over $X \setminus X_0$ such that

$$T_t x = S_{t(x)t} x$$

for $x \in X \setminus X_0$. We next argue that l is continuous. For this purpose we shall use the fact that $(t, x) \to S_t x$ (respectively $T_t x$) is jointly continuous, which is shown by using the strong continuity of α (respectively β) and local compactness of X.

Let $x_{\mu} \in X \setminus X_0$ converge to $x \in X \setminus X_0$. If $l(x_{\mu})$ is unbounded, for a suitable subnet of μ choose $t_{\mu} \in \mathbb{R}$ such that $l(x_{\mu})t_{\mu}$ converges to a non-zero λ and t_{μ} converges to zero. Then

$$x = \lim T_{t_{\mu}t} x_{\mu} = \lim S_{l(x_{\mu})t_{\mu}t} X_{\mu} = S_{\lambda t} x$$

which implies that $x \in X_0$, a contradiction. On the other hand if $l(x_{\mu})$ is bounded we may suppose it converges to some limit $\lambda \in \mathbb{R}$ and then

$$T_t x = \lim S_{l(x_u)t} x_u = S_{\lambda t} x.$$

Hence $\lambda = l(x)$ by definition. Thus l is continuous on $X \setminus X_0$.

Finally suppose that for some $\varepsilon > 0$ the function l is not bounded on $X^{\varepsilon} = \{x; p(x) > \varepsilon\}$. Then there is a sequence of positive integers n_k such that the sets

$$X_k^\varepsilon \ = \ \big\{ x \in X^\varepsilon \ ; \ \ n_k \! < \! |l(x)| \! < \! n_k \! + \! 1 \big\}$$

are non empty. Since X^{ε} is an open S-invariant set and l is a continuous S-invariant function it follows that X_k^{ε} is open and S-invariant. Next let $f_k \in C_0(X)$ be such that supp $f_k \subset X_k^{\varepsilon}$, $||f_k|| = 1$, and $\operatorname{Sp}_{\alpha}(f_k)$ is in a small sub-interval of $[1, 1 + 1/2\pi\varepsilon]$. The existence of such functions follows because

$$\operatorname{Sp}(S|_{X_{k}^{\epsilon}}) \supset \mathbb{Z}/2\pi p(x)$$
 for $x \in X_{k}^{\epsilon}$,

with the convention $\mathbb{Z}/2\pi\infty = \mathbb{R}$. Then $f = \sum f_k / \sqrt{n_k}$ converges in $C_0(x)$ and

$$\operatorname{Sp}_{\alpha}(f) \subset [1, 1 + 1/2\pi\varepsilon]$$

but $f \notin D(\delta)$ because $\|\delta(f_k)\| \sim \sqrt{n_k}$ (see Lemma 2.4 below).

 $2 \Rightarrow 1$. It follows from Theorem 2.1 and Corollary 2.3 of [1] that the flow T in condition 2b determines a strongly continuous one-parameter group of *-automorphisms β of $\mathfrak A$ which commutes with α therefore the generator δ commutes with α .

Now we show that condition 2 implies condition 1b. Let $f \in C_0(X)$ with $\operatorname{Sp}_{\alpha}(f) \subset [-n, n]$ for some n > 0. Then for $x \in X$ with $p(x) < 1/2\pi n$ one has

$$f(S_t x) = f(x), \quad t \in \mathbb{R}$$
.

Thus the β -spectrum of f restricted to the S-orbit through x is $\{0\}$, if not empty. Let

$$l = \sup \{|l(x)| ; p(x) \ge 1/2\pi n\}.$$

Then it follows that the β -spectrum of f restricted to the S-orbit through x is contained in [-nl, nl], if not empty, for each $x \in X$ with $p(x) \ge 1/2\pi n$. Therefore $\operatorname{Sp}_{\beta}(f) \subset [-nl, nl]$.

REMARK. One can strengthen the last conclusion. It follows from the properties of l specified in conditions 2b and 2c that the associated flow T defines a strongly continuous group of *-automorphisms β of $\mathfrak A$ by the relation

$$(\beta_t f)(x) = f(T_t x), \quad f \in \mathfrak{U},$$

and the generator δ of β then satisfies condition 1.

