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HELICAL MAPS FROM LCA-GROUPS
INTO HILBERT SPACES

JORGEN CHRISTIAN RIDDER EBBESEN
Abstract.

In this paper we study helical maps from LCA-groups into Hilbert spaces.
The well known spectral representations of helices and their covariance kernels
will be generalized to helical maps from arbitrary LCA-groups. The Lévy—
HincCin representation of negative definite functions on LCA-groups is finally
deduced from our spectral theorems.

Introduction.

Helices in metric spaces were introduced and studied by I. J. Schonberg and
J. von Neumann in [10]. Most of their paper was devoted to the study of
helices in real Hilbert spaces. Independently A. N. Kolmogorov [S] studied
helices in complex Hilbert spaces and stated the classical representations of
helices and their covariance kernels.

The modern investigation of helices in Hilbert spaces was initated by P.
Masani [ 7], [8], to which we refer for further historical notes and applications.

The main source of inspiration of this paper has been [11] in which A. M.
Yaglom studied stationary and helical maps on R? by means of generalized
random fields. Schwartz’s generalization of Bochner’s theorem to positive
definite distributions played an important role in [11, Theorem 1]. In the study
of stationary maps Bochner’s theorem applies directly to the covariance
function, a fact used below to generalize the classical representation theorems
to arbitrary LCA-groups.

1. The spectral representation of covariance kernels.

Throughout this paper G denotes a locally compact abelian group (in short:
LCA-group) with dual group I H denotes a Hilbert space (over C). The
notation used follows [2].
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DeriniTioN 1.1. Let X be a topological space. A continuous kernel
K: X x X — Cis called positive definite if the matrix (K(x;, x;)) is positive her-
mitian for all x,,...,x, € X, ne N.

For later reference we state the following important theorem essentially due
to A. N. Kolmogorov, cf. [6].

THEOREM 1.2. Let X be a topological space and K: X x X — C a continuous
kernel. A necessary and sufficient condition that K be positive definite is the
existence of a Hilbert space H and a norm continuous map x: X — H such that

K(s,0) = (x,]x), steX.

We omit the proof. It is an easy consequence of the theorem of N. Aronszajn
[1, p. 143].

DEFINITION 1.3. A norm continuous map x: G — H is called helical if the
scalar product

(Xt 40— Xy 4t | Xy 4= X1 Lo 51 € G,

is independent of t € G, and stationary if (x,|x,) is a function of s—¢ only. If
x: G — H is helical, the kernel (s,t) — (x,— x| x,— X,) is called the covariance
kernel of x, and the chordal subspace S, of x is defined by

S, = clspan {x,—x, | s,t € G} .

If x: G — H is stationary, the function t — (x,|x,) is called the covariance
function of x.

Stationary maps are of course helical. If x: G — H is helical and r € G, then
x": G — H defined by

ro__
X; = X,4,—%X, 1€G,

is stationary, and so is any linear combination of the x"s.
Helical maps are essentially uniquely determined by their covariance kernels,
as the following proposition shows.

PROPOSITION 1.4. Assume that x: G — H and X: G — H are helical maps with
the same covariance kernel. There exists a uniquely determined Hilbert space
isomorphism @: S, — S satisfying

D(x,—x,) = X,—%,, teG.

Proor. Trivial.
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For stationary maps we have the following simple representation of the
covariance function as an immediate consequence of Bochner’s theorem [2,
Theorem 3.12].

ProposiTION 1.5. Let x: G — H be stationary. There exists a unique measure
we My (D) such that

(x| x0) = j(t,v)du(v), teG.

Proor. The covariance function of a stationary map is obviously continuous
and positive definite.

LeEMMA 1.6. Let x: G — H be helical and let ry,...,r, € G be given. There
exist n* uniquely determined measures u, , € M,(I') such that

(1.1) (x| xp) = f(s—r,y)dur,.,rm pk=1,..n.

Furthermore

Y. ¢ty € My () for any (cy,...,c,) € C".
J k=1

Proor. For any c=(c,...,c,) € C" we" define the stationary map
¢'x:G— H by

(c'x)y =) ¢xi, teG.
ji=1
According to Proposition 1.5 we may choose u, € M, (I') so that

(- x)1(c %)) = J(S—t,v)duc(v), s,teG.
We now define

3
-1 v i e —
Hejre = Z l#ej+iv2k’ J&k_la' L n,
v=0

where e,,...,e, is the canonical base of C". Formula (1.1) is now obvious.
The uniqueness part follows from the fact that the Fourier transform is
injective as a mapping from M, ('), cf. [2, Proposition 2.3].
The last assertion of the lemma follows from

Math. Scand. 55 — 18
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Z CiCkllr,r, = Mc € M, (I).

