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INTERPOLATION OF MARCINKIEWICZ SPACES

MICHAEL CWIKEL AND PER NILSSON

Abstract.

For each concave non-negative function ¢(t), the Marcinkiewicz space M,
consists of all measurable functions f such that

1 ae, = sup (e@®)™* Lf*(s)ds <.

Interpolation spaces with respect to couples (M,,M,) of such spaces are
considered. It is shown that for certain choices of ¢, and g, these interpolation
spaces can be characterized by a monotonicity property with respect to the K-
functional, that is (M,, M, ) is a Calder6n couple. A necessary and sufficient
condition is given for interpolation from a couple of weighted L* spaces to

certain couples (M,, M, ) to be characterized by K-functionals.

0. Introduction.

Let (X,Z,u) be a measure space and g(tf) be a positive function on
[0, 00). We define the Marcinkiewicz space M, to consist of all (equivalence
classes of) measurable functions f on X such that j:, f*(s)ds=< Co(t) for all t>0
and some constant C. As usual f * denotes the non-increasing rearrangement of
f. M, is normed by

- 1/ m, = sup (@)™ on f*(s)ds .

As important special cases of Marcinkiewicz spaces we have
L'(e(®)=1), L*(@®)=t), LP»* = WeakL?(g()=t'""?, 1<p<o0),
L*+L>(e(t)=1+t) and L' N L*(g(t)=min(1,1)).

In particular, the weak LP spaces arise naturally in connection with the
Marcinkiewicz interpolation theorem ([2, p. 6]) and its generalizations. Since
§o £*(s)ds is always a concave function of ¢ and tends to zero as t — 0 we may
equivalently replace g by its greatest concave minorant § on (0, c0) and obtain
M,=M; We may also take §(0)=lim,_, §(2). In view of these remarks we need
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30 MICHAEL CWIKEL AND PER NILSSON

only consider functions ¢ which are non-negative, concave and continuous on
[0, 00), and consequently also non-increasing.

In this paper we consider the problem of characterizing the interpolation
spaces with respect to certain couples of Marcinkiewicz spaces (M, , M, ). We
refer to [2] or [12] for basic notions and terminology pertaining to'the theory
of interpolation spaces. More specifically we are concerned with the question
of whether all interpolation spaces A with respect to (M,,M,) can be
characterized by the following property: If ae 4 and b e M, + M, and if for
all t>0,

K(t,b;M,,M,) < K(t,a; M,,M,),

then b € A.

If all interpolation spaces with respect to (M, , M, ) can be characterized in
this way, then (M,, M, is termed a Calderon couple or K-monotonic couple.
(See, e.g., [9], [10] for recent results concerning such couples.)

Our main result here is that, for each non-negative concave function g, each
of the couples (M,, L*) and (L', M) are Calder6n couples. The proofs proceed
via a reduction to the well known special case of the couple (L', L) which was
treated by both Calderdn [6] and Mitjagin [13] (Thus above it would be more
accurate, if rather cumbersome, to speak of a “Calderon-Mitjagin couple™.)
Note that in general (M,,M,) is not Calder6n, as can be seen from the
example of the couple (L' N L*®, L! + L*®) investigated by Ov&innikov [15]. On
the other hand there exist couples (such as (LP>%,L?**) or (M,, M, ), where
Qo and g, satisfy condition (3.1) below) which are Calderdn couples, though
not of the form (M, L™) or (L', M,). (See [16], [17], [8])

We also briefly consider the description of interpolation spaces for operators
mapping a couple of weighted L™ spaces to the couple (M,, L*) or the couple
(L',M,). We give necessary and sufficient conditions on ¢ for the
corresponding interpolation spaces to be characterized in terms of K-
functionals (i.e., for the couples (M,, L*) and (LY, M) to have the “universal
right K property” in the terminology of [11, Section 4]). This complements
some earlier results of Peetre [16], [17] (cf. also [8]) and shows, in a sense to
be made precise below, that, unlike the couples (LP>*®, LP+®) and (LP*, L)
treated in [16] (and implicitly in [8]) and similarly to the couple (L*, L*), each
of the couples (M,,L™) and (L', M) is essentially different from a couple of
weighted L™ spaces, for a certain class of functions g.

