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DERIVATIONS, DYNAMICAL SYSTEMS,
AND SPECTRAL RESTRICTIONS

AKITAKA KISHIMOTO* and DEREK W. ROBINSON

Abstract.

Let (U, G,a) be a C*-dynamical system with G locally compact abelian and
consider a closed *-derivation § commuting with o. If % is «-prime and G/I' (%)
compact, then D () contains the spectral subspaces U*(K) of a corresponding
to compacts K < G if, and only if, § generates a bounded perturbation of a one-
parameter subgroup g of ag. Alternatively if W is abelian and G =R the spectral
condition D(J) 2 A*(K) implies that § generates a group f obtained from o by a
rescaling of the corresponding flow.

1. Introduction.

In this paper we consider a C*-dynamical system (2, G, «), consisting of a C*-
algebra U and a continuous action « of a locally compact abelian group G as
*_automorphisms of 2, together with a closed symmetric derivation 6 of U
which commutes with the action a of G. If the domain D(J) of § contains the
spectral subspaces U*(K) of « corresponding to compact subsets K of the dual
G of G, then § is automatically the generator of a strongly continuous one-
parameter group of *-automorphisms of . This is a consequence of two
standard observations and a positivity argument developed in [3]. First one
remarks that the restriction dx of & to A*(K) is a closed everywhere defined,
hence bounded, operator which generates a uniformly continuous one-
parameter group BX on A*(K). Second by differentiation of the function

t > BETK(BE(A*BF (W),
where 4 € U*(K), and exploitation of the derivation property one deduces that
0 < BR(A*BE(A) = B R (A*A).

Third, one uses the regularization and positivity argument of [3, Lemma 1.8],
together with the norm density of {%*(K)}xc¢ to conclude th.at BX are the
restriction to A*(K) of a one-parameter group of *-automorphisms f of A.
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Our main result establishes that if 2 is a-prime and the quotient of G by the
Connes spectrum I'(x) is compact, then the group constructed in the above
manner is in fact a bounded perturbation of a one-parameter subgroup g of ag.
Alternatively if U is abelian and G =R, then f is obtained from « by a rescaling
of the corresponding flow, where the scale depends on the orbit. We also
construct an example with U non-abelian showing the restriction on I'(a) is
essential for our conclusion.

Finally we note that there have been many recent investigations of similar
questions for compact abelian G (see for example [3], [4], and the references
contained therein). Moreover Davies has recently shown [5] that the spectral
condition D(8)2A*(K) can be used to deduce that J is a generator for a large
class of non-compact, non-commutative G. The first two steps in his proof
follow the outline given above but restrictions on G come from the regularity-
positivity argument used in the third step (see [3, Remark 3]).

2. Derivations and subgroups.
Our principal result is the following theorem.

THEOREM 2.1, Let (U, G, a) be a C*-dynamical system with G a locally compact
abelian group. Assume that U is a-prime and G/I' (&) is compact, where G is the
dual of G and I' («) denotes the Connes spectrum of o. Further let é be a closed
symmetric derivation which commutes with o.

The following conditions are equivalent:

LDE2 U WK,
K compact

where W*(K) denotes the spectral subspaces of a,

2. There is a strongly continuous one-parameter subgroup g of a; with generator

0, such that 6—9, has bounded closure.

Proor 1 = 2. First from condition 1 it follows that J generates a strongly
continuous one-parameter group of *-automorphisms f of U, by the argument
sketched in the introduction. Second define an action y of G xR by

Y = %°B; -

The Connes spectrum I'(y) of y is a closed subgroup of (G x R)'=G xR, and
the rest of the proof follows from analysis of I'(y).

The basic idea is best illustrated by the case G=R. Then I'(y) is a closed
subgroup of R? and one argues that I'(y)+{0} because I'(«) % {0}. But I'(y) N
(I x R) is compact for each closed interval I because of the domain assump-
tion on §. Consequently
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') < {(p,Ap); e R} for some AeR.

It then follows that 6—A4, is bounded and g is identified as the subgroup
t oy,

Now let us return to the general case.