For example the continuity of T can be established as follows. Let $x_{\mu} \in X$ and $t_{\mu} \in R$ be convergent nets with limits x and t. One must show that $T_{t_{\mu}}x_{\mu} \to T_{t}x$. But if p(x)>0, then $l(x_{\mu})\to l(x)$ and this follows from continuity of S. Next suppose p(x)=0, that is $x\in X_{0}$. If there is an $\varepsilon>0$ such that $p(x_{\mu})>\varepsilon$, then we may assume $l(x_{\mu})$ has a limit l. Then $T_{t_{\mu}}x_{\mu}$ converges to $S_{lt}x=x$. If on the other hand there is a $\delta>0$ such that $p(x_{\mu})<\delta$, then there are $l_{\mu}\in[0,\delta]$ such that

$$S_{l(x_{\mu})t_{\mu}}x_{\mu}=S_{l_{\mu}}x_{\mu}$$

and we may assume the l_{μ} converge to a limit *l*. Then $T_{t_{\mu}}x_{\mu}$ converges to $S_{l}x=x$. Thus we conclude that $T_{t_{\mu}}x_{\mu}$ has a convergent subnet with limit $T_{t}x$, and continuity of T follows immediately.

Theorem 2.3 is similar to Corollary 2.3 of [1] but the strong locality condition in the latter result is replaced by the spectral condition $D(\delta) \supseteq \mathfrak{A}^{\alpha}(K)$, K compact. Thus by comparison of the two statements one concludes that the spectral condition implies strong locality of δ with respect to δ_{α} , whenever δ commutes with α .

Comparing Theorems 2.1 and 2.3, when $\mathfrak A$ is α -prime and $G=\mathbb R$, the absence of assumptions on the Connes spectrum $\Gamma(\alpha)$ in Theorem 2.3 might incline one to think that such assumptions are irrelevant in Theorem 2.1. But this is not the case. One can construct examples with commuting one-parameter automorphism groups α, β such that $D(\delta_{\alpha}) \subset D(\delta_{\beta})$, but $D(\delta_{\alpha}) \neq D(\delta_{\beta})$ and hence δ_{β} cannot be decomposed in the form $\delta_{\beta} = \lambda \delta_{\alpha} + \delta$ with δ bounded. We conclude with an example of this nature.

Let M_2 denote the algebra of 2×2 matrices and consider a direct product \mathfrak{A}

 $=\bigotimes_{n=1}^{\infty}\mathfrak{U}_n$ of copies \mathfrak{U}_n of M_2 . Further let $\alpha_t^{(n)}$ be the one-parameter automorphism group of \mathfrak{U}_n implemented by the unitary group

$$U_t^{(n)} = \begin{pmatrix} 1 & 0 \\ 0 & \exp\left\{-i\lambda_n(\alpha)t\right\} \end{pmatrix},\,$$

where $\lambda_n(\alpha) \in \mathbb{R}$, and let $\alpha = \bigotimes_{n=1}^{\infty} \alpha_t^{(n)}$. Similarly giving a sequence $\lambda_n(\beta) \in \mathbb{R}$ one can construct an automorphism group $\beta = \bigotimes_{n=1}^{\infty} \beta_t^{(n)}$. We will argue that the $\lambda_n(\alpha)$, $\lambda_n(\beta)$, can be chosen such that $D(\delta_\alpha) \subset D(\delta_\beta)$, $D(\delta_\alpha) \neq D(\delta_\beta)$, and $\Gamma(\alpha) = \{0\}$ but $\Gamma(\beta)$ can be quite arbitrary (cf. Remark 1 below).

Assume $\lambda_n(\beta)$, and hence β , are given and set

$$\mu_k = \sum_{n=1}^k |\lambda_n(\beta)|.$$

Next choose $\lambda_n(\alpha) > 0$ such that

$$\lambda_k(\alpha) > 2^{k+1} M \mu_k, \quad k=1,2,\ldots,$$

and

$$\lambda_k(\alpha) > 2M \sum_{j=1}^{k-1} \lambda_j(\alpha), \quad k=2,3,\ldots,$$

where M will subsequently be chosen suitably large. Define $\sigma_n^{\pm}, \sigma_n^z \in \mathfrak{U}_n$ by

$$\sigma_n^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \sigma_n^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \sigma_n^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then

$$\alpha_t^{(n)}(\sigma_n^{\pm}) = e^{\pm i\lambda_n(\alpha)t} \sigma_n^{\pm}, \quad \alpha_t^{(n)}(\sigma_n^z) = \sigma_n^z.$$

