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CLASSIFICATION OF EQUIDIMENSIONAL
CONTACT UNIMODUILAR MAP GERMS

A. DIMCA and C. G. GIBSON

Let A denote the set of all # -finite germs (C",0) — (C",0) of holomorphic
mappings. The objective of the present paper is to give a complete classification
of all o -unimodular germs in A under J -equivalence. We denote by m the
kernel rank of a map germ in A. The case m<2 was discussed in a previous
paper [1]. In section 1 we show that the case m=4 gives rise only to germs of
modality =2, so that we can restrict our attention to the next case m=3.

Then the 2-jet of a germ (with n=m=3) can be thought of as a net of conics
and it is an easy matter to produce normal forms for these [2, 5].

The idea now is to add higher order terms to these normal forms and then to
use determinacy, discarding any case in which at least two moduli appear.

This is done in section 2 using the technique of complete transversals which
we have introduced in [1] for the weighted-homogeneous jets and which we
extend here (Proposition 1.5) to the general case.

The sheer classification consists of 17 series of singularities (with one, two or
three natural indices), 5 exceptional map germs and countably many families
with one parameter ‘A. For each of these families we describe in section 3 a basic
invariant i.e. an algebraic map ¢ such that f;~f, iff @(H)=¢(n). A nice
consequence of this classification is the following result, based on the work of
du Plessis on genericity of («/-smooth) finite determinacy [4].

Finite determinacy of equidimensional map germs f: (K" 0) — (K°0)
K=R,C holds in general if and only if n<13. Many thanks are due to Prof.
A. du Plessis who communicated to us some results in the first section and
to the referee for his useful suggestions.
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1. Reduction to the case n=3 and other preliminaries.

It is enough to consider only map germs f € A having zero 1-jet: then j2f
is a linear system of quadric hypersurfaces depending on n2(n+1)/2
parameters. The corresponding contact group K2 =Cl (n)? has dimension 2n?
and hence the number of moduli for any orbit is at least

N@) = n?(n+1)/2=2n% = n*(n—3)/2.

It follows that N(n)= 8 for n>3 and hence the unimodular map germs are to

be found only when n<3. The case n<2 is settled in [1] and hence we shall
suppose from now on that n=3.

Let dim (f) be the dimension of the linear system of conics associated with a
given germ f € A.

LLeMMA 1.1. If the map germ f € A is unimodular, then
dim (f) = 3

Proor. The set P={fe J*(3,3); dim (f)<2} is a constructible K-invariant
subset of J(3,3).

Using the classification of pencils of conics [2] we see that P consists of a
finite number of K3 orbits, all of which are contained in the closure of the orbit
through

g = (x2‘y25x2—22’0)'

It is easy to see that a complete transversal of g in J3(3, 3) is given by the vector
space

{(0,0,4,x% + A,y + A2 + A4xyz); A e C*}

and that cod, (g)= 3. Using Lemma 1.4.i [1] we get that any germ fe A with
j*f € P has modality >3.

Hence, if the map germ f is unimodular, then j2fis a net of conics. Now the
classification of nets of conics is known from [2] (see also [5] where the real
case is mainly considered) and runs as follows.
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Type Normal form Codimension

1 (x? + Ayz, y* + Azx, 2% + Axy) 1

2 (xy, X2+ yz, y* + x2) 1

' 3 (xy, x* +yz, (x +2)?) 1
4 (x% +yz, xy, x2) 2

5 (x? +yz,xy,2%) 2

6 (x2+yz,y%,2%) 2

7 (xy, yz, xz) 3

8 (%, yz+2%, xy) 3

9 (xz, x2 422, yz) 3
10 (x2,y%,2%) 3
11 (xy, xz,z%) 4
12 (% 2%, xy) 4
13 (x2+yz,xy, y%) 5
14 (x2, xy, x2) 7
15 (%, y%, xy) 7

Table 1.

Here A3+ —1,0,8.
The specializations among these orbits are also discussed in detail in [2] and
exhibit a very nice symmetry.

This symmetry is broken when one passes from the classification of nets of
conics to the classification of the corresponding map germs in A.

For instance, we shall show in the next paragraph that a germ f such that jf
is of type k<9 or k=10 is always unimodular; if the type k is 9, 11 or 12 it can
be either unimodular or of a higher modality; and finally if k=13 then fis at
least bimodular.

Math. Scand. 56 - 2
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Table 2.

The last thing we need for the classification is an extension of Proposition
1.3 [1].

The situation considered there is the following.

