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THE SUPPORT OF FUNCTIONS AND
DISTRIBUTIONS WITH A SPECTRAL GAP

MICHAEL BENEDICKS

Various aspects of the following general uniqueness problem in Fourier
analysis have been considered by several authors:

ProBLEM A. Suppose that fis a function or tempered distribution supported
on a set 4 in d-dimensional Euclidean space R?, the d-dimensional torus T¢ or
the d-dimensional integer lattice Z¢ such that its Fourier transform f is
supported on B. Then, given some a priori conditions on f and/or f, which
conditions on the sets 4 and B imply that f=0, and conversely, when does
there exist a non-zero function or distribution such that supp (f)< A4, supp (f)
<B?

The appropriate definition of the support may vary from case to case.
Normally we use the closed supports of distribution theory but sometimes we
just consider {x; f(x)=0}.

The case when A=TX\ I, where I is an interval and a=|A4|<2n, has been
treated carefully in Levinsons book [13]. By duality such a uniqueness
problem is equivalent to a closure problem on a finite interval. The general
closure problem for complex exponentials was solved by Beurling and
Malliavin, in their famous paper [7], where they give necessary and sufficient
conditions for the span of the exponentials {¢'*~} to be dense in L?(0,a —¢) for
all ¢>0. For a more recent survey of questions of closure and uniqueness see
Redheffer [14].

If fe L'(T) and A=T\ E, where E is a set of positive measure, and there is
an integer n, such that f(n)=0 for n<n,, then f=0 (second theorem of F. and
M. Riesz). Conversely it is known (see e.g. Katznelson [12, Lemma 3.13]) that
given a closed set E of measure 0, there is always a function f holomorphic and
#+0 in the open and continuous in the closed unit disc such that the boundary
values of f vanish on E. For absolutely convergent Taylor series the sets of
uniqueness were studied by Carleson [10].

In the case of the real line it is well-known that if f¢ L'(R) and f(x)=0,
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x < x,, then f cannot vanish on a set of positive measure unless it is identi-
cally equal to 0.

Except for this result, to the author’s knowledge, very little is written about
uniqueness for functions on R or R?.

One simple result of this type is the following theorem, where a question
by H. S. Shapiro was affirmatively answered.

THEOREM 1. Let f € LP(RY), 1 £ p< o0, and f be its Fourier transform. Suppose

that the sets {t € R%; f(t)+0} and {x € R?; f(x)+0} both have finite Lebesgue
measure. Then f=0.

This was proved by the author in [3]. Later Amrein and Berthier [2] gave
another proof of Theorem 1 using Hilbert space methods. They also prove the
following existence theorem, which is in a sense complementary to Theorem 1.

THEOREM 2. (Amrein and Berthier [2].) Assume that C A—=R? and CB<R?
both have finite Lebesgue measure. Then the set of functions satisfying f=fy 4
f=Ffxp form an infinitely dimensional subspace of L*(RY).

Here yy denotes as usual the characteristic function of the set E.
However the following question that arises naturally in this connection
remains to our knowledge unsolved:

ProBLEM B. Does there exist a not identically vanishing function in L!(R9)
supported on a set of finite Lebesgue measure such that its Fourier transform
vanishes on a set of infinite measure?

However it may very well hold that the Fourier transform of a not
identically vanishing L!'(R? (or even L*(R?) function supported on a set of
finite measure vanishes on a cube in R This follows from Theorem 6 below.

The main aim of this paper is to investigate the following question:

ProBLEM C. Given a set A =R; when does there exist a distribution in &'(R)
or a function in LP(R), not identically vanishing and supported on A4 such that
its Fourier transform vanishes on an interval of length 2a (or some nonempty
open interval)?

In the case of functions this may be viewed as the special case d4 =y 4dx of a
problem posed by H. Dym [11].

ProsLEM D. Let d4 be a measure of finite total variation on the real line and
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Fx) = r (0 dA) .

Determine

ao(4) = inf{a>0; f(=0 for |[t|<a = =0 ae. (d4)}.

Problem C with f replaced by a measure of finite total variation has been
treated by Beurling [5] and de Branges [8]. Beurling gives in [5, Theorem IV
and Corollary 4.1] a nice sufficient condition for uniqueness, but it is not
necessary. We shall however see that his condition in a sense is best possible —
in the respect that it gives only a condition on the complement of supp (f)
(Theorem 6). De Branges [8, Theorem 66], gives a necessary and sufficient
condition for uniqueness in the case of measures of finite total variation.
However his condition is sometimes hard to verify.

We will give a new proof of Beurling’s theorem based on the Fourier-
Carleman transform and harmonic majorants. Furthermore we will give an
improved version of his theorem (Theorem 7), in the case the support is a
sequence of regularily distributed intervals and also give an existence theorem
(Theorem 6), which shows that Theorem 7 is best possible. It moreover shows
the existence of an L™ function %0 supported on a set of finite measure, and
with a given spectral gap.