RemMarks. (1). The above results lead us naturally to the following questions:

(i) What are necessary and sufficient conditions on g, and ¢, for (M,, M,)
to be Calderon, or for it to have the unversal right K property? (The
latter property implies the former.)
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(ii) Does there exist a rearrangement invariant Banach space B such that (L', B)
or (B,L™) is not a Calder6on couple? (For a rather complete answer to
similar questions in the context of weighted Banach lattices see [10].)

(2). A commonly encountered alternative version of Marcinkiewicz space is
M () which consists of all functions ffor which sup,.., ¥ (t) f * (t) < o0. (Cf. [12],
[17].) Here (¢) is some positive concave function on (0, 0o). The spaces M ()
and M, coincide if and only if ¢ satisfies condition (3.1) below and g(¢) is
equivalent to t/y(t). (See [17], cf. also [12], p. 115) The important
quasinormed space Weak L' corresponds to M () for y(t)=t but of course
cannot be obtained as M, for any choice of o.

Our results are presented as follows. In Section 1 of the paper we show that
(M,. L) is a Calder6n couple. The corresponding result for (L', M,) is given in
Section 2. The remaining results concerning interpolation for operators
mapping a couple of weighted L* spaces to the couple (M, L) or (L', M,) are
presented in Section 3.

AckNOoWLEDGEMENT. We thank Jaak Peetre for some helpful discussions.

1. The couple (M, L*).

THEOREM 1. For any non-negative concave function g, the couple (M,,L®) is a
Calderon couple.

Proor. It suffices to show (cf. [6], [18], etc) that for any functions f,g €
M,+L*>, if
(1.1) K(t,g; M, L*) £ K(t,f; M,L*) for all t>0,

then there exists a linear operator T bounded on both M, and L® with norms
independent of f and g such that Tf=g. Since, in the notation of [14],

M, = (L',L®);x .¢

1/e>

={h € L1+L® | |K(h; L, L)y, =sup (V@)K (b L', L)< »o} :
t>

we can apply the Brudnyi-Krugljak reiteration theorem ([3], [4], [14]) to
obtain that the K-functional K(t,h; M,, M,) is equivalent to the expression

(1.2)

K(t K(,h; LY, L®); L, LE,) ~ sup (min (1/20(s): /21 (5)) L h* (u) du) .
>0

Q0
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In particular
K(t,h; M, L™) ~ sup [min (1/0(s), t/s) ‘[ h*(u) du] .
s>0 0o

Since (1/s) [ h*(u)du and g(s)/s are both non-increasing functions of s it
follows that for each s'>0,

(1.3) K(s'/o(s),h; M, L®) ~ oilslgs' (1/0(s) . h*(u)du .
Now suppose that fand g are any functions in M, + L> which satisfy (1.1). For
the construction of the operator T, appealing to [6, Lemma 2, p. 277], we see
that we can assume that the measure space is (0, 00) equipped with Lebesgue
measure and that f=f* g=g* (Note that Lemma 2 of [6] is valid even
without the restrictions of g-finiteness and the requirement that f, vanishes on
the set where f, <a, via arguments as in [7, pp. 232-233].)

Now, introducing the notation m(t, h)= (1/¢(2)) [4 h(u) du, we have, in view of
(1.1) and (1.3), that
(1.4) sup m(s,g) < C sup m(s,f) for all t>0

0<s<t 0<s<t

where C is an absolute constant. Now if m(s, f) happens to be a non-decreasing
function of s for all s>0 then (1.4) implies that [§ g*(u) du< C [§ f*(u) du for all
t>0 and by the Calder6n-Mitjagin theorem ([6], [7, pp. 232-233]) there
exists an operator T with norm C on L' and on L™ and therefore also on M,
such that Tf=g. The rest of our proof amounts essentially to a reduction to
this simple special case. The main step will be to construct a linear operator V
which is bounded on both M, and L* such that m(s, Vf) is non-decreasing and
(1.4) holds with f replaced by Vf.

