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A NEW CHARACTERIZATION OF THE
INTERPOLATION SPACES BETWEEN L? AND L¢

JONATHAN ARAZY and MICHAEL CWIKEL
Abstract.

It is shown that a normed space X is an interpolation space with respect to
the couple (L?, L9 if and only if it is an interpolation space with respect to each
of the couples (L', L%) and (LP,L™). The case of spaces with weights is also
discussed. Examples are given showing that analogous results do not hold in a
more general setting.

1. Introduction.

The interpolation spaces with respect to the couple (L7, L% have been
characterized by Gunnar Sparr [11]. His characterizations is in terms of the K-
functional for (LF?,L7) and generalizes earlier results of A. P. Caldéron [3],
Lorentz and Shimogaki [7], and Sedaev and Semenov [10], [9]. In this paper
we present an alternative characterization of these interpolation spaces which
may be more convenient for certain applications. The characterization and its
proof are closely related to the paper [4] where an alternative proof is given
of Sparr’s theorem. The basic strategy in [4] is to split up operators and
functions in a way which enables the Sparr characterization to be deduced
from analogous simpler results for the couples (L', L9) and (L?, L™). A similar
strategy will play an essential role here also.

We shall use terminology and notation as in [1] and [4]. Thus for example
Z.(A) denotes the class of all operators mapping the Banach space 4 into itself
with norms not exceeding ¢ and, for any compatible couple of Banach spaces
(Ao, Ay), 2. (49)N &L, (A)) denotes the class of operators on A,+ A, whose
restrictions to 4, and A4, are in £, (A4,) and &, (A,), respectively. We shall
also say that an intermediate space A with respect to (A4, 4,) is a c-
interpolation space for some constant ¢ >0 if Z,(4,)N 2, (4,)= % (A) (ie. the
restrictions to A4 of all operators in Z,(4,)N.%,(A,) are in Z,(A).) The non
increasing rearrangement of a measurable function f is denoted by f*.

Our principal result is as follows:
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THEOREM A. Let 1Sp=<q=<20. Let (Q,Z, u) be an arbitrary measure space.
Let X be a normed c-interpolation space with respect to (L'(u), L(u)) and also
with respect to (L?(u), L*(w)). Then X is a Bc-interpolation space with respect to
(LP(p), L4()) where the constant f depends only on p and q.

Using the Riesz-Thorin Theorem, we obtain our new characterization as the
following immediate corollary of Theorem A:

CoOROLLARY. X is an interpolation space with respect to (L?(w), L4(w)) if and
only if it is an interpolation space with respect to both (L'(u),L%(w) and
(L2 (u), L™ ().

The proof of Theorem A is presented in Section 2. Several of the steps are
reminiscent of arguments in [4] and indeed the reader who is familiar with
the details of [4] will perceive that careful modifications and appropriate
applications of Banach limits and other devices to the proofs in Section 4 of [4]
would yield a large part of what we require here. However we have chosen to
make our presentation self contained and in fact it also contains a proof of
Sparr’s theorem which is considerably shorter and simpler than those given in
[11] and [4].

In Section 3 we discuss generalizations of our main result to the case of
spaces with weights. In the light of these it would be natural to conjecture that
for any Banach spaces B,, B, B,, B,, such that B, is an interpolation space with
respect to (B, B,) and B, is an interpolation space with respect to (B, B,,), the
interpolation spaces with respect to (B, B,) are precisely those spaces which
are interpolation spaces with respect to each of the couples (B,,B,) and
(B,, B,,). However in the latter part of Section 3 we describe counterexamples
which show that such a conjecture is false, even if we restrict By, B, B,, B, to
be rearrangement invariant spaces.

REMARKks. (1) It should be mentioned that Sparr’s original proof [11] applies
also to couples of weighted spaces (LE, L%), (see Section 3 below) and also to
the case where p and g may assume values less than 1, provided that the
underlying measure space is suitably restricted. Our approach does not seem to
be applicable in this latter context. (See however [5, Section 4] for a related
result.) .
(2) Our approach here yields Lorentz and Shimogaki’s description of the
interpolation spaces with respect to (L?, L*) without their requirement ([7, p.
207 (1.2)]) that the norms of the spaces be semicontinuous. (Cf. part (i) of the
lemma in Section 2.)

(3) In fact the theorems of Sparr and Lorentz and Shimogaki are both special
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cases of [6, Theorem 2], but the proof of that theorem gives a much poorer
estimate of the constant involved.