2. A uniqueness theorem depending on one-sided quasianalyticity.
The following result is a consequence of Theorem XXV in Levinson [13]:

ProPOSITION 1. Suppose that fe L'(R) and that its Fourier-transform f
vanishes on an interval. Let

F(u) = f |f () dt

and suppose that

du = —00.

* log |F (u)|
1 l +u2

Then f=0.
Beurling [S5, Corollary 2.1] proved this result under the less restrictive
assumption that f vanishes on a set of positive measure.

The following uniqueness result is a direct consequence of Proposition 1

THEOREM 3. Suppose f € L' (R)N LP(R) for some p> 1, put E={t € R; f(t)+0}
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and suppose f vanishes on an interval (or more generally on a set of positive

measure). Let
f xe(t)dt

J‘ xe(dt .

J‘” log ¥;(u) |

l‘l’,(u)

I

I'I’Z(—ll)

Iy

u= —00
e

for j=1 or 2, then f=0.

Proor. We prove the result when the decay condition holds on the positive
real axis (j=1). Let g be the dual exponent of p. We have

00 o0 1/q
F(u) = j |f(nldt = Ilfll,,(f XE(t)dt> :

Proposition 1 (alternatively Beurling’s improvement of Proposition 1)
immediately gives the result.

COROLLARY. Suppose that

(i) fe LP(R) for some p>1,

(ii) f vanishes on some interval,

@(ii)) {teR; f()*0, t20}c U [x,—di x,+d,] with 0<c, < x, — X, _ S ¢3,
k=1

< logs,
2 =

(iv) >
n=1

Then f=0.

oo
—00, where s,= ) d,.
h k=n

The condition (iv) is essentially best possible as follows from Theorem 6.
Note that it is essential in Theorem 3 and its corollary that f'e L? for some
p>1. For p=1 there are counterexamples (see Theorem 9).

3. The Fourier-Carleman transform.

Let £ be a function such that e ~*"If (t) € L' (R) for all £ >0. We then define its
Fourier-Carleman transform as follows (cf. Bremermann [9], z=x+iy):
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-0

0
‘J f(Oe~=dt,  y>0
F(f2) = N
l ——J‘ f(Me =dt, y<0.

0

For a function fsuch that | f (w)le ~*! € L' (R) for all >0, the inverse Fourier-
Carleman transform is similarily defined as

- L j T, y>0
P 2n [,
F Y2 = o

o f fwe™dw, y<0.

2n ) _,

The following is an immediate consequence of Plancherel’s theorem.

Lemma 1. If fe LP(R), 1 £p=<2, the Cauchy transform of f is equal to the
inverse Fourier-Carleman transform of its Fourier transform f, that is,

(3.1) L r &dt = F ({2

2ni ) _z—t
for y#£0.

(3.1) immediately shows that % ~!(f, z) has an analytic continuation across
the intervals, which compose the open set R\ supp (f), where supp (f)
={t e R; f(t)+0}.

Moreover, if f € L?(R) has a gap in its support, supp (f)N[—A4,4]1=, a
simple estimate using Holder’s inequality shows that (g is the dual exponent
of p)

_ 11 1 _
(3.2) IV J2) < Eﬁlﬂ”‘ie A7,

The Fourier-Carleman transform (and the inverse Fourier-Carleman,
transform) may also be defined for a tempered distribution T (Bremermann
[9]) and estimates of the type (3.2) hold, if supp (T)N (— A, A)= . In fact,if T
is a tempered distribution, there are integers m and k such that

(3.3) |#F~Y(T,2)| < Crll%e“”'”',
y

and % ~!(T,z) has an analytic continuation across R\ supp (T).
Also results analogous to the Paley-Wiener theorem hold.

To state these results we first need the following:

Math. Scand. 55 19
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DEFINITION. A function F, holomorphic in the upper half plane is said to be
of bounded type if it may be written as

F = G/H,

where G and H are bounded holomorphic functions in the upper half plane.

By a theorem, which in the case of the unit disc is due to R. Nevanlinna,
each function F of bounded type in the upper halfplane may be represented
as (see e.g. de Branges [8, p. 22])

(3.4) F(z) = B(z)exp{—ihz+G(2)} ,

where B(z) is a Blaschke product (in the upper halfplane), h is a real number
and G(z) is a function holomorphic in the upper halfplane such that

g
ReG(x+iy)=—f;J_ (t%

for some real measure p satisfying

f ©odul
B B
That the representation (3.4) holds is actually a necessary and sufficient
condition for F to be of bounded type.

When F is a function of bounded type, the mean type of F is defined as the
number h in the representation (3.4).

Of course a similar theory exists for the lower halfplane. If F is of bounded
type in the lower halfplane then

F(z) = B(z)exp{ihz+G(2)}, Imz <O,

where B is a Blaschke product and Re G is the Poisson integral of a measure.
The number h is called the mean type of F in the lower halfplane. (Note the
sign change relative to (3.4).)