Let n(s, f)=supy<,<sm(t, f). This is a finite continuous non-decreasing
function for all s>0. The set

W= {s>0] n(s, ))>ms, f)}

is thus open and can be expressed as the union of a countable or finite
collection of disjoint open intervals {I,I,,...}. (Alternatively W is empty and
the proof of the theorem proceeds trivially as above.) We set I,=(a,, 8,) for
each I, in the above collection. The functions m(s, f) and n(s, f) clearly
coincide for all s ¢ W. In particular m(a,, f)=n(a,, f) if 2,>0. For all se I,,
m(s, f)<m(a,, ). (Otherwise, for some such s, n(s, f)=sup, <,<;m(t, f)
>n(a;, f) and, at the point t+a, where this supremum is attained, m(t, f)
=n(t, f) which is a contradiction.) Consequently, on I,, n(s, f) assumes the
constant value m(a,, f) which coincides with m(B,, f) if B, <oo. If one of the
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intervals I, has left endpoint zero we shall reserve the notation I, = (0, 8,) for
this interval. By a similar argument to that used above n(s, f) assumes a
constant value on I, equal to @=limsup,_,m(t, f). (If n(s, f)> 06 then n(s, f)
=sup, <, <, M(t f) for some suitably small ¢>0 and at the point ¢ where the
supremum is attained m(t, f)=n(t, f), contradicting ¢ € W.) For later use we
define a seminorm t on M,+L*® by

2(h) = limsupet)™ | 1) dx
0

n—00

where the sequence (y,)s>; is in I, and satisfies lim,,, y,=0 and

lim, ., m@y,, f)=0=1(f).
We now define the operator V by

@,
Vh = hyo, o w+ 2. (Q(“v)_l f h(x)dx)g’x,v
v*0 0

where ¢’ denotes the derivative of ¢ which necessarily exists a.e. on (0, 00) and is
a non-increasing function. If the collection of intervals I, includes I, with left
endpoint zero then we must add an extra term of the form ¢'I(h)y,, to the
formula for Vh, where I is a continuous linear functional on M,+ L®, whose
existence is guaranteed by the Hahn-Banach theorem, such that |/(h)| £ t(h) for
all h e M,+L* and I(f)=1(f)=0. (It may even happen that W= (0, 00)=1,
so that ¢'l(h)y;, is the only non zero term in the above expression for Vh.)
For any h e M, we have the a.e. pointwise estimate

[Vh| £ |h|+¢' suge(t)“ f |h(x)| dx
t> 0

< W+ 1kl g -
So
IVhllyg, < Wllyy,+ Ul pg Iy, S 2Ny, -

We next show that V is also bounded on L®. We first recall that for a.e. t>0,
it follows from the concavity and non-negativity of ¢ that

(1.5) o't = e(®)t.

Thus, for each h € L*®, |Vh| restricted to an interval I, = (,, f,) with v+0 is
dominated by

¢ @)@/e@)lhl = = lIhlL=.

If v=0 we either have lim,_,o(t)/t =00 in which case I(h)=0, or lim,_,(t)/t
<00 in which case
Math. Scand. 56 - 3
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Ih) < "h"L”/}in(}(Q(t)/t) and  ¢'(t) = limo(t)/2
- t—

so that |Vh| < ||h| .~ on I,. Combining these estimates, we obtain that ||[Vh|
< |h|l .~ for all h e L™

We now turn to calculating m(s, Vf). We first observe that for each of the
intervals I, with a,>0, f, <00

J Vfdx
1,

(e(B)—e(@))(e(@) ™" ﬂ f(x)dx

e(B)m(,, f)—e(a)m(a,, f)
e(BIm(B,, f)—e(@)m(a,, f)

fp'fdx—Javfdx =f fdx.
0 0 I,

L Vfidx = @(Bo)0 = e(Bo)m(Bo, f) = L fdx.