Now let $\{x_n\}$ be a bounded sequence in

$$\bigcup_{k=1}^{\infty} \bigotimes_{n=1}^{k} \mathfrak{A}_{n}$$

such that $\|\delta_{\alpha}(x_n)\| < C$. We aim to show that $\|\delta_{\beta}(x_n)\|$ is bounded. For this purpose consider x as a sum of reduced monomials in σ_k^{\pm} with coefficients in the algebra generated by the σ_n^z , i.e. in the fixed point algebra \mathfrak{A}^{α} of α . Let x_{nk}^+ , respectively x_{nk}^- , be the sum of those monomials which contain a factor σ_k^+ , respectively σ_k^- , but do not contain σ_j^{\pm} , for j > k, and let x_{n0} denote the term without any σ_k^{\pm} factors. Then $\mathrm{Sp}_{\alpha}(x_{n0}) = \{0\}$ if $x_{n0} \neq 0$ and

$$\operatorname{Sp}_{\alpha}(x_{nk}^{+}) \subset \left[\lambda_{k}(\alpha) - \sum_{j=1}^{k-1} \lambda_{j}(\alpha), \ \lambda_{k}(\alpha) + \sum_{j=1}^{k-1} \lambda_{j}(\alpha)\right]$$

$$= \left[\left(1 - \frac{1}{2M} \right) \lambda_{\mathbf{k}}(\alpha), \left(1 + \frac{1}{2M} \right) \lambda_{\mathbf{k}}(\alpha) \right]$$

$$\operatorname{Sp}_{\alpha}(x_{n\mathbf{k}}^{-}) = \left[-\left(1 + \frac{1}{2M} \right) \lambda_{\mathbf{k}}(\alpha), -\left(1 - \frac{1}{2M} \right) \lambda(\alpha) \right]$$

if $x_{nk}^{\pm} \neq 0$. Now

$$\left(1 - \frac{1}{2M}\right) \lambda_{k}(\alpha) - \left(1 + \frac{1}{2M}\right) \lambda_{k-1}(\alpha) > \left(1 - \frac{1}{2M}\right) \lambda_{k}(\alpha) - \left(1 + \frac{1}{2M}\right) \frac{1}{2M} \lambda_{k}(\alpha) \\
= \left(1 - \frac{1}{M} - \frac{1}{4M^{2}}\right) \lambda_{k}(\alpha)$$

and hence for large M the α -spectra of the $\{x_{nk}^+\}_{k\geq 1}$ are disjoint. Similarly the α -spectra of the $\{x_{nk}^-\}_{k\geq 1}$ are disjoint. Hence $x-x_{nk}^+$ and x_{nk}^+ have disjoint α -spectra as do $x-x_{nk}^-$ and x_{nk}^- . To proceed in estimating $\delta_{\alpha}(x_n)$ and $\delta_{\beta}(x_n)$ we need two lemmas.

LEMMA 2.4. Let α be a strongly continuous one-parameter group of *-automorphisms of a C*-algebra $\mathfrak A$ and let I=[a-b,a+b] for b>0. Then there exists an $N\geq 1$, independent of a and b, such that

$$\|(\delta_{\alpha}-iaI)(x)\| \leq Nb\|x\|, \quad x \in \mathfrak{A}^{\alpha}(I)$$

PROOF. Let $g \in C^{\infty}(\mathbb{R})$ be a function with compact support satisfying g(t) = 1 for $t \in \langle -3/2, 3/2 \rangle$ and let

$$f(t) = \frac{1}{2\pi} \int dp \, g\left(\frac{p-a}{b}\right) e^{-itp}$$
$$= \frac{b}{2\pi} \int dp \, g(p) e^{-it(a+pb)}.$$

Then $f \in \mathcal{S}(\mathbf{R})$ and

$$x = \int dt \, f(t) \alpha_t(x), \quad x \in \mathfrak{A}^{\alpha}(I) .$$

But

$$f'(t) = -iaf(t) - \frac{ib^2}{2\pi} \int dp \, pg(p)e^{-it(a+pb)}$$

and hence

$$(\delta_{\alpha} - iaI)(x) = -\int dt \ f'(t)\alpha_{t}(x) - ia \int dt \ f(t)\alpha_{t}(x)$$
$$= \int dt \ \alpha_{t}(x) \frac{ib^{2}}{2\pi} \int dp \ pg(p)e^{-it(a+pb)}$$

Thus setting

$$G(t) = \left| \frac{1}{2\pi} \int dp \, pg(p) e^{-itp} \right|$$

one obtains

$$\begin{split} \|(\delta_{\alpha} - iaI)(x)\| & \leq \int dt \, b^2 G(tb) \|x\| \\ & = b \int dt \, G(t) \|x\| \, = \, bN \|x\| \end{split}$$

and N depends only on g.