LEmMMA 2. Suppose that F is a function holomorphic in C\ E, where E is a
closed subset of R. Let I1, and II _ denote the open upper and lower halfplanes
respectively. Assume that F|; and F|;_ both have continuous extensions to the
closed halfplanes and that the boundary values

Fi(x) = lim F(x+iy) and F,(x) = lim F(x+iy)
y=+0 y—=-0
both belong to L?(R), 1 <p<2. Furthermore assume that F is of bounded type in
both the upper and lower halfplanes and has mean type — a in both halfplanes.
Then f=F,—F, is a function in LP(R) such that f|(_“)=0 ae.
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Proor. The function H(z)=e “*F(z) is of bounded type in the upper
halfplane and of non-positive mean type. Clearly

lim H(- +iy) e L’(R).

y—+ 10
By de Branges [8, Theorem 12], extended to the LP-case, 1 Sp<2, it follows
that

1 (> H(t
H(z) = — -—E—)dt, Imz>0.
2ni | _ t—z

By Lemma 1

H(z) = r e H(E)dé, Imz>0.

0
Hence

F(z) = €% r e H (&) dE

0

= fm e=H(E—a)dé = jm e*hy (&) d¢ .

a a

In a similar way

F(z) = —j‘-a e #h,(&)dE,  for Imz<0,

- 00

and consequently the Fourier transform of F 1(.x)—F ,(x)is 0 a.e. on (—a,a).

4. Uniqueness results.

4.1. Beurlings uniqueness theorem.
To illustrate our methods, we will give a new proof of a version of a theorem
of Beurling [5].

THEOREM 4. Suppose that T is a tempered distribution on R and that ( supp (T)
contains the disjoint union of closed intervals

U [ln_am ln+an] s
n=1
where

(@.1) 5 (5;—)2 = o0

and that T=0 on an open interval.
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Then T=0.

Proor. We will first reduce the theorem to the case, when there is a constant
b such that

() a,2b>0 for all n
(i) Te LR).

#(R) denotes the Schwartz class of rapidly decreasing, infinitely differentiable
functions.
Sum over those n for which a,<b:

ab b = bl,—l,_,) b

2
a
—_n < +— < —r
a:,é:b <1n> aéb lnln—l I% ngl lnln—l 1%

nz2

B 1 1 b? b b?
B )4 = 242 <o
2, (1 1)*!% Lte <

n 1

A

Il

Therefore there is a subfamily of intervals, such that (i) and (4.1) hold. Then
convolve first T and then T with a C*(R) function of sufficiently small compact
support to obtain the reduced situation.

Now we turn to the proof of Theorem 4 assuming (i) and (ii). Let

{F(z) = Qu/|TI)#F " (T,2)
u(z) = —log|F(z) .

u(2) is superharmonic in Q=C\ supp (T) and u(z) = A|y|. Now take its average

over circles centered at x, [,—a,/25xZl,+a,/2, of radius a,/2. The
superharmonicity gives that

u(x) 2

)
|
(SRS
A
=
A

a,
= ln+_2— ’

and clearly

00 00 I, +a,/2
u(i) glj‘ u(xdx _ 1 $ J a2 y(x) dx
n

- 1+X2 = M op=1 I,—a,/2 1+x2

00 I,+a,2 d 00 2
gAC,ZJ‘ anx:CZAZ(‘Il—'!>=OO,

n=1Jl,—a,/2 1+x2 n=1 n

where C, and C, are numerical constants.

The ré6le of the point z=i is not particular and it follows that F=0, so
Theorem 4 is proved.



THE SUPPORT OF FUNCTIONS AND DISTRIBUTIONS . .. 293

4.2. A uniqueness theorem for Fourier transforms of measures.
In this section we will need the notion of a “local harmonic measure™ f(x)
introduced in [4]. It is defined as follows:

Let E be a closed subset of R, let a be a real number, 0 <a< 1, and let K, be
the square in the complex plane with midpoint x € R, sidelength «]x| and the
sides parallell to the coordinate axes. Let w¥(z) be the harmonic measure of
JK, in K.\ E, ie. let w¥(2) solve the Dirichlet problem

“2) = 0 onkE
YEEU on 0K,

Aw(z) =0 inQ = K\NE.

(All points of E are assumed to be regular for Dirichlet’s problem.) Then fg(x)
is defined as w*(x).

THEOREM 5. Let u € M(R), the set of measures of finite total variation, and
suppose there is an open interval I such that supp (1) NI = . Suppose that all

points of E=supp (fi) are regular for Dirichlet’s problem and that E is so thin
that

8, (x
4.2) j B o~
Ix|21 |\|

Then u=0.

Note that the condition (4.2) is independent of a. This is a consequence of
Theorem 4 in [4].

