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FORMULAS FOR THE L*-MINIMAL SOLUTIONS
OF THE d0-EQUATION IN THE UNIT BALL OF cV¥

MATS ANDERSSON

Abstract.

We construct explicit integral formulas for the d0-equation in the unit ball of
C", which yield minimal solutions in certain L2-spaces. We also show that our
formulas give some known results about divisors of holomorphic functions.

Introduction.
The aim of this paper is to give explicit solution formulas for the equation
1) i0ou = 0

where 6 is a closed (1,1)-current in the unit ball of C". The equation (1) is of
interest mainly because of its connection with divisors of holomorphic
functions ([6] and [7]). With every divisor there is associated a positive (1,1)-
current 6, and the solutions to (1) are precisely the functions u=1log|f|, where f
is a function that defines the divisor. Thus, in [1], [4], [9], [10], and several
other papers one has constructed solutions to (1) with different properties,
related to holomorphic functions in various classes.

The method used in [4], [9], and [10] goes back to Lelong [7], and consists
in solving (1) in two steps. First one solves

idw = 0

where w=w, o+w, is a l1-current and w, , and w, ; are its components of
bidegree (1,0) and (0, 1), respectively. Then one solves

U = wy,
and notes that
i0(U+0) = i6w0,1+i5w1‘0 = jidw = 0

if 9=0, and one chooses w so that w= —w. Thus u=U + U is a solution to (1).
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Although this method has been very successful it is not quite natural when
compared to the case n=1, where these two steps may be replaced by a single
one. For instance, the Henkin-Skoda theorem, see [4] and [9], which
characterizes those divisors which are defined by functions of the Nevanlinna
class, is proved in the unit disc by forming the classical Blaschke product. If the
ZEeros are dgy, a,, a,,. . . counted with multiplicities then the associated current is

0 =cY o nd

where §,, denotes the Dirac measure at a; The Blaschke condition

Y 1-laj] < oo
Jj

of the zero-set ensures that the integral

u(z) = cf log
IKl<1

is convergent. Moreover, u satisfies (1) and in fact equals log|B|, where B is the
corresponding Blaschke product.

In section 1 we define, for a > — 1, solution operators M, , to (1)in the unit ball
of C". It turns out that M, , give the minimal solutions in certain weighted L2-
spaces when «>0 (Theorem 1).

In section 2 we derive explicit integral formulas for the operators for integer
values of a (Theorem 2).

Finally, in section 3 we estimate some solutions on the boundary (Theorems
3 and 4), and indicate how one from these estimates can obtain the Henkin-
Skoda theorem and also a theorem of Varopoulos [10], concerning divisors of
HP-functions, in a way analogous to that of one variable. Of course we obtain
these theorems only in the unit ball though they are true in any strictly
pseudoconvex domain of C" (satisfying a necessary topological condition).

I wish to thank Bo Berndtsson who introduced me to this subject and
suggested the topic of this paper.

{—z
1—(21 0

The following notations and conventions are used throughout this paper.
The unit ball in C" is denoted by B, or just B when there is no possibility of
misunderstanding. In the same way 0B, or dB denotes the unit sphere and dS
surface measure on dB. For {,z € C" and a (0, 1)-form w=Y w,d{; we write (-7
=Y.z, and w-Z=Y w,;Z;, hence |{|*={-C.

Moreover
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N

B = %66|C|2 and B, = ki!ﬁ/\ ... A B (k times) .

Thus B, equals dA, the 2n-dimensional Lebesque measure. We denote by
C.(B,) the set of (p,q)-forms with coefficients in C*(B,).

From now on we assume that 6 is a closed form, 6 € Cy,(B,). Let
w e C,(B,) satisfy

1) iow =0 and oJw=0.

We can take w=0u, where u is an arbitrary, smooth solution to
(0 i00u = 0.

Conversely, any function u, satisfying

(3) ou=w

must be a solution to (2).

The idea is to start with certain (known) solution formulas for (3), for a fixed
w, and then modify them in such a way that the resulting solutions will be
independent of the choice of w. Then we have obtained solution formulas for
(2) and it will be possible to express the solutions in formulas without any
occurrences of w.

There is a solution of (3) whose boundary values are given by

_ r'(n+o) i "
@ @ = Coher s D <2)

1 n—1
ddlog 1——)

-0\ ( 12

See [2, Section 2 Example 1].

LemwMma 1.
A=A (i\ . L
W(E) dZC AW A((?alogﬂc—'z—> = (W Z (W DC Z)d).