First define 7, as the projection of G x R onto G and let H=m, (I'(y)). If K is
a compact subset of G with KN H =@ then Sp () N K x R is compact because
0 is bounded on A*(K). Now by definition

ryy= N SpGla,
Re k()

€

where 7 () denotes the non-zero y-invariant hereditary subalgebras of 2.
Therefore since

SpNKxR)NTQ) = &
and A is p-prime [4], there is a # € #7(A) such that

Sp(ylg) N SP(WNKxR) = &,

ie.,
Sp(le) NKXR = .

Thus Sp (2|g) N K = & which implies that I' (¢) = H. Note that =, is injective on
I'(y), because Sp (y)N {0} xR is bounded.

Next for each o € I' (), let g(o) € R be such that (g, 0(0)) € I' (). The map
0: I'(@) » R is a continuous homomorphism since I'(y) is closed and g is
locally bounded.

Let : R — F(2)=G/I'(2)" be the dual map. Since I'(®)* = (G/I'(«))” and the
group G/I'(@) is compact by assumption it follows that I'(a)* is discrete.
Therefore any one-parameter subgroup of G/I'(®)* lifts to a one-parameter
group of G. in particular g lifts to G. Let ¢* denote this lifting and define g by
g(t)= —o*(t). Then g is a continuous homomorphism of R into G.

Now define
I = {(g(t)t); teR}.

We claim that Sp (y)/I* is bounded in f=R. If it is not bounded there exists a
sequence (a,,0,) € Sp (y) such that the characters

t — (g(®), 1), (000>

of R are unbounded. Since replacing (o,, ¢,) by (d,,0,) + (6,0) With (5,0) € I"(y)
does not change the character, and G/I'(®) is compact, we can assume that o,
varies over some compact subset K of G, with K+TI' (¢)=G. This shows that

(0,) must be unbounded. Since Sp(y)NKxR is bounded this is a
contradiction.
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Since Sp (xg(.)oB.) is the closure of Sp (y)/I L this implies that t +—» AgyoPy 18
uniformly continuous. Thus condition 2 is satisfied with g,=a_ 4,

2 = 1. This is straightforward.

COROLLARY 2.2. Let a be a strongly continuous one-parameter group of *-
automorphisms of the C*-algebra W, with infinitesimal generator é, and assume
that W is a-prime and I'(¢) % {0}. Further let 6 be a closed symmetric derivation
which commutes with a.

The following conditions are equivalent

1. D(9) 2 D(3,),
2002 U A(K),

K compact

3. there exist A € R and a bounded symmetric derivation &' of A such that

5 = A, +0 .

PrOOF 1 = 2 is trivial and 3 = 1 by definition. But 2 = 3 is a special case
of Theorem 2.1.

One can also obtain analogues of Theorem 2.1 and Corollary 2.2 for abelian
C*-algebras.

THEOREM 2.3. Let W= C,(X) be an abelian C*-algebra with spectrum X and a
a strongly continuous one-parameter group of *-automorphisms of U with
infinitesimal generator 8,. Further let S, denote the one-parameter group of
homeomorphisms of X corresponding to «, i.e.

(@N)x) = f(Sx), feCo(X), xe X,
and introduce X, by
X, ={xeX; Sx=x for all t}.

Finally let 6 be a closed symmetric derivation on U.
The following two conditions are equivalent:

1. a. 6 commutes with a,

b.DO) =2 U UAYK),
K compact
where U*(K) denotes the spectral subspaces of a.
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2. a. 6 is a generator.
b. there exists a continuous real-valued S-invariant function I on X \ X, such
that the flow T, defined by exp {td} on X is given by

Tx

S if x e X\ X,

=X if xeX,,
C. the function | is bounded on the set {x € X; p(x)>¢} for any ¢>0 where

p(x) = inf{t>0; Sx=x},

with the convention that inf & = oo.

Proor 1 = 2. It follows from the argument sketched in the introduction that
& generates a strongly continuous one-parameter group of *-automorphisms f.
Now define y, ,=0a,08, for (s,1) € R

Next suppose U is y-prime, then Sp (y) is a closed subgroup of R% If Sp (y)
={0}, then A=C and B,=a,, for any A € R. If, however, Sp (y)+ {0}, then
Sp (y)=R, or C, and there is a A € R such that

Sp(y) = {(e. %) ; eeR}

since the other possibilities Sp (y)=R2, Z2, or Rx Z and Sp (y)={0} xR are
excluded by condition 1b as in the proof of Theorem 2.1. In this case the group
t — a,0B_, has a trivial spectrum, and hence f,=ay,.