Proor. Without loss of generality assume that I =(— A4, A), 4>0. Define

| B

- [_E jA e*du(w), y>0

F2) = # '(w2) = | (-4

I — J e du(w), y<O0.
2n

It follows that F(z) is holomorphic in Q=C\ E and that

IF(2) < LI“_”_e—AIyI
S .

Let

u(z) = —log (%?27{) = Ayl .
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The situation is now analogous to the one in the proof of Theorem 4 in [4]
and we conclude that u(z)=o00 for y+0, hence F=0 and u=0.

Note that if the condition

[N
Ix|21 |‘C| '

holds, Theorem 4 of [4] proves the existence of a positive harmonic function u,
zero on E such that u(z)=|y|. To give a converse of Theorem § we would like to
prove the existence of a nonzero function F, holomorphic in in Q and satisfying
|F(z)| < e~ 4. However the function u constructed is not necessarily = —log|F|
for some function F holomorphic in Q. The converse problem will instead be
dealt with by the methods of section 5.

5. A general existence theorem for functions with small support and a spectral
gap.

" We will construct functions with a spectral gap supported on closed sets,
which are disjoint unions of closed intervals of positive distance to each other.
A support set may be written

(5.1) E= U [x—d,x,+d]

and its complement is

o0

(5.2) CE= (U (,—a,l,+a),
where
L+a,=x,—d
5.3 n n n n
( ) {l"——a,,=xn_1+d,,_1 .

The main result in this section is
THEOREM 6. Let
E = _@ [x,—dyx,+d], d,>0,
be a disjoint union of closed intervals and let the sequences {1} _. and

{a} s _ o be defined by (5.3). Assume that there are constants C,, C, and C,
such that
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@) ifIl,>0and C{'< ll—” <C,, then C;'<|n <G,

.. _ I,
(i) crlsprt<c,,

(iii) a,=C;max (1,d,),

(iv) i <%>2 [log+ (%) + 1] < 00.

Then given any real numbers A>0 and p, 1 <p <00, there is a nonzero function
fe L'(R)NLP(R)N C™(R) supported on E that | _ , 4=0.

Proor. Pick p=2 and A>0. By Lemma 2 it is enough to construct a
function F, holomorphic in C\ E such that F is of mean type £ — A4 both in the
upper and lower halfplanes and F(x+i0) e L'(R)N L?(R)N C*(R).

Let N be an integer satisfying nN > A. F(z) is constructed as

F(a) = e~N9M(a),
where
T

(5.4) ReG(z) = u(z) = lim J log
T= o0 -T

1—ﬂwm,

du is a positive measure supported on E such that

u(t) = j dp(u)

0

is close to t for all t, —oo<t<o00, in a sense made precise later and

x,+d,
(5.5) j du(t) is an integer for all n.
x,—d,

n n

The property (5.5) makes it possible to define the function e~ N#(@+id(@) 45 4
holomorphic function in C\ E, since the conjugate function ii(z) is well-defined
mod 2r in C\ E. M is a Beurling-Malliavin multiplier (Beurling and Malliavin
[6]), i.e. an entire function of exponential type <aN —A “multiplying down”
le=NOW| = ¢~Nu®) on the real axis. We require that M(x) decays so fast that

|IMCfe PN e LR
(5.6) M (x)le~N4®) e L1(R)
lIM(x) <1, xeR.
These conditions imply that M(x)e~N*® ¢ L1(R)N L?(R).
u(t) is defined as u(t)=t+ ¢@(t), where ¢(t) is a C* function such that
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(a) ‘P’(t) =-1 on (ln —ay, ln + an)

b) o(x,+d,)—¢(x,—d,)= —2d,+integer
(C) |(p(xn_dn)+an| é 1

(d) '(P(xn+dn)—an+l|§1

) ¢(0)=0

0 19/1.SC5 on [x,—dy x,+d,]
(g) ” (4 ” 00 é Can on [In —Qyy Xp+ an]'

The estimate (g) and (iv) immediately give

r 0Ol < c ¥ <%)2<oo.

- 00 1+t2 n=-o00 n

Let us also observe that (iv) implies that q,/, - 0 as n— +oo and
consequently also

5.7 — >0 ast— +o00.

We now claim that the limit in (5.4) exists. For Imz>0 a partial integration

gives
z B . 2\ |7 T u@)
1—?‘du(t) = Re[u(t) log(l—;)]—T+Rez J_Tt(z—-t) dt .

T
J log
-T

From (5.7) it follows that

lim [u(r)-log(1—2z/t))T 1 =
T- 00

Hence

Z.r n(®) dt_zr t+o()

_rtz—t) T ) _rt(z=0)

— —inz+zf o) dt
o tz—0)

as T— oo and we have proved our claim.
We conclude that

e NGB = exp!{ +nNiz+ Nz —¢0 dt
o Lz —1)
exp{+nNiz}F,(2),

where the + sign (— sign) is chosen in the upper (lower) halfplane.
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To apply Lemma 2 it is necessary to show that it is possible to multiply
down the boundary values |e "N¢®™)|=¢~N“®) with an entire function M (z) of
exponential type e<nN — A4 so that (5.6) holds.