If we take this for granted for a while and note that
wi-wQlz=wi-wl+(1-{2w{
we can write (4) as

I'(n+a) APy w z=w-0) r'(n+a) j (1=1fPrw-{ 1
@ = T+ g, A—C2r* (=19 = Ty p, A-C 2" d
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We denote these terms by K, ,(w) and R, ,(w), respectively. Since R, ,(w) is

holomorphic, K, ,(w) is a solution operator to (3). K, ; was used by Skoda in

[9] to get solutions with boundary values in L!(3B). For a> — 1, the formulas

for K, , was found by Charpentier [3], and Berndtsson [1]. In the latter it is

also shown that K, , can be analytically continued to get solutions for &> —n.
If ¢ is a continuous function on B, then

) @+ L A-1EPyY (O dAQ) — 3 LB ¥ (Qds

when a— — 1. Hence

r(n-1) wz—w-l
2" Jop, =02 11— CZ)

(6) K, -1(w) =

For z € B, we set

B} rete) [ O=KPF (L Y™\,
) M0 = K)o | s ((mw) —1>w 22

when o> —1, and

n—-1r 1
® M@ =Km-y o |

das .

Note that when « is an integer

"” IT'(n+oa) A= w: z
i= 1 "I (a+1) (1-¢-2y

It is clear that M, ,(0) is the boundary values of a solution to (2) since we only
have subtracted terms which are anti-holomorphic, hence pluriharmonic,
functions.

We define M, ,(0)(z) in B, to be the unique solution to (2) with these
boundary values.

The following theorem says that the M, ,(f) are well-defined, i.e.
independent of the choice of w, and it also states their main properties.

©® M, ,(0) = K, .(w)—

THeOREM 1. a) The operators M, ,, = —1, are well-defined for all closed
0 € CY,(B,) and satisfy
(10) idoM, ,(0) = 0.

Let L2 denote L*((1—|{[*)*~*dA) for «>0 and L*(@B) for a=0.
b) For «20, M, ,(6) is the minimal solution in L2.
¢) For «=0 and an arbitrary smooth function u we have the decomposition
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11) u = M,,(0du)+11, ()

where 1II,, is the orthogonal projection onto the subspace LZN{u;u
pluriharmonic}.

(12)

_ I'n+a) 1 1 -
e = ZF @ L_ ((1-Z-z)"+“+(1—c-z)"“_l)“(ml_'c'z) o

Jor a>0 and

(13) o) = F(n) f < e 2.2)"_1)u(c)ds.

d) For integer values of a, o= — 1, the boundary values of M, ,(0) are given by
the explicit integral formula of Theorem 2 in section 2.

e) Let 0 be a closed form on B, and consider it as a form on B, , , not depending
on the last variable. Then M, ,_,(0) does not depend on the last variable and

(14) M, .(0)(2) = Myi1,0-10)(z,2541) -

ReEMARK. The formulas in Theorem 2 give the boundary values of M, ,(6).
Part ¢) of Theorem 1 means that M, ,(6) can be computed in the interior of B,

by the equality
Mn,a(g)(z) = Mn+1,a—1(9)(z’l/ 1—'2'2) .

ADDED IN PROOF. This computation is carried out in [11].
REMARK. By the method used in [1], M, ,(f) may be analytically continued

to a> —n, and by uniqueness, a) and ¢) of Theorem 1 remain true for these a.
In fact one can verify that the kernels constructed in [1] coincide with M, ; _,.

For the proof of Theorem 1 we need some lemmas.

LEMMA 2. Let y be a continuous function on B, ,, independent of the last
variable {,,,. Then

(15) (a+1)-[ (=[P () dAC) = f (L=1¢P* 1y () dA)
and

(16) %f y()ds = nf Y(QdAQ) .
0By B,
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Proor. In fact (15) is an application of Fubini’s theorem, and (16) follows
when a — —1, by (5).
LeMMA 3. Suppose u € C*(B,) and w=0u. Then
Kn,a(w) + Rn,a(w) =u—- Pn,a(u)
for a> —1, where

I'(nta+1) (1 =1¢PPu)

n'l(a+1) ]p, (1—@2"““‘“'

7 P,,(u) =

Proor. See [2, Section 2 Example 1]. The constant I'(n+a+ 1)/a"(a +1) is
not explicitly stated but it can be determined in the following way. The kernel
P, , reproduces holomorphic functions, in particular u=1. Since the equality
1=P, (1) must hold for z=0, one only has to observe that

_[ A= da = —f ~Pyrtda =

(a+1)(oc+2) R ()]

by Lemma 2.

LeEmMMA 4. If ow=0 then for a> —1,
Kn.¢+1(w) = Kn,u(w)+Rn,a(w) .