2. The proof of Theorem A.

Let X satisfy the hypotheses of the theorem. We begin by observing that X is
an intermediate space with respect to (L?, L9) = (L?(u), L4(w)), that is

LPNLT < X < LP+ LT,
where the embeddings are continuous. Indeed, for fe LPN LY, f=f, +f,, where
Jo = Mansreany and o = frypsreay -
Clearly f; e L'N L X and f, € L’NL*<= X so that f e X. Furthermore

[fllxy < const. || fllrnype-

For the second inclusion note that any fe X is an element of (L?+L>)N
(L4 L9. Thus, in view of the estimates of Holmstedt, Kree and Peetre for
K-functionals (see e.g. [4, p. 216]),

1 00
f f*(s)’ds and f f*(s)ids
0 1
are both finite, f € L?+ L and in fact the embedding X < L? + L% is continuous.

REeEMARK. In the case p=gq the above argument shows that X =LP=L1,

Now let T be an operator in &, (LP)N ¥, (L% and let f e X. It follows from
Holmstedt’s estimates for K(t, f; LP, L9) that

t* 1/p 00 1/q
q [(Tf)*(S)]"dS> +tq1 [(Tf)*(S)]"dS)
v Up 0 1/q

= ﬂo[q f*(s)”ds> +t<fzf*(s)"ds) ]

for all t>0, where a=(1/p—1/q)~" and B, is a constant depending only on p
and ¢. (It is not difficult to show for example that B,<max[(1+2'7(q/p

—1)"'9), (214 4 (1 —p/q)~/9)].) Letting g=PB, ' Tf we may rewrite the above
inequality in the form

't 1/p 00 1/q
(1) <j g*(s)"ds) +t(j g*(s)“ds)
0 t*
2 1/p 00 1/q
< <j f*(s)"ds> +t<j‘ f*(s)“ds) .
0 t*
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We shall show that if (1) is satisfied for all ¢t >0, then for any ¢>0 there exist
two operators U € &, (LN L, .. (L) and Ve £, (LYN L, . (LY such
that g=Uf+ Vf. By hypothesis U and V are both in the class £ ,,(X) so
it will follow that

Ighx = 2c@+alflx. ie ITflly £ 2Bc(l+e)lflly for all e>0.
This will prove Theorem A with f=28,.

ReMARrk. The proof of the existence of U and V as above such that g= (U
+ V) f will in fact be valid for arbitrary fand g in L? + L9 satisfying (1) for all ¢
> 0. Since by the Riesz-Thorin Theorem U+ Ve ¥, ., (L)N ¥, ,,. (LY, then
this will also furnish a proof of Sparr’s theorem, namely that X is an
interpolation space with respect to (L?, L% if and only if for all fe X, ge L”
+ 19 K(t,g; LP,LY<K(t, f; L?, L% for all t>0 implies that ge X with
appropriate norm estimate.

Before constructing the operators U and V we make two simplifications:

Firstly we may suppose without loss of generality that f and g are each
functions of the form 3 r"yg for some constant r>1 and disjoint sets E,
each of finite measure. To see this, for any choice of ¢>0 let

7

oc

Z (1 +8)"X{‘( | (+er<feal<(+er*t)

n= —oc

Il

o

Z (1+8)"xtxl 1+ ' <|g(IS (1 +er)

n=—0oo

I

g

Except possibly in the case g = oo for which Theorem A is a triviality, the sets of
constancy of fand g all have finite measure. Clearly (1) still holds with fand g
replaced by fand g and if we can deduce that §= U7+ Vg for suitable operators
O0,Vin Z,,,(LNZ, . (L®) and L, (L"YNZ, (L9, respectively, then the
required operators U and V satisfying g=Uf+Vf can be obtained by
composing U and ¥ with operators of pointwise multiplication by f/f and g/§
in the obvious way. This multiplies our estimates of the norms of U and V by
an extra factor of (1+¢)? but, since ¢ can be taken arbitrarily small, the final
conclusion is unaffected.

Secondly we may suppose without loss of generality that (Q,X,u) is R,
= (0, 00) equipped with Lebesgue measure, and that f and g are non-negative
non-increasing functions, since we can extend this case to the more general one
with the help of operators S, and S, such that S,f=f*, S,g*=g, S, maps
L' (2,du) to L"(R ,,dx) with norm one and S, maps L"(R,,dx) to L' (R, du) with
norm one for r=1, 00. The construction of such operators is described in [3]
for the case when Q is o-finite, which is the only case we need consider here
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since, for g <00, f and g have o-finite supports. (Non o-finite measure spaces
are considered in [4].) Moreover, if as in our case, f and g assume countably
many different values each on sets of finite measure, then it is easy to write
explicit formulae for S, and S, as sums of averaging operators.