Jik=1

The proof of the first part of the theorem below is inspired by [11, (especially
pp. 285-289)]. The second part is due to B. Fuglede (oral communication).

THEOREM 1.7. Let x: G — H be helical. There exist a unique measure
u e M*(I'\ {0}) satisfying

j(lﬂe (t,y)duly) < 00, teG
and a unique biadditive positive definite kernel B: G x G — C such that
(1.2) (x,—xo|X,—Xo) = J(l—(S,Y))(l—(E))d#(YHB(s,t), s,;teG.

Conversely, if u and B have the properties stated above, there exist a Hilbert
space H and a helical map x: G — H such that (1.2) holds.

Proor. Let x: G — H be helical. For r|,r{,r, € G we have according to
Lemma 1.6

j (s - t/)") dﬂr’, +r'l’,r2()’) = (xs+r', i Xs I Xetr,— xt)

= (xs+r',+r','_xs+r’l|xt+rz—xt)+ (xs+r',_xs|xt+r2—xt)

f(s =t,y)(r, Y dpy; () + J (s—t,y)dpy ., ), 5.t €G.

From the calculation above and the injectivity of the Fourier transform we
have

(1.3) (rll’?)#r',’,rz"'ur’,,rz = Hey4r)ry rrisr, €G.
Interchanging r} and r] in (1.3) leads to

(1'4) (1 - (rll"))))u'r'{, r, (1 - (rll’, y))”'r'hrza rll’ rrll’ r, € G.
From (1.4) and the obvious analogue

(1.5) (1- ("'z’)’))ﬂrl,r'; = (1- (rlzliy))ﬂr‘,r'z’ ryrur €6,

we obtain

(1.6) (1= o= (o Mhyy = (1= A= 57y,
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I

for all ri,r{,ry,r; € G.
Define 0,=I'\ {0} by

0,={yerl| (ny*1}, regG.

We obviously have I'\ {0} =U,.;0,. On each O, we have the positive Radon
measure |1 — (r,y)| ~?,,,. According to (1.6) the measures |1 — (ry,y)| ~*y,, , and
I1— (rz,y)|‘2;1,2,,Z agree on O, NO,, The measures |1 —(r,y)| ?,,, r € G can
therefore be put together into a measure p € M* (I'\ {0}) such that

(1.7) roriragoy = (1= )1 =0, rur€G.

Inserting this in Lemma 1.6 gives

18 (lx = j(s—t,v)(l o)1= (29 dr) + e, (O)

for all s,t,r,r, € G. If we put s=t=0 in (1.8) we obtain (1.2) with B(s,?)
=pu,,({0}), s,t € G.

We still have to prove that B has the properties stated in the theorem. The
continuity of B is obtained by proving that the integral in (1.2) is continuous,
as the continuity of the left hand side is evident. Assume that the measure
ue M*(I'\ {0}) satisfies

jl1~(t,v)|2du(v) <oo, teG.

Define the map y: G — L?(u) by

(1.9) v =1=(ty), yeIl\{0},teG.
Then

1=yl = ‘[Il — (t=to, P dp(y)

=3 jll —(t—to,)*d(u+@)(y) for all to,t € G .

According to [4, p. 528], y: G — L?(u) is continuous (at t, € G). As

j(l—(s,v))(l—(ﬁ))du(v) = (%ly), steG,

the continuity assertion is proved.
The positive definiteness of B follows from

Z ciCB(tj,t) = (:Z_l Cjékl‘r,,t,)({o}) =0

Jrk=1
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for all ¢y,...,c, € C, ne N, cf. Lemma 1.6.

The additivity of B in the first variable follows from (1.3). The additivity in
the second variable follows likewise. This completes the existence proof.

If (1.2) holds for some y and B, we easily obtain

() = j (=191 = (191 = (7)) du)+ Blroo 1)

= ‘[(s_t»'})) dvrl,rz’ r,ra€G,

where the measure v, , € M,(I') is defined by v

risrs

({0}))=B(r,,r,) and

I

Veoriragoy = (1= ()1 = (rp, Y -

According to Lemma 1.6, v, , is unique, hence the uniqueness of B
immediately follows. The uniqueness of u also follows, as u may be
reconstructed from the measures |1— (r,7)?u, r € G.