Now let us return to the general case.

If S}, = S,0 T, denotes the group of homeomorphisms of X correspondingtoy,
let Y denote the closure of a y-orbit in X. Then the action d, .9, on Co(Y)
induced by a, B, y, satisfy the same properties as a, f,y, on Co(X). (For example
let f€ Co(Y) have compact d-spectrum and let f; be an extension of fto a
function in C,(X). Since there is a continuous function g whose Fourier
transform g has compact support and which satisfies

f(x) = jdtg(t)f (8x), xeY,
the function f, defined by
folx) = Jdtg(t)fl (§x), xeX,

is an extension of f with compact a-spectrum. Hence f, € D(d,), which implies
that fe D(6p) by restriction. Here we gave used J; and dp to denote the
generators of f and f respectively.) But A=Co(Y) is y-prime and hence there
exists a 4 € R such that

Tsx = Slsxy X € Y’
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by the reasoning of the previous paragraph. Thus if Yis the closure of the y-
orbit through x one has T,x=x for x € X, and one can define a unique real
function ! over X\ X, such that

Tix = S X

for x € X\ X,. We next argue that [ is continuous. For this purpose we shall
use the fact that (¢,x) — S,x (respectively T,x) is jointly continuous, which is
shown by using the strong continuity of o (respectively f) and local
compactness of X.

Let x, € X\ X, converge to x € X\ X,. If I(x,) is unbounded, for a suitable

subnet of u choose t, € R such that I(x,)t, converges to a non-zero A and ¢,
converges to zero. Then

x = limT, x, = limS,,, X, = S;x

which implies that x € X,, a contradiction. On the other hand if I(x,) is
bounded we may suppose it converges to some limit A € R and then

Tx = lim Sy, x, = Syx .

Hence A=I(x) by definition. Thus / is continuous on X\ X,,.

Finally suppose that for some ¢>0 the function [ is not bounded on X*
={x; p(x)>¢}. Then there is a sequence of positive integers n, such that the
sets

X; = {xeX*; n<|l(x))<n,+1}

are non empty. Since X°® is an open S-invariant set and / is a continuous S-
invariant function it follows that Xj is open and S-invariant. Next let
Jx € Co(X) be such that supp f,= X3, | il =1, and Sp,(f,) is in a small sub-
interval of [1,1+ 1/2ne]. The existence of such functions follows because

Sp (Slx)=>Z/2np(x) for x € X},
with the convention Z/2noo=R. Then f=Y fk/[/a converges in Cqy(x) and
Sp.(N<=[1,1+1/27¢]
but f¢ D(5) because [|6(f)]l ~]/;,: (see Lemma 2.4 below).

2 = 1. It follows from Theorem 2.1 and Corollary 2.3 of [1] that the flow T
in condition 2b determines a strongly continuous one-parameter group of *-
automorphisms g of A which commutes with a therefore the generator ¢
commutes with a.

Now we show that condition 2 implies condition 1b. Let fe Cy(X) with
Sp.(f)=[—n,n] for some n>0. Then for x € X with p(x)<1/2nn one has
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fSx) =f(x), teR.

Thus the f-spectrum of frestricted to the S-orbit through x is {0}, if not empty.
Let

I = sup{I(0)] ; p(x)21/27m} .

Then it follows that the B-spectrum of f restricted to the S-orbit through x is
contained in [—nil,nl], if not empty, for each x € X with p(x)=1/2znn.
Therefore Spy (f) <[ —nli,nl].

REMARK. One can strengthen the last conclusion. It follows from the
properties of | specified in conditions 2b and 2c that the associated flow T
defines a strongly continuous group of *-automorphisms g of A by the relation

BS)x) =f(Tx), fed,

and the generator 4 of f then satisfies condition 1.