I

Similarly, if ag =0, <00

Thus for any s ¢ W it follows that [} Vf dx = f dx, and so m(s,Vf)=m(s, f)
=n(s, f). If however s € W, then s € I, = («,, §,) for some v and

'r Vfdx = f Vfdx+r Vf dx
(1] v

0 a

f £ dx+(o(9) - e(@)m(a,. f)

Q(av)m(ava f) + (Q (S) - Q(av))m (av’ f)
= g(sym(a,, f) for a,>0,

= ¢(s)n(s, f) .

Similarly, if &, =0, [§Vfdx=¢(s)0=¢(s)n(s, /). Thus in either case m(s, V)
=n(s, f) and indeed this equality holds for all s>0. Since n(s, f) is non-
decreasing we have m(s,g) < Cn(s, f)=Cm(s, V)< Cm(s, (Vf)*) for all s>0.
Consequently

0

‘r g*(x)dx = C fs V)*(x)dx for all s>0
]

and an application of the Calderon-Mitjagin theorem, much as before, yields
an operator ¥, with norm C on L' and L* such that V,(Vf)=g. Clearly, T
=V,V is an operator with all the properties we require and the proof is

complete.
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2. The couple (L', M)).
TueoreM 2. For any non-negative concave function g, the couple (L', M) is a
Calderén couple.

Proor. We shall use several ideas similar to those in the proof of Theorem 1.
Again we begin with arbitrary non-increasing non-negative functions f=f*,
g=g* in L'+ M, on (0, %) satisfying a K-functional inequality

.1 K(t,g; L' M,) < K(t, f; L',M,) for all t>0.
We have to construct a linear operator T bounded on L! and on M, with

norms independent of f and g such that Tf=g. In this case the formula (1.2)
implies that

S

K(t,h; L', M) ~ sup(min (1,¢/0(s)) j h*(u)du) .
s>0

0

Thus, for every s'>0,

K(@().h; L', M,) ~ sup (¢(s)/(s) f "t () du
s2s' 0

and it follows that

(2.3) supm(s,g) < Csupm(s, f) for all t>0,
s2t

s2t

where, as before

m(s,h) = (I/Q(S)).[ h(s)ds ,
0
and C>1 is an absolute constant.

Much as in the proof of the preceding theorem, our strategy will be
essentially to find a way of “converting” m(s,f) to a monotonic (in this case
non-increasing) function of s so that we can remove the suprema in (2.3) and
then apply the Calderon-Mitjagin theorem to deduce the existence of the
required operator T. More precisely, we shall construct a linear operator V
which maps each of the spaces L' and M, continuously into themselves with
bounds not exceeding 5, and having the property that, for all s>0, either

(2.4a) 2m(s,Vf) Z supm(t, f)
or

(2.4b) m(s, Vf) 2 C 'm(s,g) .
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Indeed from (2.4a), (2.3) and (2.4b) we can deduce that
m(s,g) < 2Cm(s,Vf) £ 2Cm(s, (Vf)*) for all s>0.

Then we obtain T with bounds on L' and M, not exceeding 10C by an
argument identical to that in the previous theorem.

Thus it remains to construct the operator V.

Let N (s, f)=sup,,m(t, f). Thus is clearly a finite continuous non-increasing
function for all s>0. The set

W= {s>0| N(s,f)>mls f)}

is thus open and can be expressed as the union W=U, .y I, of disjoint open
intervals I,, where ¥ is a finite or countable index set. One of the intervals I,
may be semi-infinite and if so we shall denote it by I = (., 00). Similarly
there may be an interval with left endpoint zero. This will not require special
treatment unless ¢(0)>0, in which case we shall denote it by I,= (0, 8,). All
other intervals I, will have endpoints denoted by «,, §,, that is, I, = («,, B,).