Assume finally that u and B have the properties stated in the theorem. The
map y: G — L*(u) defined by (1.9) is obviously helical. According to Theorem
1.2 we may choose a Hilbert space H and a norm continuous map z: G — H,
so that B(s,t)=(z,]z,), s,t € G. Using the biadditivity of B it is easily shown
that t — z, is helical. We conclude that x = (y,z): G — L2(u)@® H is helical and
that (1.2) holds.

For a positive Radon measure g on R4\ {0} the condition
f(l—ree“"'”)dy(y) < o0, xeR?

is easily seen to be satisfied if and only if

Iyl
J1+I}yn2dﬂm <00

We therefore have the following result of A. M. Yaglom [11, p. 285, Theorem 6;
p. 289, Remark 3] as a particular case of Theorem 1.7:

CoROLLARY 1.8. Let x: R* — H be helical. There exist a unique measure
p e My (RI\{0}) and a unique positive hermitian d x d matrix A of complex
numbers, such that

2
o=l =0 = [1=eoa—e e B 1)+ (ast

for all s,t € R



HELICAL MAPS FROM LCA-GROUPS INTO HILBERT SPACES 277

2. The spectral representation of stationary and helical maps.

In this section stationary and helical maps are represented in terms of
certain vector integrals. The vector integration involved is outlined below. For
a fuller account of the theory of CAOS-measures we refer to [9] and references
therein. In the sequel X denotes a locally compact Hausdorff space, B the Borel
algebra on X and B*={B € B|cl B is compact}.

DEerINITION 2.1. A map ¢: B* — H, which satisfies
(2.1) B,NB, =& = o(B)) L o(B,), B,,B,eB*,
22 e(UB,) = Y o(B,),
whenever (B,) is a sequence of disjoint sets from B* with U B, € B*, and
23) Ve >0VBeB* 3K < B, K compact: |g(B)—o(K)| < ¢,
is called a CAOS-measure (countably additive orthogonally scattered).
REMARK 2.2. If ¢ is a CAOS-measure on X, it is easily shown that therc exists

d unique positive Radon measure p, on X such that u,(B)=¢(B)||>, B € B*.
We have

(2.4) (e(By)1e(By) = u,(B,NBy), By,B, e B*.

DEFINITION 2.3. Let ¢ be a CAOS-measure on X. The subspace S, generated
by o is defined by

(2.5) S, = clspan {¢(B) | B e B*} .

Let S=span {1g|B € B*} = L*(y,). For f=37_,¢lp,¢c;€C, B;e B¥*, ne N
we define

Vi = 3 celB).

i=1

The map y: S — S, thus defined is obviously isometric. It has a unique
extension to an isometry ¥: cS=L2*(u,) — S, We define

jfde =90 felw).

As an immediate consequence of the definition we have
PROPOSITION 2.4. Let f,g € L*(u,), A, v € C. Then
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(2.6) f(lf+ug)d9 = lffdewfgde-

(2.7 (jf do 'fgde) = jfs?du.,-

According to (2.5) the map ¢: L*(u,) — S, is surjective, hence a Hilbert
space isomorphism. We have the following result in the opposite direction,
denoting by u a given positive Radon measure on X.

PROPOSITION 2.5. Let : L*(u) — U be a Hilbert space isomorphism onto a
closed subspace U of H. There exists a unique CAOS-measure ¢ on X such that

¥ = dee, fel’(w.
Furthermore p,=p and S,=U.

Proor. The uniqueness is evident as the only possible choice of g is
(2.8) o(B) = y(1p), BeB*.

We now use (2.8) as the definition of g, and the proposition follows easily.
LemMA 2.6. Let u e M, (I'). Then clspan{y — (t,)| t € G} =L2().
Proor. Let fe L%(u) and assume that

0= j SOy dpe) = (W@, teG.
From the injectivity of the Fourier transform we conclude that f=0 in L2 (u).

THEOREM 2.7. The map x: G — H is stationary if and only if there exists a
CAOS-measure ¢ on I' with bounded p, such that

(2.9) X, = f(t.v)da()’), teG.
In the affirmative case g is unique.