This Lemma is just formula (16) in Section 2 of [1].
Proor oF THEOREM 1. Let du=w and a>0. Now
w-ZdA = %df-{ AGunB,_,.

Thus if we put

L[ a=RR L
(18) I = oy ((I—C-Z) —l)wzdl,

then
. 1— 2\a 1 n+a
=%IB( ‘li") (<1—C'E> —1>45‘CA5“"'3"‘1'

Now we integrate by parts (the boundary integral vanishes).
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. 1— 1t 1 n+a
() o

. (l_lcza-l 1 nta _
= lcx JB u CIZ-) ((1—-(‘2’) —1>dZ'C A O A OB,-y

Zi%((l—}i-f)"+a"l)

is holomorphic in {. Finally we note that

[\

since

S4TL A B A B,y = {2

SO

_ - 1 nta
(19) I = aJB (=123 1((1_—_{—_2‘) —l)ud}..

From Lemmas 3 and 4 we have

F(n+a) [ (1=|P2!
—_ e JB (l—f-z"“udx'

If we recall the definition (7) of M, ,(iddu) (with 0 =i0du and w=adu) and apply
(18), (19), and (20) we obtain

(21) Mn,a(o) = u_Hn,a(u) .

To show that the. definition (7) is independent of the choice of w, we suppose
that w, and w, are two such choices. If

(20) K,.(w) = u

ou = w,—w,,
then u must be pluriharmonic. Because of (21), it is enough to show that
(22) u = II,,(u)

for pluriharmonic u.
Now

Hn,a(u)(z) = Pn,a—l(u)(z)+pn,a—l(u)(z)_Pn,a—l(u)(o)
is real and by Lemma 3 and (17) one sees that
Poo-1(N@) =f(2) and  P,,1(N)2) = F(0)

for a holomorphic function f. From this (22) follows.

The independence of w for 02« 2> — 1 now follows since M, ,(6) is analytic
in a.
Math. Scand. 56 - 4
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We have already noted that iddM, ,(6)=0 and thus part a) is completely
proved.
Letting o — 0 in (21) and (22) it is clear that II,, is a projection onto

L% N {u; u is pluriharmonic}, for a=0.
Let {-, ), denote the inner product of L2. One can easily verify that
(M, (W), v), = <u,11,,(0)>, for u,ve C*(B,

which means that II, , is self-adjoint, hence the orthogonal projection. This
proves c). As a direct consequence we obtain part b). Namely, among all
solutions to iddu = 6 it is clear from c) by the Pythagorean theorem that M, ,(6)
must be the one with minimal norm in L2.
Since the content of d) is postponed to section 2, it only remains to prove e).
Let i)du=0 on B, and consider # and w=0u as forms on B,,, not
depending on {,,,. From Lemma 2 and (7) it is clear that

(23) M, ,1,.-10)(z,0) = M,,(0)() .

It is also easily seen from the definition that, for ze B,

M,,1..-1(0)(z,€")/1—]|z*) is independent of t. Since M,y ,—((0)(z,2,+,) is
harmonic in z,,,, it must be constant in z,,,. Together with (23) this is the
content of e).

RemMaARrk. The only fact about the operators P, , and K, , we actually use in
the proof above and for rest of this paper is the relation
(24) Kn,a+ 1(5") =u—- Pn,u(u)
(Lemmas 3 and 4), which for z € dB, can be proved directly along the lines of
Theorem 16.7.2 (1) in [8].

We end this section with the proof of Lemma 1. In fact

(a&‘mz 4O A 5|c|2>"“

1 n—1
(6510g T——W) =

=P " a-1PRy?
_ a=ig»@ag! + (n_1)5IC|2 AdIE* A @917
a-pr a-ey

since the exterior product of a 1-form with itself is zero. Thus

(l_Klz)n i\" _ 1 n-1
TSN <5>dz-CAWA(6alog——l_|Clz)

. 2\ 2
= (I—ICIZ)%dZ-C AWA ﬂ,,_,+<%) Az LA w AL AP A B,-» -
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The first term of the right hand side is equal to
(A=[LP)w-zdA,

and by (1) of section 2, the second term equals

w22~ (w0} 2.

From this Lemma 1 follows.