Let n: J™(n, p) — J*(n, p) be the natural projection and denote its kernel by
Ppr. If we identify these jet spaces with vector spaces of polynomial mappings
(via some fixed coordinate systems) we also have a natural inclusion

J¥(n,p) < J™(n,p) for k<m.
For a k-jet f we consider the affine linear subspace in J™(n, p)
Je(f) = 27 (f) = f+P}

and try to classify the elements of Ji(f).
These equivalence classes are precisely the orbits of the subgroup

G(f) = ¢”'(S(f) = K™,

where S(f)<= KX is the stabilizer subgroup of fand g: K™ — K* is the natural
projection between (truncated) contact groups.
A linear subspace C(f)< Py is called a complete transversal for f if the linear
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space f+C(f) intersects all the orbits in J(f) transversally. (Here, by
intersection we mean nonempty intersection.)

In [1] we showed how to construct a complete transversal for a weighted
homogeneous jet f satisfying also an additional condition (Proposition 1.3).

In what follows we shall treat the general case. Consider the subgroup K,
<K of the contact group K defined by K,=R,-C,, where R, is the group of
analytic isomorphisms h: (C",0) — (C",0) such that j’h=id and C, is the group
of invertible pxp matrices A over &, such that j~1(4—id)=0.

It is easy to see that

Lemma 1.2 i. TK, f=m"*'J .+ m"-1,-0(f) for any map germ f.
ii. If f and g are k-jets such that j* "f=j*""g then T(K*f)=T(Kg).

A more subtle fact is the following.

LEmMA 1.3. If f,g are k-jets such that j* "f=j*""g and g € f+ T(K*f), then f
and g are K¥*-equivalent.

Proor. Consider the line L = J*(n, p) determined by the jets fand g and note
that the wellknown Lemma (3.1) [3] of Mather applies and shows that L is
contained in a K*-orbit.

CoROLLARY 1.4. Any complement T to
w(f) = (T T 4w TR L 0() NP

in PP is a complete transversal for f.

Proor. Any element in J7(f,) can be written as a sum f+a+b, with
a€ E}(f), be T Take f,=f+b, g, =f, +a and apply (1.3) to the m-jets f}, g,
with r=m—k.

This last result is not completely satisfactory since as m increases E}'(f)
decreases in low dimensions.
Let F**1(f)=E*1(f) and more generally

F"(f) = "(Clxy,. - %] F7 () = P

(Here again we identify the jets with polynomials using a fixed coordinate
system.)
With these notations, the main result is the following.

PROPOSITION 1.5. Any complement T spanned by homogeneous polynomials to
F™(f) in P} is a complete transversal for f.
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Proor. First we prove that f+ T intersects all the orbits in J(f). We shall
denote by T, the vector subspace of T spanned by all the homogenous
polynomial mappings in T of degree d.

If T+ F™(f)= Py then we have by comparing the homogeneous components
of degree k+1

Tiss +Fk+1(f) = Pt“ .
Using 1.4. it follows that any (k+1) jet f; € J¥*1(f) is equivalent with one jet
of the form f+t,=f, for some t, € T,,,. Moreover we have

Tor +F**2(f) = Pii1,
since F**2(f,)2**2({xy,...,%,» - F¥*1(f)). Hence again by 1.4 we see that

any jet f, € Jk1%(f,) is equivalent with one jet of the form

fi+t, = f+t,+t, forsome t,eT,,,.

If we apply this trick (m—k) times we find that any jet f,_, in J(f) is
equivalent to a jet of the form

g =f+t,+...+t,_, for some t;e T,
and hence f+ T meets any orbit in JJ'(f). We still have to show that
TK"g N PP+ T = Py

for any jet g as above (since the first vector space is precisely T,(G(j*g)g)).
Note that

T,+TK™g N PR o T,+™((x1,.. ., x )" ¥ 'F*1(f)) = Pm_, .
Hence we can take (m—1)-jets and proceed by descending induction on m.

REMARK 1.6. One can avoid the assumption that T is spanned by
homogeneous polynomials by using in the above argument the obvious
projections between jet spaces instead of direct-sum decompositions.

It is clear that all the above results on complete transversals work equally
well in the differentiable case over the real numbers R.

2. The classification in the case n=3.

The basic idea in doing the classification of the unimodular maps germs in
the case n=3 is to use the classification of the nets of conics presented in
section 1 and for each type of 2-jet to try to classify the corresponding germs by
computing explicit complete transversal as in Proposition 1.5.