Proor. Let ¢ be a CAOS-measure on I' with p,(I') < 00. Define x: G — H by
(2.9). To £>0 we may choose K <I' compact, so that u,(I'\ K)<e. As K is
compact we may choose a neighbourhood U of t, € G so that

(Y~ (tey))* <& veK,teU.
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Hence by (2.6) and (2.7)

x, =X, 1%

J!(t, P = (Lo, VI dpty(y) £ £(p,(K)+4)

< e(p,(N+4), telU.

As ¢>0and t, € G were arbitrary the continuity of t — x, is established, and it
follows by appeal to (2.7) that t — x, is stationary.

Assume conversely that x: G — H is stationary and let (x,| x0)=j (t,y)du(y),
t € G be the representation of the covariance function, cf. Proposition 1.5.
Define the isometry ¥ from the subspace span {é, | t € G} of L*(p) into H by

w(z cié_,,> =Y ¢x, ¢€C t,eG neN.
i=1 i=1
According to Lemma 2.6,  may be extended to an isometry /: L?(u) — H.

According to Proposition 2.5 we may choose a CAOS-measure ¢ on I such
that

(2.10) V() = ffda, feLl*(p.

For f=¢_, (2.10) leads to (2.9).

If (2.9) holds for some CAOS-measure ¢ on I with bounded p,, it follows
that (x,|x0)=j (t,7)du,(y), t € G. This means that g, is the unique measure in
the representation of the covariance function. The uniqueness of ¢ now follows
from Lemma 2.6.

LemMaA 2.8. Let p be a positive Radon measure on I'\ {0} which satisfies
j(l——re t,Y)du@) < 0o, teG.

Then clspan {w, | t € G} =L?*(u), where w,: '\ {0} — C is defined by w,(y)=
1= (t,y), y € I'\{0}. l

PRroOF. Let f € L2(u) and assume that [w,fdu=0,t € G. As w,0,=w,+w_,
—w,_,, we have

jwsa'),fdu =0, steG.

Interchanging s and t we obtain

J.wsa'),fdy =0, steG.
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Adding and subtracting these equations give

st@,refdu = fw@,imfdu =0, s5teG.

From the uniqueness part of Theorem 1.7 we conclude re f-u=im f-u=0,
hence f=0 in L2(p).

The following complement to Theorem 1.7 is due to B. Fuglede (oral
communication).

THEOREM 2.9. Let x: G — H be helical. There exist a unique CAOS-measure
@ on '\ {0} with | (1—re (t,y))du, <00, t € G and a unique continuous additive
map 1: G — H satisfying | (1—(t,y))de(y) L I(s) for all s,t € G such that

(2.11) X, —Xo = j(l —(t,y)de()+1(t), teG.

Conversely, if ¢ and | have the properties stated above, there exist a Hilbert space
H and a helical map x: G — H so that (2.11) holds.

Proor. If

(212)  s=Yolyi=Yo) = j(l—(s,v))(l—(a))du(v), s,teG,

for some u e M*(I'\{0}) such that {(1—re(t,y))du(y)<oo, t € G, then a
CAOS-measure ¢ on I'\ {0} such that

Ve—Yo = f(l—(t,v))de(v), teG,

is obtained by a construction analogous to the construction in Theorem 2.7,
using Lemma 2.8. If

(2‘13) (Zs'zr) = B(S5t)9 S,t € G s

where B is a biadditive positive definite kernel, it easily follows that t — z,is a
continuous additive map. The representation is now obvious for helical maps
of the form

£=(y,2): G— H,®H,,

where y: G — H, satisfies (2.12) and z: G — H, satisfies (2.13).
Let x: G > H be an arbitrary helical map. As noticed in the proof of
Theorem 1.7, x has its covariance kernel in common with a map X of the above
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form. According to Proposition 1.4 we may write x,=®X,+a, t € G, where
&:S;— S, is a Hilbert space isomorphism and ae H. From the
representation of X

X, —Xo = j(l—(t,v))dé(y)ﬂ(t), teG,

with [(1—(y)dé(y) LT(s), s,t € G, (2.11) follows with g=dog, I=dol,
and we obtain [ (1—(t,y))dp(y) L I(s) for all 5,1t € G.

If (2.11) holds for some ¢ and [ with the properties stated, we first note that
U, is the unique measure in the representation (1.2) of the covariance kernel.
The uniqueness of g then follows from Lemma 2.8, and the uniqueness of [ is
now obvious.