For example the continuity of T can be established as follows. Let x, € X and
t, € R be convergent nets with limits x and . One must show that T, x, — Tx.
But if p(x)>0, then I(x,) — I(x) and this follows from continuity of S. Next
suppose p(x)=0, that is x € X,,. If there is an £¢>0 such that p(x,)> ¢, then we
may assume I(x,) has a limit I. Then T; x, converges to S, x=x. If on the other
hand there is a §>0 such that p(x,)<J, then there are I, € [0,4] such that

Sl("n)‘u n = S‘ux“

and we may assume the [, converge to a limit I. Then T, x, converges to S;x = x.
Thus we conclude that T, Xy has a convergent subnet with limit T,x, and
continuity of T follows 1mmed1ately

Theorem 2.3 is similar to Corollary 2.3 of [1] but the strong locality
condition in the latter result is replaced by the spectral condition D(5) 2 U*(K),
K compact. Thus by comparison of the two statements one concludes that the
spectral condition implies strong locality of J with respect to d,, whenever &
commutes with a.

Comparing Theorems 2.1 and 2.3, when U is a-prime and G =R, the absence
of assumptions on the Connes spectrum I'(«) in Theorem 2.3 might incline one
to think that such assumptions are irrelevant in Theorem 2.1. But this is not
the case. One can construct examples with commuting one-parameter
automorphism groups a, 8 such that D(3,) = D(,), but D(d,)+ D(d4) and hence
dg cannot be decomposed in the form 6,=A4d,+J with § bounded. We

conclude with an example of this nature.
Let M, denote the algebra of 2 x 2 matrices and consider a direct product A

Math. Scand. 56 - 7
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=@%, U, of copies A, of M, Further let a be the one-parameter
automorphism group of U, implemented by the unitary group

L (1 0
U = (0 exp{—i/l,,(a)t}) ’

where 4,(x) € R, and let a= @, «™. Similarly giving a sequence A,(f) € R
one can construct an automorphism group f=@® 2, B™. We will argue that
the 4,(a), 4,(B), can be chosen such that D(3,) =D (), D(3,)+ D(,), and I'(a)
={0} but I'(f) can be quite arbitrary (cf. Remark 1 below).

Assume A,(f), and hence B, are given and set

k
M= ;; 14, (Bl -

Next choose A,(x)>0 such that
A(@) > XYMy,  k=1,2,...,

and
k-1
M) > 2M Z Ai@, k=23,...,
j=1

where M will subsequently be chosen suitably large. Define ¢,0% € U, by
a+—01 a__OO o‘-—l 0
\oo)S " " \10) " \0-1)’

w(oE) = eHAHaE, (e = .

then

Now let {x,} be a bounded sequence in

such that |d,(x,)| <C. We aim to show that ||64(x,)|| is bounded. For this
purpose consider x as a sum of reduced monomials in g with coefficients in
the algebra generated by the o7, i.e. in the fixed point algebra U* of a. Let x},
respectively x,;, be the sum of those monomials which contain a factor ¢,
respectively g, , but do not contain ¢, for j>k, and let x,, denote the term
without any o factors. Then Sp, (x,o)={0} if x,o+0 and

k-1 k-1
Spu(xd) < [M«)—jzl A, A+ Y, z,-«x)]

=
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[ (]

1 1
o) < | =1+ 53, o, ~(1-57;)ac0
if x%+0. Now

1
(1=57) = (1455 s > (1530 Jo=(1+ 3 g A0

1
B (1 M 4M2)’1“(°‘)
and hence for large M the a-spectra of the {x,;}, are disjoint. Similarly the a-
spectra of the {x,};>, are disjoint. Hence x—x,; and x,; have disjoint a-
spectra as do x—x, and x,. To proceed in estimating J,(x,) and J,(x,) we
need two lemmas.

LEMMA 2.4. Let o be a strongly continuous one-parameter group of *-

automorphisms of a C*-algebra W and let I =[a—b,a+b] for b>0. Then there
exists an N 21, independent of a and b, such that

10, —ia)()Il = Nb|ix|, xe U]

Proor. Let g € C*(R) be a function with compact support satisfying g(¢)=1
for t € (—3/2,3/2) and let

£ = —fdpg( - ) et

Jdp g(ple™ " ™.

T
Then fe &#(R) and
= ‘[dtf(t)a,(x), x e W) .
But
' _ . t l{’i d g(p)e-it(a+pb)
@) = —iaf ()=3; | dep

and hence
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(6, —ial)(x)

- Idt f ®)oy(x)—ia jdt S (O (x)

12

j dto, (02 f dp pg(ple™ e+
2n

Thus setting

G(t) = ‘% J dp pg(p)e™ ™"

one obtains

16, —iaD) ()] < j dtb2G (eb) x|

=b jdtG(t)IIXII = bN/|\x|
and N depends only on g.