LEMMA 2.5. Assume $\operatorname{Sp}_{\alpha}(x) \subset [a-b,a+b]$ for $b \ge 0$ and $\operatorname{Sp}_{\alpha}(y) \subset \langle -\infty,a-(1+\varepsilon)b \rangle \cup \langle a+(1+\varepsilon)b,\infty \rangle$ with $\varepsilon > 0$. It follows that

$$||x|| \le C||x+y||$$

for some C depending only on ε .

Proof. Let $g \in C^{\infty}(\mathbb{R})$ be such that

$$g(p) = 1$$
 for $|p| \le 1$
= 0 for $|p| \ge 1 + \varepsilon$.

Next for b>0 define f by

$$f_b(t) = \frac{1}{2\pi} \int dp \, g\left(\frac{p-a}{b}\right) e^{-itp} .$$

Then one has

$$x = \int dt f_b(t)\alpha_t(x)$$

$$0 = \int dt f_b(t)\alpha_t(y).$$

Therefore

$$||x|| = \left| \left| \int dt \, f_b(t) \alpha_t(x+y) \right| \right|$$

$$\leq \int dt |f_b(t)| \, ||x+y||$$

$$\leq \int dt |\hat{g}(t)| \, ||x+y||$$

where \hat{g} denotes the Fourier transform of g.

If b=0 and $\operatorname{Sp}_{\alpha}(x)=\{a\}$, then (*) is valid for small b>0 and hence in both cases one has $||x|| \le C||x+y||$.

Now let us return to estimating $\delta_{\alpha}(x_n)$ and $\delta_{\beta}(x_n)$.

First applying Lemma 2.5 to $x = \delta_{\alpha}(x_{nk}^{\pm})$ and $y = \delta_{\alpha}(x_n - x_{nk}^{\pm})$ with M chosen large enough that $\varepsilon = (1 - 1/M - 1/4M^2) > 0$ one deduces that

$$\|\delta_{\alpha}(x_{nk}^{\pm})\| \leq C\|\delta_{\alpha}(x_{n})\|$$

for some C depending only on M. Next applying Lemma 2.4 to x_{nk}^{\pm} with $a = \lambda_k(\alpha)$ and $b = \lambda_k(\alpha)/2M$ one concludes that

$$\begin{aligned} \|\delta_{\alpha}(x_{nk}^{\pm})\| &\geq \lambda_{k}(\alpha)\|x_{nk}^{\pm}\| - (N\lambda_{k}(\alpha)/2M)\|x_{nk}^{\pm}\| \\ &= \lambda_{k}(\alpha)(1 - N/2M)\|x_{nk}^{\pm}\| . \end{aligned}$$

But $\operatorname{Sp}_{\beta}(x_{nk}^{\pm}) \subset [-\mu_k, \mu_k]$ and hence

$$\|\delta_{\theta}(x_{nk}^{\pm})\| \leq N\mu_{k}\|x_{nk}^{\pm}\|$$

by Lemma 2.4. Combining these last two estimates with M chosen large enough that $\kappa = N/2M < 1$ gives

$$\|\delta_{\beta}(x_{nk}^{\pm})\| \leq (\mu_k/\lambda_k(\alpha))N/(1-\kappa)\|\delta_{\alpha}(x_{nk}^{\pm})\|$$

$$\leq C2^{-k}\kappa(1-\kappa)^{-1}\|\delta_{\alpha}(x_n)\|.$$

Therefore

$$\begin{split} \|\delta_{\beta}(x_n)\| & \leq \sum_{k \geq 1} \|\delta_{\beta}(x_{nk}^{\pm})\| \\ & \leq C2^{-k} \varkappa (1 - \varkappa)^{-1} \|\delta_{\alpha}(x_n)\| \ . \end{split}$$

Since the x_n form a core for δ_{α} this implies that δ_{β} is relatively bounded with respect to δ_{α} and in particular $D(\delta_{\beta}) \supseteq D(\delta_{\alpha})$. But the inclusion is strict because $\lambda_k(\beta)/\lambda_k(\alpha) \to 0$ as $k \to \infty$.

