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VALUE REGIONS FOR CONTINUED
FRACTIONS K(a,/1) WHOSE ELEMENTS
LIE IN PARABOLIC REGIONS

WILLIAM B. JONES, W. J. THRON, and HAAKON WAADELAND

1. Introduction.

A continued fraction K(a,/1) can be obtained in terms of non singular linear
fractional transformations

Sn (W) =

1:_"w, a, # 0, n21.
Define, inductively, ‘
S;(w) = 5;(w), 5,(W) = S,_1(s,(W)), n22.
Then the nth approximant f, of the continued fraction K(a,/1) is given by
Jo=58,0), nz2l.
A nonempty subset ‘E of C is called an element region for K(a,/1) if
0%+a,eE, nzl.

A nonempty subset V of C=C U [0o] is said to be a value region corresponding
to the element region E if

E
EcV and v c V.
Here E/(1+ V) is understood to be the set
E/(1+V) = [u=a/(14v): aeE,ve V].

It is easily seen that the approximants f, of a continued fraction K (a,/1) whose
elements satisfy a, € E, n=1 are in every value region which corresponds to
the element region E.
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Let ¥, i € I, be a family of value regions corresponding to a fixed element
region E. Then N[V, : i € I is also a value region for E. In view of this result
there is always a best value region V(E) for each element region E. The region
V(E) is exactly the set of all approximants of continued fractions K(a,/1) with
elements in E. The closure c(V(E)) of V(E) in € contains in addition the values
of all limit points of sequences {f,} of continued fractions K(a,/1) with
elements in E.

Value regions and element regions were first discussed by Scott and Wall [6]
in 1941. For a detailed account of value regions and their use in convergence
theory see Chapter 4 of [2].

We shall here be concerned with parabolic element regions, with focus at the
origin,

i 2k
Ep,a) =|z=ré®:r<— = |,
p.) [Z ¢ r_l—cos (0—2«)]

where —n/2<a<mn/2, 0<p=<1/2 and

(1.1) k = k(p,a) = p(1—p)cos®a .

Another way of writing E(p,a), which we shall use later, is

(1.2) E(p,a) = [z=k{%e?*: |Im{|<1].

It will also be convenient to introduce notation for certain half planes. We set
V(B,q) = [v: Re(ve™#)= —qcosf].

Value regions corresponding to element regions E(p,0) were first studied by
Leighton and Thron [5] in 1942. They obtained the region H(p), bounded by
the hyperbola

v=Reé"* : R=______2p(1—-p)
1-2p—cose

and containing the origin, as the best value region for E(p,0). Value regions for
E(p,a), —n/2<a<mn/2, were recently [3] investigated by the present authors.
We refer to that article for a discussion of the uses of value regions among
which the derivation of truncation error bounds may be one of the most
important.

Here we shall improve the results of [3]. As in that article we shall first
derive value regions which are angular openings, but with vertices on the
negative real axis (rather than on the ray —re'* as was the case in [3]). We shall
then show that the intersection of all of these angular openings, for a fixed
E(p, ), is indeed the best value region for that element region. A parametric
description of the boundary of the value region, which is not, in general,
a hyperbola, will also be given.
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2. Mappings of half planes.

We begin with a strengthened form of a lemma which was originally proved
in [7].

LemMMA 2.1. Let —m/2<0<m/2, O<p<2n and 0<t=<1 be independent
variables in their intervals and let F be given by

F = F(p,6,1) = l—zé%e““w.

Then the range of F is exactly the half plane Re F= — 1.

Proor. Clearly the range is star shaped with respect to the origin and

symmetric with respect to the real axis. For a fixed n=0+¢, —n/2<n<n/2 we
have

cosf cos @
l1—cosgp 1—cos(n—0)"

This expression can be made as large as we please by choosing 6 to be
sufficiently close to n. Thus all values in the half plane Re F >0 are assumed.
For 60+ ¢ =m/2 we have

cos 6 sin ¢ @

= = cot=.
l1—cos¢p 1—cose €3

This expression also can be made arbitrary large by taking ¢ close to 0 (and
¢ >0). Hence the whole imaginary axis belongs to the range of F.
We always have

Re 2cosf £i0+0) =2c0s0cos(9+<p)
1—cos¢ 1—-cos¢

cos (20 + @) +cos ¢
1—cosg 1—cosg

1+cos (20 + @) >

1.