Moreover we have to show that M(z)e "N% is of mean type < — 4 in both
halfplanes.

Let y(t)=¢(t)/t and § be its Hilbert transform. Note that ¢(t)=0(t) as
t — 0. By redefining ¢ on an interval [x,—d,, x,+d,] we may accomplish
that /(0)=0. We have

IFy(x)| = exp{—Nnxf (x)} .
Let
o(x) = Ne(§ )|+ (=x)), x>0,

and
o(x) = —o(—x), x<0.

Then |F,(x)|<exp {xo(x)} and by Lemma I and III of Beurling and Malliavin
[6] it follows that it is possible to multiply down ‘

IFy(x) = e Neto

by a function M of small exponential type so that (5.6) holds provided that
1 [~ t
6(2) = Po = — —l%
n - 00 (x—t) +y

has finite Dirichlet integral,

2(0) = J J‘ |grad o? dxdy < oo,
0 0

and

ng@dt<oo.
t

0

The Dirichlet integral can be expressed in o(x) by means of the Douglas
functional (cf. e.g. Ahlfors [1, Theorem 2-5] for the corresponding formula in
the case of the unit circle, which is easily transferred to the upper halfplane)

1 00 00 _ 2
f(0)=ﬂj_ f_ <%ﬁ) dxdy .

2W) = L) = FFX) = 200) = 20) = L),
it is enough to verify that # (y)<oo.

Since

Math. Scand. 55 - 20
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We have

! z/f(u)—w(n) f ﬂ
— .- r’ dt + — .
FW) = 2n ﬂ‘llltllifll < u—t du t+27t lrl>1 ul2 1

The integral over the unit square is finite. By symmetry it is sufficient to

estimate
o] peey
1 - 00 t—u

Furthermore, by interchanging the order of integration

r dt f (F/’__(”‘ ‘““’)2 du
1 lu—t| Zat t—u

¥ (u) < ()
< 1+'ulu§C Z <T> < 0.

n= —00 n

Hence it only remains to estimate

=
lu—t]| Sat —t

Assume first that t € I,=[l,—a,,l,+a,]. Clearly

NEELITY
I, u—t l"

An explicit calculation gives that the integrals over the adjacent intervals I, |,
I,_,, and J,, J,_, with

Jn = [xn_.dm xn+dn]
gives a contribution which may be estimated by

a, a,
Czlz-log+ a— .

Furthermore the remaining values of u are contained in the set {u; ya, <|u—t|
- Sat}, where y is independent of n and

Y —y )\ a2 1 "
L“~§‘““'|§“‘ (T‘—‘> = C(Z) J‘Iulzya. Zh=Cy 2

Similar estimates hold also for ¢t € J,. Summing up we get
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r’ dtf ('/’_(“)—_'/’(t)>zdu

1 lu—t|Sat u—t

3 j wf (rwovoy,
lu—t|Sat —t

C i <£;1> [log*%ﬂ+1:| < 00.

We turn to the proof that
* zy(o)
d
exp{J_oo P t}

is of bounded type in both the upper and lower halfplanes. This follows from

II/\

lIA

LeMMA 3. Let F,(z)=exp { —zf (2)}, where f is analytic in the upper halfplane
I1, and has a finite Dirichlet integral

2(f) = ” If' (@) dxdy < oo .
m,
Then F, is of bounded type in the upper halfplane.

Proor. By Lemma 12 in de Branges [8] it follows that given any real
number ¢>0 there is an analytic function g with 2(g)<oo and such that

Re —zf(z) < Re —zg(g)
Reizg'(z) = —e¢.

By the proof in de Branges [8, p. 260], of the Beurling-.Malliavin theorem
exp { —zg(z)} is of bounded type in the upper halfplane. By Herglotz’ theorem
there is a real number % >0 and a positive measure y such that

® d
(5.8) Re (—zg(2))—Re (—zf(2)) = xy+J ) (_x_%

Hence F,(z) is of bounded type and the proof of Lemma 3 is complete.

We return to the proof of Theorem 6. It follows that F(z)= M (z)e "N¢@ is of
mean type < — N7n+¢ in both halfplanes.
It only remains to verify that

r (e@)/t)dt < o0

0o
or equivalently that
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(5.9) r @I/ +thdt < oo .

By (5.8)

©  ydv(t)
Re (—zf(z)) = Cy+f_oo m—z
for some measure v such that
®dv|(2)
f_oo i+ =%

Since ¥ is continuous (5.9) follows.

RemMARK. Under additional regularity assumptions on the sequences
{a,}3e _ o {d, )3 _ it is possible to construct the function fi Theorem 6 such
that also f e L'(R)N L*(R). One such condition is that a,[log™* (a,/d,) + 1] has
a majorant {q,}3% _ ., which is increasing for n>0 and decreasing for n<0 and

satisfies

Y “;f"<oo.

n= —o00

In this case the Beurling-Malliavin theorem may be replaced by Theorem
XXVI in Levinson [13].