In this section we derive explicit integral integral formulas for M, ,(6). It is
convenient to introduce the notation

i i
u= idf-c Adz C = EZEidCi A Y zdl;
and

y = S0UP A GKP = 3 ¥ Tdt A T

When nothing else is said, we assume that z € dB,. At several occasions we
shall make use of the equalities

) ST AW AY A By = (w2 = (w00 2)dA
and
© LOP A w A A By = 0T (w22

These can be deduced by direct computation or may be considered as special

cases of Lemma 2.4 in [1].
Recall that for a> —1

Kn,a(w) = F(n+a) J (I_ICIZ)G(W‘f——w-DdA

mT+1) J5 A=CT2"0-02
Now

wi-wl=(0=C2wi+tl2wi-wTl.
Hence by (2)
K,.(w) =
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I'(n+a) U‘ (A—ltPywz %(I—KPVWCIZAWA#/\ﬁ..-z]
wlre+DL) s (=027 109 “L. A=Czr=a-rz I’

Denote the second integral inside the brackets by I. Then

_ i fa(1—|c|2)¢+1Aw,\yAﬁ,,_2
2@+1) Jp, (A=C2r"*(1-(-2)

Note that

u
A=z (1~(-2)

is a closed form and that
iow = 6.
Hence by Stokes’ theorem (the boundary integral vanishes)

_ f(l—lCIZ)““GAuAﬂ..-z
2@+1) ), A-Tor™(-07

Thus we have proved,

Ir'(n+o) (A-1LPyw-z
mT@+1) )5 A-C2 T (1-{2)

_ _I'(n+oa) A=ILPP A0 ApA B,
T («+2) Jp, (1-02"*(1-(2)

If n=2 and we let « - —1 we obtain

1 w3 1 0Au
K; -1(w) = P LB; 1_c-zds_577 Lzm'

Thus by the very definition ((8) section 1)

dA—

3 K,.(w) =

1 0
M, 0@ = —ﬁfﬂ Tona

When n+a>1 we need the following lemma. The proof consists of elementary
but tedious computations so we postpone it to the end of this section.

LEMMA 5. Suppose o> — 1, and set

[ -kprws
it = |, T=TDa-COF
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Then the following equality holds if 1<j, k<n+a—1.

k
Agjx = Agj-1 4t "

Toa—k Agj-1x+1t+

N n+a (1= 10 A B, _,
2atDinta—h) )5 A-CHA=C2F T

+ Jjk (=P 20 ApAB,_,
2@+1)(@+2)n+a—k) |5 (1-C-2P 1A=L 2F T

_ k (A=JCPF 10 A A s
2+ D(n+a—k) |5 (1-C2yA=C2FT
1 (=[P 0 A A Byesy
2a+D) Jp,  A-THA-CDF
Now, if we let a be an integer, «=>0, and apply Lemma 5 r—1 times to
Aa,n+a—1,l we get

r

Agnta-11 = 2 C,Agnt+a-rs+terms not involving w .
s=1

By induction over r one shows that

C = r—=1)(r—-2)...(r—s+1) _(r=Dln+a-s)!
T (mta—Dn+a—2)... (n+a—s+1)  (n+a=1D!r—s)!’

Thus after n+o—1 steps we find that

nta
Aynia—11 = 2. Ay o, s+terms not involving w .
s=1
Comparing with (9) of section 2 and (3), it is clear that M, ,(6) is constituted
by all terms involving 8, which occur in these n+o—1 steps (multiplied by
I'(n+a)/m"I (a+ 1)) plus the term

_ I'(n+a) J A=RP** A0ApAB,_,
T (a+2) Jp, (-=Cz2r**(1-(2)

from (3).

The case a = — 1 is handled in exactly the same way. One only has to multiply
by a+1 and let a— —1 in Lemma 5 before applying it.

Checking up the constants of the terms occurring in each step, we arrive at

THEOREM 2. Suppose a= — 1 and o is an integer. For z € 0B, we have
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1 (=171 A B,
na(e)(z) nl: JZ A‘I'J‘ B, (1 z Z)J(l.__. Z)k +

Z
jtk=n

—IP 20 ApA By
B, (I_C‘ z)]+1 1— C z)k+l

kZl
J-l-lic{n

. (1= KPF*10 A i A By
2 C""‘L, At

jkz1
jtksSn+a+1

where
4. = n+o)(n+a—j—1)!(n+a—k—1)!
ko (a+ D! (n+a—j—k)! ’
B _jk(n+a—j—D!(n+a—k—1)!
l (x+2)! (n+a—j—k)!
and
_ (nt+a—=j)!(n+a—k)
ik =

@+ (n+oa—j—k+1)!"
It remains to prove Lemma 5. Suppose 1<j,k<n+a—1 and let

_ A=1EP L w
Ba,j,k - IB,, (1 —Z'Z)j(l _C_Z-)k d% .