Let n=0+ ¢, n/2 <n<3n/2, then
cos (20+¢@) = cos(n+6) = —1
for n+ 0=nm, that is for 8 =n—#. This value is always in the interval —n/2<0

<m/2 so that all values on the line Re F= —1 are also assumed.

The lemma will now be used in the proof of the following result.
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THeOREM 2.1. For —n/2<a<n/2, 0<p=1/2, k=p(1—p)cos’a and
Isind| < (1-2p)cosa

let

(21) D = D) = D(p,x,d) = (1—[/1 4 )/2

" cos (o + d)cos (& — )
Then

E(p,a)

1+V(2+0,D0) V(2=8,D(-9).

Proor. One has 1+ V(B,q)=V(B,q—1). Now assume that g<1, then

1
" 1TYV(E.9

iff v=e""*re®cos 0, r<1/((1—q)cos p), —n/2 <6 <n/2. Further, any a € E(p, )
can be written as a=te?", t=0, or

2ia 2kse'®

=e
a 1—-cos¢e

, 0<ep<2m 0<s=<1.

(The points of the ray a=te*™, t>0, are insignificant, and shall be omitted in
the subsequent argument.) Thus

E(p,o)
1+V(x+6,9)
is of the form
"= e?*ksel? [~ 1@+ il cog 0
1—cos¢ /\cos (x+)(1—q)
_ i k 2r'scos 6 £i0+9)

cos (x+0)(1—¢q) 1—cos ¢
where 0<r' <1, 0<s£1, —n/2<0<n/2, 0<¢p <2n. From Lemma 2.1 it then
follows that w covers the half plane V(a—9d,4q’), where

, k
9 = T=g)cos (x+d)cos (x—3) '

An analogous argument yields
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Eoy  _ "
1+V(a—5,q’) - V(a+6’q)’
where

.o k
" (1—g')cos (¢ +d)cos (x—3)

q

We would like to have ¢” =gq. This will be the case if
q—qq = k/(cos (a+ ) cos (x—J))
and
q —qq = k/(cos (x+d)cos (x—9)) .
Hence we must have g=¢4' and

q®—q+k/(cos (x+8)cos (x—8)) = 0.

ak
q= (livl"cOs(a+6)c08 (“—5)>/2'

We note that, since

Thus

cos (e +d)cos (a—8) = cos?a—sin?§,

one can write

1— 4k _ cos?a(1—2p)* —sin® &
cos (x+0d)cos (x—0) cos? o —sin? § ’

From this one obtains the restriction on & given in the statement of the
theorem. Since we want small regions we choose the minus sign in front of the
square root. This completes the proof of Theorem 2.1.

It does not follow that V=V (x+3,D(d)) or V'=V(x—0,D(—0)) are value
regions for E(p,«). Since, however,
E

=y d
v-V ™ oy

=V
it is true that

_Z _cvynv.
wvnv <V
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We cannot expect equality here and in fact it can be shown that it does not
hold. Since 0 e VNV’ and hence Ec VNV, it follows that VN V' is a value
region for E(p,a).

The boundary of V(x+6,D(d)) is the straight line which passes through
—D()cos (x+8)e®*? and has slope tan (n/2+« +6). From this one obtains
the equation of the boundary to be

2.2) (x+D(d))cos (a+ )+ ysin(x+5) = 0.
The equation of the boundary of V(ax— 48, D(—9)) is
(x+D(—d))cos (x—d)+ysin (x—38) = 0.
Since D(6)=D(—9) the vertex of the angular opening
A(p,a,8) = V(a+6,D(8) N V(a—3,D(—3))
is the point —D(J) on the negative real axis and A(p,a, §) can be written as
23) A(p,2,0) = [v : |arg (v+D)—a|=7/2—1d]] .

From now on we shall indicate that D is a function of § only if we want to
emphasize this fact. Normally we shall just write D. The following result has
now been proved.

THEOREM 2.2. The angular opening A(p, a, 8), given by (2.3), where D is defined
in (2.1) and k=p(1—p)cos?a, —n/2<a<n/2, 0<p=<1/2, is a value region
corresponding to the element region E(p,a) for every J for which [sind|<
(1-2p)cosa.

We conclude this section with a brief glance at some special cases. For a=0
one has |sind| < (1 —2p),
A(p,0,9) = [v : |arg (v+D)|Sn/2—|d[]

and

CoSs 0

D= <l_|/(1—2p)2—sin26)/2.