Remarks. 2. The Connes spectrum $\Gamma(\gamma)$ of a product action of the above type can be identified, by a straightforward argument, as the intersection of the

closures of the sets

$$\left\{ \sum_{n=k}^{\infty} \varepsilon_n \lambda_n(\gamma) \; ; \; \varepsilon_n = \pm 1, 0, \varepsilon_n = 0 \; \text{except for a finite number of} \; \right\}_{k \geq 1}.$$

- 2. In the example constructed above, $\operatorname{Sp}(\alpha)$ is discrete and the fixed point algebra \mathfrak{A}^{α} of α is commutative and has totally disconnected spectrum. Hence any closed *-derivation δ commuting with α is a generator. This follows because one automatically has $\delta(\mathfrak{A}^{\alpha}) = \{0\}$ and $D(\delta)$ contains any other eigenspace of α (which is one-dimensional over \mathfrak{A}^{α}). Thus δ is a generator on each eigenspace and it follows that it is a generator on \mathfrak{A} .
- 3. Lemmas 2.4 and 2.5 also allow one to conclude that the C^{∞} -elements of the automorphism group α coincide with the analytic elements if and only if δ_{α} is bounded. For example assume δ_{α} is not bounded and choose $p_n > 0$ with $p_n + 2 < p_{n+1}$ such that there exist $x_n \in \mathfrak{A}^{\alpha}([p_n, p_n + 1])$ with $||x_n|| = 1$. By iterating Lemma 2.4 one obtains

$$\|\delta_{\alpha}^{m}(x_{n})\| < (p_{n}+N)^{m}.$$

Hence if $\lambda_n \ge 0$ are chosen such that

$$\sum_{n\geq 1} (p_n+N)^m \lambda_n < +\infty$$

for $m=1,2,\ldots$ then

$$x = \sum_{n \ge 1} \lambda_n x_n$$

is a C^{∞} -element of δ_{α} . But applying Lemma 2.5 to $\delta_{\alpha}^{m}(x-\lambda_{n}x_{n})$ and $\lambda_{n}\delta_{\alpha}^{m}(x_{n})$ and using Lemma 2.4 one concludes that

$$\|\delta_{\alpha}^{m}(x)\| \geq C^{-1}\lambda_{n}\|\delta_{\alpha}^{m}(x_{n})\|$$

> $C^{-1}\lambda_{n}(p_{n}-N)^{m}$,

for *n* sufficiently large. Therefore if $t \ge 0$

$$\sum_{m\geq 0} \frac{t^m}{m!} \|\delta_{\alpha}^m(x)\| \geq C^{-1} \lambda_n \exp\left\{t(p_n - N)\right\}$$

for all large n. Now x fails to be an analytic element of α if the right hand side of this last inequality diverges as $n \to \infty$ for all t > 0. But this can be arranged by suitable choice of λ_n without violating (*), e.g. one can choose $\lambda_n \sim \exp\{-\sqrt{p_n}\}$.

Similarly one can show that the classes of C^{∞} -elements, quasi-analytic elements [2], and analytic elements of α are distinct whenever δ_{α} is unbounded.

ACKNOWLEDGEMENTS. This work was carried out whilst the first author was visiting Canberra under the auspices of the Mathematical Sciences Research Centre of the Australian National University.

REFERENCES

- O. Bratteli, T. Digernes, and D. W. Robinson, Relative locality of derivations, J. Funct. Anal. 59 (1984), 12-40.
- O. Bratteli, R. H. Herman, and D. W. Robinson, Quasi-analytic vectors and derivations of operator algebras, Math. Scand. 39 (1976), 371-381.
- O. Bratteli, P. E. T. Jørgensen, A. Kishimoto and D. W. Robinson, A C*-algebraic Schoenberg theorem, Ann. Inst. Fourier (Grenoble) 33 (1984), 155-187.
- O. Bratteli and P. E. T. Jørgensen, Unbounded derivations tangential to compact groups of automorphisms, J. Funct. Anal. 48 (1982), 107-133.
- E. B. Davies, A generation theorem for operators commuting with group actions, Math. Proc. Cambridge Philos. Soc. 96 (1984), 315-322.
- G. K. Pedersen and D. Olesen, Applications of the Connes spectrum to C*-dynamical systems, III, J. Funct. Anal. 45 (1982), 359-390.

DEPARTMENT OF MATHEMATICS
INSTITUTE OF ADVANCED STUDIES
THE AUSTRALIAN NATIONAL UNIVERSITY
G.P.O. BOX 4, CANBERRA, A.C.T. 2601, AUSTRALIA

Akitaka Kishimoto's permanent address:
DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
TOHOKU UNIVERSITY
SENDAI, JAPAN