We claim that

k 1 (A=1P*0 A B, -,
@ Bai = e 3050y | AT a2y
and
a+l oa+1
(5) Agirjk+1 = PEPEC k1t +aBa,j,k+
j (=P 20 ApnpB,_,

+2(oc+2)(n+a) (A=C 2y (1=C2F T

A=IP 0 ApABas
2(n+fx) A=-Czya-g-zftt

To prove (4), note that

(C-whda = S0P A w A By -
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Hence

B jx = —

1 %au—mﬁl AWAB,_,
oa+1 J

(1=C-zy(1-¢-2*
By Stokes’ theorem (recall that idw =6)
(L=l 2dz C Aw A B,y
B, =K 2 +
T et ) (=T 2

1 (=1L 10 A By-y
YIGFD |, A=THA=C2F °

which is the same as (4), since
%dz"'C AWA Booy = (W-2)dA.
It is somewhat more involved to see that (5) holds. Since

ﬂn 1= 1 _aEIC'Z A )Bn 2

n—

we have

4 L iV =Ptz LA w A DAL A Ba-s
a+1,jk+1 — n-___I 5 5 (1—52)"(1—(2—)'”'1 .

Now

dz-{
(1 =2y -2

so that Stokes’ theorem gives

=0,

ol [ (=P AdZLAWAB,
Aa+1,j,k+1 - n__15 5 (I—E'Z)j(l—-C'E)k'H

(=[P tdz-L A OIL> A O A B,y
n—l) A=-Czy(-¢-2! '
If we apply (1) to the first term on the right hand side we get

_atl (A= EP(w- 2L = (w- 0L 2)
Aa+1,j,k+l - n_lf (1—{2)1(1— ,-z-)k+1 dA'+

3~ ICI’)"”AdzCAHAﬁ,, .
+4(n—1)(«+2)L Caa—g T

35
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Now we use the equality
WP = w2 = —(1=Pw-z+(1 =T 2wz +
+A-dw-l+C2w-z—-w-{

to the first term and apply Stokes’ theorem to the second term and get

a+1 o+1 a+1
;:“I‘Aau.j,kn"‘;‘:—Au,j-Lkﬂ +o 7 Bagut

6)  Apiyjrer = — 1 -1

+a+1 A= (C-2w-z2—w-0
n—1)p (1-0z¢(1-{ 2

+ 1 A—=1P* O ApA B,
2n—1)(@+2) Jp 1=z A -2F*

dA+

By
AP AwAwA By
- THa-ta

(1—|C|2)“((Z'Z)W'5—W'Z)dl_ 1 I
g (=021 -(-2 T a+l g

and by Stokes’ theorem as above one sees that the term on the right hand side
is equal to

R (L= (LR 10 A A By
2@+1) Jp (1=Czy(-(-2!
After substituting this term in (6) and solving for 4, .+, we obtain (5).

Now we substitute the expression of (5) for A4, .+, in formula (4). In the
resulting equation we solve for B, ;, and get

k
)] B, jx = M—_kAa,j—l,k+l+
+ Jjk (1"'|C|2)“+29/\H/\/3..—z_
2+ D) (@+2)(n+a—k) | 1=C-zy (1= 2+
& (L=RPF* 0 ARy s
2(n+a—k) Jp (1-=C-z¢(1-(- 2
n+o (1—-1P** 0 A B, -4

Pt Dinta—h )5 A=C2PA-C2F
By the equality
wi=wl+(1=-02wi-(wl-C2w 3,
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formula (2) and Stokes’ theorem we have

=B . o1 (L= 0 ApnB,-
8) Agjx = Byjut+ A1 3atD) IB T Tt 2

Finally Lemma 5 is proved by combining (7) and (8).

3.

In this section we will indicate how the theorems of Henkin-Skoda and
Varopoulos (see Introduction), follows from our results in the preceding
sections. It is then convenient to let the kernels from section 2 operate on
positive currents, and not only on smooth forms as has been the case up to
now, so our first objective is to make this legitimate.

Let M=M, , and L the corresponding kernel so that

Mo = J LAGO.
B
We then have

THEOREM 3. Suppose 0 is a positive, closed (1,1)-current in B which satisfies

r<i

™ sup IH (1=1LP)0 A Byoy < 00
t<r

We define MO on 0B by

M@ = lim LAGO.

=1 J g <r

The limit exists in L*(0B) and we have

J [M@| £ constsup (1=18%8 A By-y -
B

r<l Jygl<r
Moreover, there is a solution U to
v i0dU = 6
which has boundary values M6, in the sense that
U, —» M0

in L'(0B) when r — 1, where

U,(z2) = U(rz) .
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If G(¢, z) and P((, z) are the Green’s function and the Poisson kernel, respectively,
then U is explicitely given by

G) U(e) = —2_[ G(L,2)0 A B..-ﬁj P({,2MO(()dS .
B oB

As will be clear from the proof, any M, ,, a>1, would work.