For k<9 or k=10 this task is straightforward and the results are contained
in the following:
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Type of j2f Normal form of f Conditions
1 (x? + Ayz, y* + Axz, 2% + Axy) A3+0,-1,8
2 (xy+2°, x2 + yz,y* + x2) p>2
3 (v, X2+ yz, (x +22 +y* p>2
4 (x2 +yz,xy+ 2P, x2+ %) p=q>2
5 (x2+yz,xy, 2% + yP) p>2
6 (x*+yz,y%,2%)

7 (xy+2z8 yz+x%,xz2+y") p2q=r>2
8 2+ yP+29 yz +22, xy) p=g>2 or g=00
10 (x%,9%,2%)
Table 3

Here g =00 means that the corresponding term z? is omitted. As a sample of
proof let us take the case jf=(xy, yz, xz). If e, i=1,2,3 denote the standard
basis of C3, then a complete transversal is spanned by z*e,, x*e,, y*e; with k> 3.

Hence we can write

f = (xy+2°A(2), yz+x1B(x),xz+ y'C(y))

where A4(0), B(0), C(0)%0. The cooordinates change x=ax, y=py, Z=yz,
where o, B, y are solutions of the system
B =AYy, By =Bol, ay = C-f
shows then that we can take A =B=C=1. And by symmetry we can take p=>q
2r>2.
See also the final remarks (2.5) and (2.6).
The first difficult case is when j2f has type 9 that is j2f= (xz,x* +2%,yz). A

complete transversal is spanned now by xy*~le,, y*e,, y*e, with k>2 and
hence we can write

f= (xz4+xyPA()+y*B(),x* +2* +y C(y), y2)
where 4(0), B(0), C(0)+0. With these notations we have the following result.

PRroPOSITION 2.1. 1) If ¢ >3 and r> 3 then the map germ f is at least bimodular.
ii) In all the other cases (i.e. when q=3 or r=3) the map germ f is unimodular
and is X -equivalent to one of the following germs
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(xz+y%, x2+ 22+ A3, y2) AeC
(xz+xyP—1+y?,x* +22+y3 yz) p>3
(xz+y?, x>+ 22 +y3,yz) p>3
(xz+xy?, x*> + 22 +y3, y2) p>1.

Proor. i) Consider the weighted homogeneous map germ
g = (xz+axy?+by*, x>+ 2% +cy*, yz)

with wt(x)=wt(z)=2, wt(y)=1.
An easy computation shows that

dim ((xy?e,, y*e;, y*e;,> N TKg) < 1

and hence even the 4-jet of g is at least bimodular. Moreover any map germ f as
above with g,r>3 has a 4-jet to which some germ g specializes.

ii) The case g=3 produces the first one-parameter family and the case ¢> 3,
r=3 produces the last 3 series.

The next case is type 11 for j*fi.e.
f = (xz2,yz,%%) .

A complete transversal is spanned by xy*~le,, y*e,, y*e;, z*e; for k=3 and
hence we can write any such germ in the form

f = (xz+xyPA(y)+ y*B(y), yz,x* + y'C(y) + 2°D(2))

where A(0), B(0), C(0), D(0)+0.
With these notations we have the following.

ProposITION 2.2.1) If >3 and r >3, then the map germ f is at least bimodular.

il) In all other cases the map germ f is unimodular and is X -equivalent to one
of the following germs

(xz+xy?+y%, yz,x2+y*+4z))  2e C\{0}, p>2

(xz+xy*+y3, yz, x2 + z%) p>2
(xz+y?, yz,x* +zp) p>2
(xz+yP, yz, x>+ y3 +29 p>2,q>2

(xz+xy?, yz, x2 + y* + 29 p>1,9>2.
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Proor. i) This point is clear using the specialization 9 — 10 in Table (given
explicitly for instance by the family (xz, yz, x> +tz%)) and the bimodular family
constructed in the proof of Proposition 2.1.i.

ii) We shall discuss first the case g=3. Then j3f can be put in one of the
following normal forms:

fl = (xz+y39yz’x2+a23)9 f2 = (xz+y39yzax2+y3+a23)
fi = (xz+xy?+y%yz,x2 +az’), f, = (xz+xy*+y,yz,x2 +y* +A2%)

with a=0or 1 and A e C.
For a=1 and A+0 a simple computation shows

TK(f;+terms of degree>3) > m*&; ,

and hence the germs f; are 3-determined. In this way we get 3 normal forms
and a family with A%0.
Suppose now that a=A=0. An easy computation shows that
FH(f)+<2%;) = P§
and hence a complement T to F™(f)) in P% as in Proposition 1.5 is given by
T = (z%e;,2%;,...,2%;) .

It follows that any f e J7(f) can be written as f=f;+g(2)-es.

Let p=ordg(z)=4. When i=1,2,3 we can use the fact that f; are weighted
homogeneous and we get f~f;+z%e,.