The functions m(s, f) and N(s, f) clearly coincide for all positive s ¢ W. In
particular, for each I, with 8, <oo, m(8,, f)=N(B,, f). Furthermore, using a
minor modification (“mirror image”) of the corresponding argument in the.
proof of Theorem 1, it follows that N (s, f) assumes the constant value m(g,, f)
on I, and, if a,>0, m(a,, f)=m(B,, f). Similarly, if W contains an interval I ,
= (0, 00), then N(s, f) assumes a constant value on I, which equals 6
=limsup,., ., m(t, f). Furthermore there exists a sequence (y )i, in I, such
that y, — oo and lim,_ m(y,, f)=6. Let t be the seminorm on L'+ M,
defined by

<0 = timsup [ hooldsiat)

Let W, be the subset of W which is the union of all those intervals I, with
ved = {ve V| v0, vo0, o(8)220(,)}

together with whichever of the intervals I , and I, happen to appear in W. We
define the operator V by

h(x)d
Vh = hy, o~ W,+v§¢ [Q———{Ev)(_x)g (;v)]e'xl,.

If W contains the interval I, = (2, 00), then we add the term V, h=g'l(h)x;_to
the above formula, where ! is a linear functional satisfying I(f)=1(f)=0 and
[I(W| S (k) for all h € L' + M, If W contains the interval I, = (0, f,) (meaning
also that ¢(0)>0) and if I, is distinct from I then we add the term
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Voh = (g+ﬂalj (Cf—g)dx) j hdxx:.,/ f Cfdx
I, I, I,

to the formula for Vh. (Note that j,o (Cf—g)dx>0 since, by (2.3), m(Bo, f)
=N(ﬁ09 f)g C_ lm(ﬂo, g))

To show that V is bounded on L! we first observe that for all v e @ and

hell!
_e(B)—elx)
,[ IVhldx = 8= e(fx).( hlx)dx

If I, is present then either lim,_, ,, ¢(f)=00 and t(h)=0, or lim,_, , e(t)=d< 00
and

= j lh(x)| dx .
I,

f [Vhldx < (6—e(a)t(h) = 6- ALY/ .
I(Xl
If I, is present then

j |Vbh|dx=f hdx gj || dx .
Iy I, Iy

Combining these estimates we deduce that |Vh| <2 k| ..
We next verify the boundedness of ¥ on M,. For any he M, t(h)< | h| M,
and, for all v in @,

By
L hdx/((B) o) f G0 dx/(Ge(B.) < 21kl -

[g +h5! J (Cf-9) dX]x:D
I v,

(Cm(ﬁo,f»-‘uhu.w,( sup m(s,g) J ICf ldx/o m)

0ss<pho

Furthermore

_0(Bo)
Clr fdx

IIA

A Iy,

lIA

Since ¢(0)>0, m(s,g) is continuous and bounded on [0,8,] and attains its
maximum value at some s, € (0, f,]. By (2.3)

m(sy,8) < CN(so, ) = Cm(Bo, f) .
Thus [[Vohl y, <2kl
We deduce that
IVhlp, S 142,500 wyllag, + 21R 1w 0 2w, g, +
1 Vohllp, S Slhlly,
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Finally we must show that for all s>0, m(s, Vf) satisfies at least one of the
estimates (2.4a) and (2.4b). For each interval I, with either v=0 or v € & we
have j',v vf dx=j,v fdx. Also Vf and f coincide for all s € (0,00)\ W,. Thus

2.5) J‘ Vfdx = J fdx for all se (0,00)\ W, .
V] o

In particular for all v € @ with a,>0 we have a, € (0,00)\ W,. Thus, fors € I,

s

m(s, V) = (e(s»-‘(f Vfdx) - (a(s»*( rfdx+ f Vfdx)
0 0 ay

(e(9—o(®,)
(e(B))—e(a,)

Since m(a,, f)=m(p,, f), we deduce that
m(s, Vf) = (e(s) ™ '[le() +e(s)—e(@)m(a, f)] = m(a, f) = N(s, f)

implying, a fortiori, that (2.4a) holds for s € I,.
If «,=0 and g(a,)=¢(0)=0 then we obtain similarly that