LeEMMA 2.5. Assume Sp,(x)=[a—b,a+b] for b=0 and Sp,(y)={—o00,a—(1
+e)b)U<{a+ (1+¢)b,00) with £>0. It follows that

Ixl = Clix+yl

Jor some C depending only on e.

Proor. Let g € C*(R) be such that

gp) =1 for|p| =1
=0 for |p| = 1+¢.

Next for b>0 define f by

S®) = % Jdpg(?;—a>e“"’-

Then one has

x = f dt (0
*)
0= f dt fy(0a,0)

Therefore
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™ l J dtf,,(t)a,<x+y)“

el )l + yll

»

dtg@llx+yl

IIA

IIA

where ¢ denotes the Fourier transform of g.

If b=0 and Sp,(x)={a}, then (*) is valid for small b>0 and hence in both
cases one has ||x|| S Cljx+y|.

Now let us return to estimating d,(x,) and d4(x,).

First applying Lemma 2.5 to x=4,(x%) and y=4,(x,—x3%) with M chosen
large enough that e=(1—1/M —1/4M?)>0 one deduces that

18, (c) = Cllo,(x)]

for some C depending only on M. Next applying Lemma 2.4 to x% with a
=A(«) and b=4,(x)/2M one concludes that

160631 = A @)lIxll = (NA()/2M) | x|
= (@1 —N/2M)|xE] .
But Sp,(x%) <[ — e ] and hence
1050 < Npggllxiill

by Lemma 2.4. Combining these last two estimates with M chosen large
enough that x=N/2M <1 gives

185(eill £ (/A @)N/ (1 =216, (x:D]
C27* x(1 =)~  |18,(xIl -

IA

A

Therefore

IA

165l < Y 185(x30)l

kz1

C27 (1 =)~ 18, (x Il -

IA

Since the x, form a core for d, this implies that d; is relatively bounded with
respect to d, and in particular D(65) 2 D(6,)- But the inclusion is strict because
A(B)/ A (@) — 0 as k — oo.

REMARKS. 2. The Connes spectrum I'(y) of a product action of the a.nbove type
can be identified, by a straightforward argument, as the intersection of the
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closures of the sets

00
{Z exh(y) ; &,=11,0,¢,=0 except for a finite number of } .
n=k k21

2. In the example constructed above, Sp(a) is discrete and the fixed point
algebra A* of a is commutative and has totally disconnected spectrum. Hence
any closed *-derivation § commuting with a is a generator. This follows
because one automatically has 6(U*)={0} and D(d) contains any other
eigenspace of a (which is one-dimensional over U%*). Thus ¢ is a generator on
each eigenspace and it follows that it is a generator on U.

3. Lemmas 2.4 and 2.5 also allow one to conclude that the C*-elements of
the automorphism group « coincide with the analytic elements if and only if J,
is bounded. For example assume J, is not bounded and choose p,>0 with p,
+2<p,+; such that there exist x, € W*([p,, p,+ 1]) with ||x,| = 1. By iterating
Lemma 2.4 one obtains

167 (xall < (@a+N)™.

Hence if A,=0 are chosen such that

* Y (Pa+ N4, < +00

nz1

for m=1,2,... then

x =3 hx,
nz1
is a C*-element of J,. But applying Lemma 2.5 to 67 (x — 4,x,) and 4,07'(x,) and
using Lemma 2.4 one concludes that
107Cll 2 C14,)167 (x|
> C_I)'n(pn_N)m ’

for n sufficiently large. Therefore if t=0

tm _

Y =167l 2 C'Aexp {t(p,— N)}
m20 m:
for all large n. Now x fails to be an analytic element of a if the right hand side
of this last inequality diverges as n — oo for all t>0. But this can be arranged
by suitable choice of A, without violating (*), e.g. one can choose A4,~exp
{=V/pa}- ,

Similarly one can show that the classes of C*-elements, quasi-analytic
elements [2], and analytic elements of « are distinct whenever §, is unbounded.
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