The Henkin-Skoda theorem states that a divisor D in B is defined by a
function in the Nevanlinna class if and only if the associated (1,1)-current 0 (see
[6] and [7]) satisfies the Blaschke condition (1).

The Nevanlinna class N, is defined as the set of holomorphic functions in B
such that

r<i

4) sup‘[ log* |f(rz)|dS < .
B

If fe N is given, the current 6, associated with the divisor D defined by f, is
given by
5) 0 = iddlogl|f] .

By Jensen’s formula one sees that (4) implies (1), i.e. the “only if’-part of the
theorem. In the other direction, which is the hard one, the theorem follows
from Theorem 3 in the following way:

Let D and 0 be given, and let g be any holomorphic function defining D, i.e.
satisfying (5). Hence if U is the solution of (2), given by Theorem 3, then U-
log|g| is pluriharmonic and so

U-—log|g| = Reh
for some holomorphic function k in B. Now
f=é4g
also defines D and

log|fl =U.
Thus

limj log* |f(rz)|dS £ limj |U,|dS
r=1 JoB JiB

r—1

= I |MO|dS £ constsu f A=1»0 A B,—y < ©
JB Kl<r

r<i

so that f'e N. In fact
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log|f| — log|f* = M6

in L'(dB), that is f belongs to the subclass N* of N.
Again, let D and 6 be given. The theorem of Varopoulos states that if

(1 _'CIZ)O A ﬂn—l +7 AO A Bn—Z

is a Carleson measure, then there is, for some p>0, a function fin H? that
defines D.
A measure dt in B is Carleson if

(6) J dt()) £ Ct"
11-¢-z| <t

for z € 0B and t>0.
To prove the theorem we need

THEOREM 4. If 0 is as in Theorem 3 and if in addition
(=10 A By +y A O A B,y
is a Carleson measure, then

7 exp (M6) € L?(0B)

for some p>0.

As above, let f be a holomorphic function such that
log|fl = U.

Since
J‘ GO A ﬂn—l g 0
B
we have from (3),
loglf (2) = J P({,2)MO(0)dS .
B
By Jensen’s inequality

1@ < f P(, 2)exp (p MO())dS
0B

and hence
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@®) f |fIPdS < j exp (pMO(0))dS .

B Y]
Since the last integral is finite by (7), (8) means that fe H".

Proor oF THEOREM 3. Consider the expression for L A 8 given by Theorem

2. Since

OAB,-y, and O ApunpB,_,
are positive forms and

FA-H s N-02 2

for { € B and z € 0B, the modulus of any term in L A 6 is up to a multiplicative
constant majorized by

A-lPPOAByy . A=KPPOARAB-s
Il_z‘,zln+1 |1—€'ZI"+2 .

We claim that the inequality
(9) U A 0 A ﬂn—z _—<_ const (|1—Z:Z|9 A Bn—1+0 AY A ﬂn—z)

holds. Recall that y denotes the positive form

i
5 Al A B2
Taking this claim for granted for a while, we get the estimate
(A—=1E7)%0 A Ba-y (1=1E*)?0 Ay A By-2
< .
(10) |L A6 = const TRk +const T ERE
We need the estimate
ds 1
11 <C
an Izeaa, =Tzt = 7 (1P

where a>0 and the positive constant C only depends on « (see [8, Proposition
1.4.10]). Now, let r<r <1, and set

I L/\G—j LAG
Kl <r Kl <r

1-|¢1%)%6 _
I = f ILAB < constJ (-1 :\,f” L
rslg<r rslgl<r 1=z

I =

By (10) we get
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—1712)2
+ const f (11070 M’:; Ba-2
rslgl<r '1_E,z|n

and hence by (11) and Fubini’s theorem

(12) j I1dS £ const f (1=)LP)0 A Bpy +
3B rsle<r

+constj OAYyAB,_2.
rsfgl<r

We also need
(13) (n—l)J- (1=1L»0 A By-y = j OAYABu-sz-
lKl<1 K<t

This result goes back to Malliavin (see [9, Proposition 11.2.1]).