= (e(s)™* (e (@)m(a,, f)+ (e(BIm(B,, f)—e(x)m(a,, f ))) :

a(s)
e(B,)

e(B.)m(B,, f)
= m(B,f) = NG, [),

m(s, Vf) = (e(s)™" ﬁ Vidx = (e(s)™"

and again (2.4a) follows. If an interval I, = (0, B,) appears in W, (so what ¢(0)
>0) then for each s € I,

I Vfdng“J~ gdx ,
V]

[}

proving that (2.4b) holds on I,. On I,

]

j Vf dx f £ dx+ (26— @)

Q(aoo)m(aooa f) + (Q (S) - Q(aoo))o .

But N(s, f)=0=m(a,, f) so m(s,Vf)=0=N(s, f) and, as before, (2.4a)
follows.

We have thus shown that either (2.4a) or (2.4b) holds for each s € W,. Also,
if s ¢ W then, by (2.5), m(s, Vf)=m(s, f)=N(s, f). This leaves us to consider
only those intervals I, = W for which v.#0, v co and v ¢ @. For such intervals
0(B,)<2¢(ex,) and therefore

NG, f) = m(@, f) = (e()/e(@)m(s, f) < 2m(s, f) = 2m(s,Vf),
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showing that here (2.4a) holds and that V has all the required properties and so
completing the proof.

3. The description of interpolation spaces for operators mapping a couple of
weighted L™ spaces to a couple of Marcinkiewicz spaces.

We begin by recalling the following definitions.

DEFINITION 3.1. Let A= (A, A,) and B= (B, B,) be two compatible couples
of Banach spaces. Let 4 and B be normed intermediate spaces with respect to
A and to B respectively. 4 and B are relative interpolation spaces if all linear
operators defined on 4, + A4; which map 4; boundedly into B; for j=0,1 also
map A boundedly into B. 4 and B are relative K-spaces if whenever a € 4 and
be B,+B, and K(t,b; B)SK(t,a; A) for all t>0, then it follows that b € B
with ||b| z=C|\a|| 4, for some constant C independent of a and b. 4 and B are
relative Calderon couples, if all relative interpolation spaces A and B are relative
K-spaces. The couple B has the universal right K property if, for all couples 4 of
weighted L™ spaces on every given measure space, the couples 4 and B are
relatively Calderon.

It was shown by Peetre [17] that, if for some constant C

(3.1) fu o(s)/sds £ Co(u) for all u>0

0

for og=¢, and Q.=Q1, then (M,,M,) has the universal right K property. For
the reader’s convenience, we sketch a proof of this fact. We use Theorem 4.2 of
[11, p. 30], and the notation introduced there. Thus in our case J is the couple
couple (M,,M, ) and I is the couple (L}, L) with weight functions w;(s)
=s/g;(s), j=0,1. Given any y € 3 (J) we need to find x € 3 (I) such that
K(t,x; D~K(t,y; J) for all t>0 and y= Tx for some bounded operator T: I
- J.

In fact, we simply take x to be the non increasing rearrangement of y, x = y*
and let T be a map bounded on L' and L*® and therefore on M, and M, with
norms one such that Ty*=y. (Cf. [6, Lemma 2] and the remarks concerning
that lemma in Section 1 above.) Then for any fe Lﬁ,"f

ITf Iy, < 1 n, < CSlig,

IA

in view of (3.1). Thus K(t,y; J) £ CK(t,x; I) and also
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§ *
Kit.x; D) ~ igg <m ! (Qo(s) Ql(s)> s ))

. 1 t s
sup (“‘"‘ (m’a,(s)) f oV "“)

~ K(t,y; J) forall t>0,

IIA

which completes the proof.

In this section we observe that, at least for the couples (M pL®) and (L', M )
condition (3.1) is also necessary for the universal right K property to hold.
(This also shows incidentally that one cannot hope for simpler proofs of
Theorems 1 and 2 resembling the argument for (LP>®, LP+>) in [16].)