In the case i =4 we obtain a sequence of families, namely f~f, + Az%e,, A%0.
Suppose now ¢g>3 and r=3.

There are 4 possibilities for the 3-jet of fin this case, namely

g1 = (xz,yz,x* +y% g2 = (xz,yz,x*+y*+2%)
g = (xz+xy%,yz,x2+y%) g4 = (xz2+x)%,yz,x2 +y>+2%) .
The jets g; (i=1,2,3) are weighted homogeneous and can be treated by

similar methods as above and g, is not weighted homogeneous, but TK(g,
+terms of degree>3)>m*&; ; and hence g, is 3-determined.

The next case to be treated is j2f=(y% 2% xy). A complete transversal is
spanned by x*e,, x*~!ze,, x*e, for k=3 and hence we can write such a germ in
the form

f = (P +xPA(x)+x%zB(x), z> +x"C(x), yz) .

We have the following result.
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ProrosiTION 2.3. 1) If p> 3 and r > 3, then the map germ f is at least bimodular.
ii) In all the other cases the map germ f is unimodular and is X -equivalent to
one of the following germs

0 +x3 +x%2, 22+ x3, xy)

0? +x3+x%z,2%, xy)

0? +x3 2%, xy)
(* +xP, 2%+ x3, xy) p>2
(v* + xPz, 22 + x3, xy) p>1

0P +xP+xP" 1z, 224+ x%xy) p>2

0P +xP*24xPz, 22 +x3,xy) p>1.

The proof of this proposition is similar to and easier than the proof of
Proposition 2.2 and hence we give no more details.
The classification of the unimodulars is ended by the following result.

PROPOSITION 2.4. Any map germ f € A such that j*f is a net of conics of type
k=13 is at least bimodular.

Proor. Using the specializations given in Table 2, it is enough to prove the
case k=13, ie.

fo =7 = (P+yzxy,y?).

A complete transversal to f, in J3(f,) is spanned by ze,, xz%e,, xz%e,, ze,,
xz%ey, z%;, and a simple computation shows that cod, (fy)=2. Hence by
Lemma 1.4.i [1] any jet g € J3(f,) has modality at least 2.

REMARKsS. (2.5) The fact that our lists of normal forms of unimodular germs
do not contain any overlaps can be seen by using the numerical invariants
introduced in [1] i.e. the Hilbert-Samuel function of I ;= the ideal generated by
the components of f, the contact codimension of f and

o(d) = min{k ; TKfom*-&,,}.

In one case these invariants are not enough. Namely, the germs f= (y? +x3
+x2z,2%, xy) and g = (y* +x3, 2% + x3, xy) which occur in the list of Proposition
2.3 have all the above invariants identical.

Nevertheless we can distinguish them by a simple algebraic property: the
ideal I, contains the square of a germ h € &5 with j'h+0 (we can take h=z),
but I, does not have this property. This implies that the algebras Q(f)=&,/I,
and Q(g) are not C-isomorphic and hence f is not X -equivalent to g.
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(2.6) The proofs above show in fact that the listed germs are unimodular in
the set

B ={feAcéyy: df(0)=0}.

If the map germ f € A has rkdf (0)=2, then fis simple, but if rkdf (0)=1 we
know that f can have modality>1 [1].
Suppose we have a convergent sequence of such map germs

M= (L1+01+.. ., L3+05+... ., L3+0%+...)

such that Zf"=322 (a necessary condition for modality>1 by [1]) and
f*=lim f" € B.

For each n there is a linear form L" and constants af such that L =af- L" for
i=1,23.

The point a” = (a}: a3: a3) € P? is well-defined and we can assume (passing to
a subsequence if necessary) that lim a"=a> exists and for instance a° +0.

Then obvious linear target coordinate changes produce a sequence f" as
above with the additional properties that L5 =L3=0and L}|Q} fori=2,3 (use
X fn — 2:2,2).

If the corresponding limit f* has the form (Q,+...,Q,+...,Q;+...),
then it follows that the two quadratic forms Q, and Q4 have a common linear
factor, this property being a closed one.

A careful examination of the listed normal forms which have 2 components
of the 2-jet divisible by a linear factor shows that a *2-germ of modality >1
never specializes to a germ listed above.

In this computations a central role is played by the explicit list of
unimodulars in the case n=2.

It is an interesting open question whether there is any general principle in
connection with this phenomenon.

3. Basic invariants of unimodular map germs in A.

In the classification of equidimensional unimodular map germs we have
obtained the following 3 types of families of map germs C3 — C3:

fi = (X2 +Ayz,y?+Azx, 22+ Axy)  A*+-1.0,8

]

g = (xz+y3x2+z22+ 4%, y2) AeC
h,

The basic invariants of these families are described by the following.