The converse part is trivial.

3. The Levy—Hincin representation of negative definite functions.

In [8] P. Masani proved the classical Lévy—Hinlin representation of
negative definite functions on R? by “helical” methods. In this section it is
shown that these methods apply to arbitrary LCA-groups. The resulting
formula is well known, cf. [3] and references therein. The basic difference
between G. Forst’s method and ours is found in the construction of the Lévy
measure of a negative definite function. In [3] the Lévy measure is defined in
terms of the associated convolution semigroup, whereas we obtain the Lévy
measure from the associated positive definite kernel. :

LemMA 3.1. Let g be a Lévy function on G x I' ([ 3, Definition 4]) and let u be a
positive Radon measure on G\ {0} satisfying

J(l—re (&,y)du(t) < oo, vyerl.
The function y: I' — C defined by :
Y@ = j(l—(ﬁ)ﬂg(t,v))du(t), ver
is continuous and negative definite.
Proor. The assertion above is part of [3, Lemma 5].

THEOREM 3.2. Let g be a fixed Lévy function on G x I'. A functiony: I' — C is
continuous, negative definite with y(0)=0 if and only if it has the form
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(3.0 Yo = il(v)+q(v)+'[(1—(Z)—')+ig(l,v))d#(t), verl,

where I: I’ — R is continuous and additive, q is a continuous, non-hegative
quadratic form ([2, Definition 7.18]), and pe M*(G\{0}) satisfies
f(1—re(t,y)du()<oo, y e I.

In the affirmative case l,q, i are unique.

Proor. The “if”-part is obvious from Lemma 3.1. Assume conversely that
Y: I — C is continuous, negative definite with y(0)=0. As the kernel K,
defined by

(3.2) Ky(1,72) = YD) +HYO)—¥@i—r) Yiy2 €T

is positive definite, we may choose a Hilbert space H and a continuous map
x: I' > H so that

Kw(yI’VZ) = (xyl|xyz)’ V1,72 € r ’

cf. Theorem 1.2. From (3.2) it follows that x: I' — H is helical. It also follows
that x,=0, so according to Theorem 1.7 we have

(33) K, (y172) = j(l—(m))(l—(t,yz)).du(t)+B(v1,vz), Y2 €T

for some u € M* (G\ {0}) satisfying | (1—re (t,y))du(t) <00,y € I' (note that
in (3.3) corresponds to 1 in (1.2)), and some biadditive positive definite kernel
B. From the biadditivity of B it follows that B(—y,, —y,)=B(y1,72), Y1,Y2 € I
From the definition (3.2) of K, we have K, (—y;, —=v2) =K, (y1,72), Y172 € I'.
Using (3.3) we therefore obtain

B(yy,72) = B(=y1, —v2) = Ky(=v4, —vz)—f(l-(t,vl))(l—(?,v—z))du(t)

= B(VI’YZ)’ Y1.72 € r ’

i.e. B only takes real values. We now construct the continuous, negative definite
function

Y. = q(v)+J(1—(E)Hg(t,v))du(t), yerl,

where q(y)=31B(y,7y), y € T, obviously is a continuous, non-negative quadratic
form.Let K, : I' x I' — C be the positive definite kernel corresponding to y,, i.e.

K, 01,72 = ¥ 0)+¥,02) =¥, (1 —72),  v.y2€T .
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Using that B is real valued we obtain K, =K, , from which it easily follows
that Y —y, =il, where I: I' — R is continuous and additive. We therefore have

Y@y = il +y. ()

il(v)+q(v)+j(1—(HHig(t,v))du(t), yerl,

which proves the “only if”-part.
If (3.1) holds for some [,q and u with the properties stated, then

Ky(1,72) = j(l—-(t,'yl))(l—(t-,;);))dﬁ(t)+B(y1,y2), YuY2€T,

where B(y;,v,)=q()+q(y2)—q(y,—73), 1.y, € I', is a biadditive positive
definite kernel, cf. [2, p. 47]. According to Theorem 1.7, K, is therefore the
covariance kernel of some helical map x: I' — H, H Hilbert space. From the
uniqueness part of the same theorem the uniqueness of u and q immediately
follows (as q(0)=0 we necessarily have q(y)=%B(y,y), y € I'). The uniqueness
of | is now obvious.
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