For 6 =0 we obtain easily A(p,a,0)=V(a, p). For p=1/2 the range of é reduces,
independent of a, to the single value 4 =0. The value region 4(1/2,a,0) is then
V (o, 1/2) as has been known since 1942 [4].

The case p=0 requires special treatment. Our results are not valid in this
case, but as p — 0 the range for é approaches |6| <n/2 —|a]. Also D — 0 so that
the best choice for d is /2 —|a|. If one defines E(0, «) to be the ray argz=2a,
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then, as was observed by Henrici and Pfluger [1] in connection with S-
fractions in 1966, a value region for E(0, «) is indeed

[v: OZargv=<2a] if 020,
[v: 2a<argv<0] if a<O.

A0, 0, /2 o) = {

The half plane V(a,1/2) is known [4] to be the best value region for E(1/2,),
which is itself a best conditional convergence region [4]. For p<1/2 the half
plane V(a,p)=A(p,2,0) is a value region but not a best value region since
choices of ¢ other than § =0 are possible and since the best value region is the
intersection of all value regions for E(p, a).

3. Intersection of value regions and bestness.
We recall that D is given by (2.1) so that

4k
2D—-1 = —|/1-
l/l cos (ax+ d)cos (a— 9)

and
@3.1) k = p(1—p)cos? o = D(1-D)cos(x +8)cos (a— &) .
Implicit differentiation with respect to ¢ yields
0 = D'(1—D)cos (a+J) cos (a— ) — DD’ cos («+ d) cos (o — J)
+ D (1 — D)( —sin (x+ ) cos (¢ — 8) +cos (o + ) sin (a— )
and hence (we shall from now on assume D <1/2).

D D(1~D)sin 26
dé ~ (1—2D)cos (x+d)cos (x—0)

(3.2) D =

To get the envelope of the family of lines (2.2) and thus the boundary of the
intersection of all A(p,a,d), |sind|< (1 —2p)cosa, we differentiate (2.2) with
respect to 6. Thus one obtains

— (x+D)sin (x+d)+ycos (¢ + )+ D' cos (a+6) = 0.
Combining the two equations one arrives at

x+D = D'sin (a+d)cos (x+9) ,
y = —D'cos? (x+96) .

For z=x+iy a point on the envelope we then have

_ D(1-D) sin2é
" (1-2D) cos (a—9)

z+D (—i)eie*d
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A

P

(M1

N
\Q\\‘O
v

\

(1-D)isin26
—_ _D i(a+d)
z (l+(1—2D)cos(oz—-5)e

and therefore

and

_ —Disin 26 a+d)
1+z=(1 D)(l+(1—2D)cos(a—6)e .

Write
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a; = —D(1—D)cos (a+0d)cos (x—d)(1 —itan6)%e**, j=1,2.

Then in view of (1.2) and (3.1) the point g, is on the boundary of E(p,x). We
further require that

(3.3) tanf, = ((1—D)tan (x+8)+ (—D)tan (x—d))/(1 —2D),
tand, = ((—D)tan (x+ )+ (1 —D)tan (x—9))/(1—2D) .

Finally, introduce

o (1-D)isin28 . _,
w= D(l (I—2D)cos(@+9) ¢ ’

so that

(1 __ (=Djisin25 ‘—
thw = D)(l T=2D)cos @+0)° a))'

Then one can write

14z = (1 —D)e"("”’(cos (0+8)—isin (a+8)— Disin26 )

(1—2D)cos (e — )

= (1-D)ee*? cos (a:l-é)(l —i (1-—D)tan (¢ +J)+ (— D) tan (a—é))

1-2D

= (1-=D)e**Pcos (x+)(1 —itan¥,) .

In a similar way one shows that
w = —De'® P cos (x—J)(1—itan6,) .

Hence w(l+z)=a, or w=a,/(1+2). An analogous argument leads to z=
a,/(1+w). Thus

This equation has also a second solution u. We must have uz= —a,. Since (—1
—Ww)z= —a, it follows that —1 —w=u. Clearly —1—w ¢ A(p, o, 4) and thus the
periodic continued fraction

9 4 4
1+1+1 4+
converges to z. The following theorem has now been proved.

THEOREM 3.1. Let —n/2<a<mn/2, 0<p<1/2. Then
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B(p,a) = N[A(p,a,6) : |sind|< (1—2p)cosa],

where A(p,a,d) is given in (2.3), is the closure of the best value region for the
element region E(p, ).

2.

4.

S.
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