6. A general uniqueness theorem for distributions supported on regularily
distributed intervals. ’

We shall frequently use the expression A,~ B,, which means:
there is a universal constant C such that C™!<|A4,/B,|<C .
The following result is an improvement of Beurling’s theorem (Theorem 4)

for intervals with the same regular distribution as those in the previous section:

THEOREM 7. Suppose that f is a tempered distribution on the real line such that
(i) supp (f) N [0,00) = U [x,—dp X, +d,],
n=1

where [x,—d,, x,+d,], n=1,2,..., are disjoint and nondegenerate. Let the
sequences {l,},-, and {a,}5, be defined by

l,+a, = x,—d,
ln_an xn-—l+dn—l
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and assume that

@) I,~1, = a,~a, and max (1,log (1/d,))~max (1,log (1/d,,)),
(ii)) a, — 00 as n — o0 and a,=Cd, for some constant C>0,
(iv) 3%, (ay/1,)*[log™ a,/d, + 1] =00,

) fli—a.0=0 for some a>0.

Then f=0.

Proor. By (3.3) the inverse Fourier-Carleman transform of f, F(z) satisfies
the estimate

~ 1
F(z))l £ C—
| ()l = |y|k

Hence u(z)= —log (|[F(2)|/C) is superharmonic for z € Q=C\ E and satisfies
the inequality

e—nlyllz|M .

u(z) 2 alyl+klog|y|—Mlog|z .

The proof will be based on the same principles as in Theorem 5. Thus we want
to prove

© u(x+i)
(6-1) J_oo de = 00
Let u,(z)=u(z)+ M log|z|. Then

() uy(2)Zaly|+klog|yl.
(IT) .u,(2) is superharmonic in Q,=Q\ {0}.

© oy, (x+i) . ©  y(x+i)
(111 f_oo i+x2 dx = oo iff j—m T i =

The difference from the situation in Theorem 5 is the occurrence of the term
klogly| in (I).
~ On the circles C,={z € C; |z—x,|=(1+0)d,}, where & is chosen so that
C, are disjoint, we have
uy(z) 2 k-logd,—C' .
Let the union of the corresponding closed discs be denoted by E and let

K,: = {(x,y); Ix—¢|Saé |ly|Sal), ¢>0,

Q, =K, \E, R, ;=0K, ., R{.=R, ;N{ly|=a¢} and E,.=ENK, . The
real number « is chosen so that the assumption in (ii) is true for (I,,0),
(Um0 € K, . ‘

We claim that for some constants ¢, i=1,...,5,
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a'l
log* " —c,4
62)  uy(x+i) 2 ¢jly——"—— —cqa,—cs, zn_%n_ <x< 1"_"2_n_
a
: e, logt ot
a"+02 og dn

This will be proved by the method of harmonic minorants on Q,,. The
information available is that u,(z) is superharmonic and

alyl+kloglyl, zeR,,;

>
" 2 {klogdj‘C, z€Cyxj €Ky,

As a comparison function we will use the function v(z/a,), where v(z) is the
logarithmic potential of a measure. Let the normalized lengths in the scale q,
be denoted by a prime, i.e. let x; =x,/a,, d;, =d,/a,, a,=a,/a,, and I, =1,/a,. The
function v(z) is defined by

T
v(z) = lim J log|l—z/t|du(t) ,
T+ J —-T

where

[dﬂl[(l~a)l;,(l+a)l,’,] = > 3@ +a)oy,

(-, xS (1+a)l,
ldﬂ‘C[(l-a)l;,(1+a)l;] =dt.

By a calculation it is easy to establish that

63) (2 = 'n[y|+06, ? € Rary
R 1=(1+6)d, x,eR
~—5—"log i+cr,  lz—xj|=(1+d)d), x;e R, ,

I’ a:l
é X é ln+_2—

(ST

1
v[x+i— ) =cg [,—
a'l

Let w,,w, solve the Dirichlet problems

lk‘log b,  W=l, zeR,,
wy(2) = 0 yI>1, zeR,,,
l 0 zekE,,,

w,(2) = k-loglyl, IyIsl, zeR,,
o 0 y>1, zeR,,.

It is clear that w, (z)2w,(2z) and w,(x +i) 2 C for (1 —a/2)l,<x < (1+a/2)l,. We
conclude that

uz(2) = uy(2)—wy(2) —cokv(z/a,) +¢yo
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satisfies
%u)g{w—qJ%ML zeR,,
0 zeCy, x;€eR, ;.
Therefore u,(z) may be estimated using harmonic measures. We define
0,(2) = w(z,Q,,,RY)),
0,(2) = 0(2,2,,,R,,1)

where w(z, @, E) as usual denotes the harmonic measure of E in the domain Q
evaluated at z. For large n

aa
u(z) 2 ?l,,wl(z) s

but the harmonic measure w, is easier to estimate. By a result analogous to
Lemma 7 in [4] we have w, (I,)= 1w, (l,). This is however not quite sufficient for
our purposes. Let w;(z) solve the Dirichlet problem

( ) _ 1 'y|=alm zZe Ka,l,,
w;(z) = -1 x=({1-ul, x=(1+a)l,, z€ Ka‘,".