(xz+xy2+y3, yz,x* +y*+AzP) A € C\ {0}, p>2

4

ProrosiTioN 3.1. The basic invariants for the above families are
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i) for f;: 9:C\ {A|A*=—1,0,8} — C\ {0}
13(8—13)3
od = Tirmy

(ii) for g;: 9:C — C, @(A)=42
iii) for h;, ,: @:C\ {0} — C\ {0}, oA =4A

Proor. i) The components of f, are precisely the partial derivatives of the
cubic C,; =1/3 (x*+ y®+ 23+ 3Axyz). Moreover it is shown in [2] that two nets
of conics f; and f, are equivalent iff the corresponding cubic forms c, and c, are
equivalent. And the basic invariant for cubic forms is known to be

3 33
) = Gty

ii) The germ g, is weighted homogeneous if we set wt(x)=wt(z) =3, wt(y)=2.
Let I,=(g},g2 g3) be the ideal generated by the components of g, and note
that

A, = (x%, 22, xz,yz,xy*,y%) = T,

the ideal generated by the 2 x 2 minors in the Jacobian matrix of g; together
with I, as in [1].

Suppose g,~g,. Then there exists a C-algebra isomorphism u: &3 — &,
such that

ully) =1,.
In particular this gives u(J)=J. Moreover we can write:
u(x) = a;x+ay+azz+...
u(y) = byx+byy+byz+...
u(z) = ey x+cyy+cezz+...

Since x2,z2 € J we have u(x)?, u(z)?> € J and this gives a,=c,=0. Similarly
u(y)-u(z) € J gives ¢, =0.
Now we have a filtration on R=4&, given by the weights
R, = {fe€ R ; all the terms of f have wt=a} .

By our computation above it follows wt(u(x))=wt(x) and similarly for y,z.
Hence u(R,)=R, and we have a map
_LNR,+R,;; _ I,NR,+R,.,
u: g .
Ra+l Ra+l
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We shall use this isomorphism for a=6. i(xz+y%)= (a,x+a;z)csz+ b3y?
should be a linear combination of g, and g2. It follows that a;=0 and a,c;
=b3. Next

a(x*+22+4y°) = aix®+ 322+ Ab3y® = kg?

gives

2 2 _
ai 3=

3
—g=
u

A
Finally a, = *¢;, b}=+aj, L=t

On the other hand the coordinate change: y — —y,z —» —z shows that
8i~8-2

iii) This case is a little bit more difficult since the germ h, , is not weighted
homogeneous. In fact it is the sum of a weighted homogeneous with two terms
of higher orders which occur on the same component and moreover this can be
done in two distinct ways:

(1) wt(x)=wt(y)=1, wt(z)=2
(2) wt(x)=1/2, wt(y)=1/3, wt(z)=1/p.

As in (ii) above let

I~ (h] h%.,p’hi,p) R =8,

AP

and note that again
A%, = (x4, 22, xz,xy%,y%) = J .

It follows that we can get the same information about an isomorphism
u:R — R, u(I;)=1I, as above.

Using the first system of weights (1), the induced linear isomorphism # in
weight a=3 gives as above b, =0 and a,c;=a;b}=>b3.

Next, it is easy to see that the orders of u(x) and u(y) with respect to z (i.e.
the order of the power series u(x) (0,0, z), wt(z) = 1) are at least p— 1. Moreover
since yz € I,, we can omit in the series u(x), u(y), u(z) all the terms which are
multiples of yz.

With these two remarks, it follows that u respects the filtration on R induced
by the second system of weights (2).

N . . . A
The corresponding linear isomorphism u for a=1 gives a?=b3 == c3. (Here
u

R, ., is replaced by Up>.Rp). We finally get a, =b,=c;=1, A=p.
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To end up, we explain now how the present classification yields the last
result in the introduction.

By du Plessis’ main theorem in [4], &/-finite determinacy of equidimensional
map germs (K",0) — (K",0) holds in general iff n<2c(n,n), where the last
number is precisely the codimension of the set B of map germs (C",0) — (C",0)
with ) -modaility =2.

But our classification of equidimensional map germs of J-modality <1
shows that any element of B is in the closure of 5 families of #-orbits with J¢"-
modality =2, namely the families constructed in Proposition 3.5.ii and L.emma
3.10 [1] and in Lemma 1.1, Proposition 2.2.i and Proposition 2.4 here.

Explicit computations with these 5 families of map germs show that %g(n, n)
=13 for n>2. Since trivially 2¢(1,1)=00, the proof of the stated result is
completed.
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