By assumption and (13), (1—|¢{[»@ A B,-, and O Ay A B,_, are finite
measures, and hence (12) shows that

f IdS — 0
dB

I LAO
Il <r

converges in L!(@B) to a function M6, and by similar estimates as above it
follows that

when r — 1, that is

I |MO|dS £ const j (1=1¢*0 A Bn-y -
oB B

Thus the first part of Theorem 3 is proved if we can show the inequality (9).
To this end, put

a=Yad;, and b=7Y bdl.
Since 6 A B,_, is a positive form,
(a,b) = %a AbAGOAB

is a positively (semi-) definite inner product. In particular

1¢a+b,a+b) £ (a,a)+<bb).
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Applying this to

a=Y (z-0)d;;, and b =Y [d
we get

(14) 34 A O AByy S 50K=22 ABE—2P AOA B2y AOAB .

Moreover,

(15) 0I—22 AOIL—2* AO A B,_, < const|{—2z|*0 A B,_,
and

(16) [L—z* < 41-C2|

From (14), (15), and (16) we obtain (9).
To prove the second part of Theorem 3 we need the following well-known
result from potential theory.

LemMma 6. If g € L1(0B), dt is a positive measure in B satisfying

L A=l dz() < o0,

and
V(z) = —f G(C,Z)dr(C)+f P, 2) f(0)dS
B B

then
V.- f

in L1(0B) when r — 1, and
AV =

in B.

Now, we define U by
(17) Ulz) = -2J G((,2)0 A Bn—l+f P({,z)MO({)dS .
B B

In view of Lemma 6, Theorem 3 is completely proved when we have affirmed
that

(18) 93U = 9.
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First we note that (18) holds if 6 is smooth. Namely, in this case the is a
solution ¥ with boundary values M6, according to Theorem 1. Since

0 AP,y =2 0;dA
j
it follows that both of U and V solve
AU = 4% 0,
j
and have boundary values M0, so that
V=U,

i.e. (18) holds.
Next, we suppose that 0 is a current defined in a neighbourhood of B. Let ¢
be a function in C§(B), which only depends on |{|, and such that

0

IIA
I\

¢ £1 and j(pd/l=1.

Put
@.(0) = e "p((/e)

and
0, =0x0p,.

Then 6, is positive, closed and smooth in a neighbourhood of B.

Cramv I. MO, — M0 in L' (0B) when ¢ — 0.

In fact, for s<1 we have

j‘ L/\(OC—G)FJ‘ |L/\9J+J ILAG|.
Kl <s ssEl<1 ssigl<t

By (10), (11) and Fubini’s theorem we have

(20) f f L AB)dS <
0B Jss|gl<1

< const f (1—=121%6, A B, - +const f 0, Ay ABn->-
s=s(gl<1

sslfl<1

(19) M0, —M6| =

Using (13) and the analogue equality, where B is replaced by {(, |{| <s}, we get
@1 f 0, Ay A Paz =
sslel<1

= (n—-1) (1=, A ﬂn-1+(n—1)f (1 =590, A By-y

s<[gl <1 IKl<s
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and combining (20) and (21),

22) I -[ ILA6,)dS <
0B Jssltl<1

< constf (1-=1¢1%)0, A B,_, +const J (1=5%6, A Bo_; -
ssK<1 Kl<s

One sees that both of the integrals on the right hand side of (22) are arbitrarily
small, uniformly in ¢, if e<1—s and 1—s5 is chosen small enough.

Now, consider the right hand side of (19). We have just seen that s can be
chosen such that the middle and (similarly) the last terms have arbitrarily small
L'(0B)-norms. When s <1 is fixed, the first term tends to zero uniformly on 0B
when ¢ tends to zero, and this implies that

limf IM6,— M6 dS = 0.
0B

-0

Cramm IL

'[ Gez/\ﬂn—l - Go/\ﬁn—l
Kl<1 Kl<1

weakly in B.
In fact, if € Cy(B) then

fl//(Z)dA(Z) Il(l . G(C’ z)ge A Bn—l = J‘ h(Oee A ﬂn—l

lgl<1

where

h(Q) = 0(1={P)

by the properties of the Green’s function. Since 6, — 6 weakly in a
neighbourhood of B, it follows that

I h(©)0; A By — J h(©)6 A B,-y
lei<1 Il <1

which proves Claim II

We note that Claim I implies that

_[ P(C,z)MHJC)dS—»j‘ P({,2MO()dS
0B 0B

in L!(B). Combining this with Claim II and recalling the definition (17) of U
and U, (where U, corresponds to 6,) we conclude that
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U,—-U
weakly in B. Since U, is smooth, we know that
00U, = 0,
and by continuity
(23) 00U = 6

in the case when 0 was defined in a neighbourhood of B. To obtain the general
case, set for t<1,

0,(0) = 2"0(t0) .

Hence, 6, is defined in a neighbourhood of B and in a similar way, as was the
case with 6,, one proves that U, tends to U weakly when t increases to one,
and thus confirms (23) for a general 0. As was noted before this completes the
proof of Theorem 3.