As in the proof of Lemma 7 in [4] it follows that
(6.4) w1(2) Z 3w,(2)+ws(2)] .
It is easily established that

(6.5) w3(x+i) = —const (x/1,)* .

It remains to estimate w,(z). Using again v(z/a,) as a comparison function (6.3)
yields

log"%~c3
6.6) Wy (x+i) 2 G —

l—"+c log* &

a, & d,

and combining our estimates (6.2) follows. We turn to the proof of (6.1). If

Yuz1 (a/1,)* =00, Theorem 7 follows from Beurling’s theorem (Theorem 4).

Therefore we may without loss of generality assume that the sum is finite.
The situation can now be divided up into two cases:

Cask 1. l,/a, <%log (a,/d,) for infinitely many n. The homogeneity properties
of a, and log(1/d,) imply that (l,/a,)<Clog (a,/d,) for those k such that
h—=1lZal,. From (6.4), (6.5), and (6.6) it follows that there is a constant
y>0 such that
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(6.7) w;(x+i))=C >0,
for
X € U [h—a/2, 1l +a/2] .
(ks =L sy}

Since a, = cd,, we realize that (6.7) holds on a subset of measure =xl, of the
interval G,=[l,—y"l,, l,+71,], where » is a fixed constant. Chose the
sequence {n,} for which I, /a, ~log(a,/d,) so rapidly increasing so that the
intervals G, are disjoint. Since u,(x+i)20 it follows from (6.7) that

© oy, (x+1) 0ol +yl, L,
= C dx+0(1) = .
I-OO 1 +x2 - kgl fl...-v’... 1 +x2 X+ ( ) i

Case 2. l,/a,>11og (a,/d,) for nZ=n,.
By (6.2) it follows that

u,(x+i) =z Ca,loga,/d,—Ca, xell,—a,/2, l,+a,2]

for n=n,. We get

© oy (x+i) 2 [t ca, 1
2 log* " dx+0(1
f_m 1+x? n e J,"_%ana" g d, 1+x? x+0()

1
aQ
™

00 2
>c Y (‘l'—> log* 2" +0(1) = 0.

n=ng n d

Hence F =0 and the proof of Theorem 7 is finished.

7. Functions supported on small intervals around the integers.

The following result is a completion of Theorem 3 and its corollary in the L!
case.

THEOREM 8. Suppose that f € L*(R) andf|,=0for some interval I with |I|>2n
and

supp (/) N {¢>0} € U [n=dpntd], 4,0,

where d, — 0 as n — oo. If moreover

(ii) logd,~logd, ifn~m,
then f=0.
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It follows from Theorem 9 below that given any sequence {d,},.z d,>0,
there is an L!-function f+0 such that supp (f)=U% _[n—d,, n+d,] and

f|[_m,=0. This shows that the condition |I|>2r is essential in Theorem 8.
Moreover the condition

is essential by Theorem 6 above.

Proor oF THEOREM 8. The basic idea of the proof is the same as that of
Theorem 7. By making a translation if necessary we may assume f|(_ 40=0
with A >n. Now form

Fiz) = 7 (f,2).
Since f_4 4=0 and fe L™ it follows that

IF(z)] < Mf’ﬁe—/ﬂyl.
2yl
and F & helomorphic in Q=C\ (UX _ [n—d,,n+d,]). The function

u(z) = —log(:l‘;(”z" 2n> > Aly|+log |yl

and is superharmonic in Q. It follows that
u(z) =z logd, on |z—n| = 2d,.

We now use the function log|sin nz| as a harmonic minorant of u(z) on the
domain

K, = {(x,y); |x—n|Zan, [y|San}\

[(1+a)n]+1
( ¥ {z;|z—k|gzdk})

k=[(1—a)n]—1

and obtain 1
min logz«
u(x+i) = C(A—mn- —LmEm=AT Tm 4 0(1)
Cn+ min log —
Q-amsms(L+an Oy

for n—1<x<n+4, n=n,, where n, is chosen so large that d, <% for n=an,.
Since
i —logd,

(0,¢]
2
n=1 n
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and logd,~logd,, if n~m, it follows as in the proof of Theorem 7 that

oo 14 X2

and we conclude that F=0.

8. Constructions of L'-functions with small supports.

In this section we will construct L!-functions supported on very small sets,
which are unions of intervals, the midpoints of which in some sense are close to
an arithmetic progression. This material is related to some constructions of
L. de Branges [8] of measures supported on a sequence of points with a gap
in their spectrum.