Specifically we show that (M,, L*) has the above property if and only if ¢
satisfies (3.1). As for the couple (L', M,) we have L' =M o, Where gy (s)=1 does
not satisfy (3.1). Correspondingly we shall show that (L', M) does not have
the unversal right K property for any choice of g, except in the trivial case
where ¢ is bounded above and below so that M,=L".

To treat the couple (M,, L*™), we let g(x)=]/o(x)/x and f(x)=[5g(s)ds. By
the monotonicity of g(x) and o(x)/x it follows readily that ]/xg(x) <f(x)
<2}/ xo(x). Also

K(tsg; MWLDO) ~ K(t9.fa Ll/p l/x)
Now
feLfym = (L L3I

so if (M, L*) has the universal right K property it should follow that
g € [M,, L*]* with |g| [M,, L]} bounded by some absolute constant C. (Here
[M,, L*]* is the complex interpolation space obtained by Calderon’s second
method ([2], [5].) Let (g,)3%, be an increasing sequence of non-negative, non-
increasing simple functions converging pointwise to g. Then each g, € M,N L%
and, by [5, Section 13.6] and [1],

“8;.||[M¢,L°°]! = "gn"[Me,L‘”]* = || gl (ML) <C foraln.

Thus | g2 M, C? and, for each t>0, [} (g,(w)*du<C?o(t). By monotone
convergence jo (g(u))* du < C?g(¢) which by Schwarz’s inequality implies that @
satisfies (3.1) as required.

We now turn to the couple (L', M,). We begin by recalling the “Holder-like”
inequality
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0

(3.2 f FGdx = (L F*Q'dx+Q(0)IIF|IL°°>IIGHM,,

which can be proved using obvious minor modifications of the argument in
[12, p. 115]. (If ¢(0)=O0 the term g(0)||F||,~ is taken to be zero, even if F is
unbounded.)

Now consider the function g(x)=¢'(x)/2)/ ¢(x). This is non-increasing and
non-negative and the function

v(x) = L g(s)ds =/ e(x) -}/ ¢(0)

is in the space L{j/,=[L>,L%,]* with norm 1.

Also K(t,g; L',M,)~K(t,v; L™, L33,). Suppose then that (L‘,Ma) has the
universal right K property. This would imply that g € [L',M]* with norm
bounded by an absolute constant C. Now, letting (g,)%%, be an increasing
sequence of non-negative non-increasing simple functions converging to g, we
can again invoke [5, 13.6] and [1] to deduce that

g, € [L' M,], = (LY} (M*
and in fact

g S (8 1)¥(8n0)?

where |/g, /. and g, ,ll,, are both bounded by constants which can be
arbitrarily close to C. Consequently, for any non-negative non-increasing
function f,

(3.3) J fedx limj fgndx
0 n-o0 Jo

% 00 ks
lim (j 81 dx) (I %802 dx)
n—o00 0 0

c(r 0 dx +Q(0)Ilfllix) ,

0

IIA

IIA

where we have used (3.2) in the last step.

We shall now show that an estimate of the form (3.3) does not hold for any
choice of contant C. This contradicts our assumption above and shows that, on
the contrary, (L', M,) does not have the universal right K property.

Recall that we are excluding the trivial case M,=L". Thus either lim,_, ,, o(t)
=00 or lim,_q0(t)=¢(0)=0 (or both).

In the first case we take f=1/[max (1, (log g)l/é)]. Then we obtain (§ fgdx
=00 although (¢ f2¢ dx+¢(0)| f |7~ is finite.
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In the second case we take f= (‘/Z; log (1/0)) ™ *%(0,a) Where a>0 is sufficiently

small to ensure that g(a) <1 and also that ]/;log (1/¢) is an increasing function
of t for 0<t<g(a). Thus f will be non-negative and non-increasing and, as
before, [& fgdx=o00 and [§ f2¢’dx<oo. This shows that in all cases (3.3)
cannot hold and completes our argument.
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