Proor oF THeEorEM 4. In [10], Varopoulos finds a solution which has
boundary values u in BMO (dB) if 0 satisfies the hypothesis of Theorem 4.
Then it follows from the John-Nirenberg theorem [S] that expu e LP(dB) for
some p>0.

Here we give a direct proof of Theorem 4. From (10) and the hypothesis we
have that

1-gp?
|L A 0' =< conStﬁ———‘f-leﬁdt(O

where 7 is a Carleson measure. Put

1P
u() = Lﬁ‘—'ﬁmd‘“"

It is enough to show that
(24) expu € LP(0B)
for some p>0. Set
E, = {z€dB; u(z)>s}.
To show (24), we want to estimate |E | (where |-| denotes normalized surface

measure). Now

(25) s|EJ < J . u(z)dS

Math. Scand. 56 - 5
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and by Fubini’s theorem
(26) f u(z)ds =J Vg () dr(0)
E, B

where we, for any measurable set E =dB, define yg({) on B by

_ 1-({?
‘I’E(C) = J; Il—_WrdS .

From (11), we immediately see that

(27) Ve < yaB() £ C.

We also have

Lemma 7. If t is a Carleson measure in B then there is a positive constant C
such that

1
ol ¥i(>a} < C.|E)
for any (measurable) set EcdB.

By Lemma 7 and (27) we get

(28) L VO d(Q) = r e{y,> o) da
C 1 1| 1
= Cf —IEslda+r(B)J da < CIEs|log—E—.
IEJ * ) |E4

From (25), (26), and (28)

1
S|E3| é CIEsl log'_E_l

ie.
|E| < e~%/€

Finally,

f eP® ds =p.[ |E,Ie”ds+j ds
o8B 0 oB

and thus (24) holds if p<1/C.
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Proor oF LEmMMA 7. For any { € B, set

R, = {w €B; ‘l ICI‘: <2(1——|Cl)}
Note that { € R,. Furthermore, set
K, = 0R,NJB.

If E is any measurable subset of d B, we define the maximal function of E, on 0B
by

Mg(z) = supt™"{x € dB ; |1—-X-z|<t}NE|.
t>0

We also need the following: (Proposition 5.1.2 in [8])
(29) 2—a-c* £ 1—a-b*+|1-b-c]*, abceB.

Our first objective is to show that there is a constant ¢>0, such that if Y g({)
>a, then Mg>a/c on K,.
Integration by parts gives

2 ds
(30) Ve® = (-1t j e
*© ds
< const (1-1¢)) L |{z; |1—f'z|<s}ﬂE|s"—+2.

Suppose x € K;. We claim that

31 {zedB; |1-{-zl<s} c {z€dB; |1-%2<12s}.
Obviously,
(32) {zedB; 1-(zl<s} = @& if s<1-|.

Otherwise; if s=1—|¢| and |1 —{-z|<s, then by (29),

_ X C Z-¢ )
—%- 22 4n-z
ol = 3<l1 T ll gt

< 320 —=[)+ A —=1ZD+s) < 12s.

Thus (31) is established.
From (30), (31) and (32) we get

V() < const (1-[2) f 23 11— %21 <12 N Bl Sy

1-§l
and hence by the definition of Mg(x),
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00

Ve(®) < const My()(1—1Z) j LMy

1=l
Since x was arbitrary in K, we have shown
(33) K, c {z€dB; Mg(z)>a/c}.

The set {z>a} is covered by the union of all sets R, such that yg({)>a. By a
covering lemma very similar to Lemma 5.2.3 in [8], there is a disjoint
subsequence

RC!’ RCZ" . .,R;.,. ..

such that
{¥e>a} = UR,
where
R, = {weB ; '1—% < 36(1—-|Ci|)}.
Similarly,

R, = 0R,NJB.
Note that there are positive constants ¢, and c,, such that
ot" < {x€dB; [1-X-z|<t} < c,pt".
Thus
(34) IK;il < const|K,]| .
Note that the Carleson condition on t implies that
(35) ©(R;) < const|K,] .
From (34), (35) and the disjointness we have
(36) W({Yp>a)) < TUR) < TRy
< const . lkg_.l < const Y |K¢| = const|U K| .

By (33) and (36) we obtain
37 t({yg>a}) < const {z €dB ; ME(z)>%} .

Finally, according to Theorem 5.2.4 in [8], the maximal function M is of weak
type (1,1), ie.
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{Mg>a}| < constilEI

and from this and inequality (37), Lemma 7 follows.
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