THEOREM 9. Suppose there exists an entire function S(z), which is real for real z
and has only real simple zeros {x,}3 _ ., such that S(z) is of bounded type and of
mean type a in the upper half-plane, and such that

1

1
®.1) 250 (e m =

for some integer m> 0. Then, for any choice of the sequence {d,}, d, >0, there is a
function f € L*(R) supported on the set U _ [x,—d,, x,+d,] such that f|_, 4
=0.

CoRroLLARY. For any sequence {d,},.z, d,>0 there is a non zero function
fe L', supported on UX _ [n—d, n+d,] such that f|;_, ,=0.

This is the result showing that the condition |I| > 27 is essential in Theorem
8.

Proor oF CoRrOLLARY. As the function S(z) in Theorem 9 we choose sin 7z.
We only have to verify that S(z) is of bounded type and mean type =. This
follows immediately from Theorems 10 and 11 in the Branges [8]. (The other
conditions are obviously satisfied.)

Theorem 9 has the disadvantage that the existence of a function S with the
required properties may be hard to verify. The following theorem has a
hypothesis, which is more easily checked but is less precise than Theorem 9 as
for the length of the interval, where fis =0.

THEOREM 10. Let {x,}3% _ , be an increasing sequence of real numbers and let

.n(t) be the counting function, i.e.
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#{k; 0sx,st, 120}
n(t) =
—#{k; t<x,<0, t<0}.
Assume that there is a constant y>0 such that

W) |xgs1=Xd =2y >0 forallk,

.. *|n(t)—at|
(i) J‘—m “l:tvz—dl < 0.

Then for every ¢>0 and any sequence {d,}, d,>0, there is a function fe L'
supported on U _  [x,—d,, x,+d,] such that fll_,,,,ﬂ,m_C]:O.

Proor oF THEOREM 9. Without loss of generality we may assume that the
intervals [x,—d,, x,+d,] are disjoint. We pick an arbitrary zero of S, x, say,
and consider the function (z—x,)"S(z). Then we claim that the following
partial fraction decomposition holds

1 - Z 1 1 +"‘il A,
(z—x,)"S(2) wr1 (X —x)"8'(x,) z—x, =) (z2—x,) ’

(8.2)

where the constants 4, are chosen to correspond to the Laurent expansion of
1/[(z—x,)"S(2)] at z=Xx,.

Let H be the difference between the left hand side and the right hand sidé of
(8.2). H is then an entire function and of mean type 0 in both the upper and the
lower halfplane. By a theorem of Krein, (see e.g. de Branges [8, Problem 37])
H is an entire function of exponential type 0. Moreover H is bounded on the

, imaginary axis. By Phragmén-Lindelof, H is bounded in the complex plane
and hence constant. That the constant is O follows by letting z tend to oo along
the imaginary axis.

Since S(z) is of exponential type (again by Krein’s theorem) it has a
Hadamard factorization

S(z2) = Ae”z™ ] (—z/x,)e*.
"0

We now construct a function (cf. (8.2))

xy+d,
T(z) = Aexp <:tz+m—+1 log (1 —z/t)dt
2d‘ xy—d, '
(8.3)

00 1 x,+d,,l | p 2
i

Xp— n
n*1 "

This function is holomorphic in C\UX _ [x,—d,, x,+d,]=C\E inde-
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pendent of the chosen branches of the logarithm. To be strictly formal we
should proceed as in section 7. (The function T is slightly modified if x, =0.) It
is easily established that

/T2 = CI1/S(2),

when z e A={z ; |z—x,|=2d, for all n}.
By chosing contours, which avoid E suitably in the upper and lower
halfplane we prove using (8.2) and (8.3) that

11 (> f@)
T@ ~ 2 | _.z—t%
where
1 1
fO = o0 Te—m < &
By Lemma 1
1 * iz&
e e ["EELe 7(&)de Imz>0
o l EI e=f(H)dé Imz<O0.

Moreover since 1/T(x +i) is bounded and T(2) is of mean type a, we may use a
Phragmén-Lindeldf type result to conclude that

1
< A —almw .
Toved)| = e . Imw > 0.
By (8.4)
1 | I
- iwg ,—¢&
T(w+i) 21:,[0 eme i1 (e .

As in the proof of Lemma 2 it follows that e~ *f(£)=0 for 0< & <a and hence
f(é)l[o'a]=0. The proof that f=0 for —a<¢<0 is completely analogous.

Proor oF THEOREM 10. Under the hypothesis of this theorem, it follows
from Theorem 67 in de Branges [8] that for every ¢ >0 there is a function S(z),
real for real z, which has only real simple zeros at the points x, and such that

1
Lise <™

The partial fraction decomposition
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1 1
50 " 2 Tme—x)

is then valid. The proof now proceeds in complete analogy with that of
Theorem 9.
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