In view of the above we can suppose from here on that L"=L"(R ., dx) for
r=1,p,q,50 and that

o0 o

f= Y (48 "6, and g=g= 3} (148 Ay,
where (a,);- _., and (b,)3% _,, are non decreasing sequences in [0, 00). Each
sequence has at most two cluster points, at 0 and at the right endpoint of the

interval supporting f or g, respectively, if that interval is bounded.
Let

1 o0

a(t) = J (f(s)P—g(s))ds and B(1) = J (f(s)2—g(s)9)ds .
0 t

These are piecewise linear functions with vertices at points t =a,, t =b, of the

above sequences. Thus the sets

A=1{>0| «()=0} and B = {t>0]| (=0}

are each unions of (possibly infinite) sequences of disjoint-closed subintervals
of R,, A=U; 4, B=U;B; By (1) max (a(1), (1)) 20 for all t >0,s0 A UB=R,.
Since a(t)=0 at the left endpoint ¢; of the interval A, it follows that

t rt
@) J (xaglds = | (xaf)Pds forall tzc;.

€ Ja
Similarly, since B(t)=0 at the right endpoint of the interval B; we have that
(3) J (xpg)ds < (xpf)ds forall t=0.

t Jit

We now have to apply the following lemma, whose proof will be deferred till
later.

LEMMA. Let f and g be non-negative non-increasing functions on R | belonging
to LP+ LA
(i) If g assumes at most countably many values and

@ f g(s)Pds = J f(s)Pds for all t>0,
0

0

then there exists an operator U € £ (LP)N & (L*®) such that Uf=g.
Math. Scand. 55 - 17
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(ii) If f assumes at most countably many values and

&) r g(s)ids < j N f(s%ds  for all t>0,

t

then there exists an operator Ve £, (LY)YN L, (L% such that Vf=g.

Applying this lemma to suitable translates of the functions y , 8 Xa, fand of
xs8 xpJS we deduce from (2) and (3) that there exist operators
Uie Z,(LYNZ(L*) and V; € £, (L")N £, (L% such that Ui(fx4)=8x4 and
Vi fxB)=ng]. By disjointness of the sets A4, the operator U defined by

Uh =) xaUihx,) for helP+L>

is in Z,(LP)N £,(L*) and similarly the operator V defined by

Vh = xr, 4 Y XBjV,-(th) for he L'+ L1
j

is in £, (LYN 2, (LY. It is easy to see that Uf+ Vf=g as required.

Before embarking on the proof of the lemma which will complete the proof
of Theorem A we remark that if fand g are simple, part (i) is exactly Lemma 4
of [7, p. 212] and part (ii) is Theorem 2 of [4, p. 226]. As already hinted at
above we could use somewhat elaborate limiting processes to deduce our
lemma from these two results. However we shall proceed directly. Our
arguments are simpler than those of [7] and [4] in the simple function case
and naturally adapt to the general case also.

We also indicate that there will be considerable similarity between the proofs
of (i) and (ii) and that the “right pictures” to draw to accompany the proofs are
the graphs of the functions P(x, ¢), Q(x, ) defined for all x>0 by

X

(6) P(x,9) = J p(s)Pds,  Q(x,9) = j @(s)ds,
0
where ¢ is f, g or some other non-negative non-increasing function in L? 4 LA,

PRroor oF (i). Our first step is to show that for any non-negative non-
increasing ¢ in LP+ L (or indeed in L?+ L*™) and any linear function I(x)=ax
+b with a=0, b=0 there exists an operator S € £, (LP)N £, (L>) such that
S¢ is non-negative and non-increasing and
) P(x,S¢) = min (I(x), P(x,p)) for all x>0.

(See Figure 1))
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Figure 1. The action of the operators S and T.
S “cuts corners” from the graph of P(x, ¢), whereas T “sticks corners” onto the graph of Q(x, ¢).

>
L4

Subsequently we shall obtain U as a suitable composition of operators of

this type.

To construct S, we let J={x§0| l(x)= P(x,)}. If J is empty or a single
point then of course S is the identity operator. Otherwise J is either a bounded
or semi-infinite interval, in view of the concavity of P(x, ¢). If J =[¢, 20) is semi-
infinite, then jj(p(s)” ds=a(x—c) for all x=c which implies that ¢(x)?=a for

all x=c¢. Thus we may define"S by
Sh = X[O,c)h+x[c,oo)a1/ph/(p

for all h € LP+ L™ and obtain (7).
Alternatively, if J is bounded then we define S by

Sh = hXR+\J+|J|~1/p<j h'//dS>XJ
J

for all h € LP+ L* where

1/p
v = <P"f‘/(L |<p|"ds) :

Since [,y”ds=1 it follows immediately that

Se 2, (LP)N 2, (L)
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Furthermore, since S¢ is constant on J and satisfies

J' (Sep)ds = J QPds ,
J J
we also obtain (7).

Now let f and g satisfy the hypotheses in part (i) of the lemma. Let
(I)a=1.2... be a finite or infinite sequence containing all the intervals of
constancy of g. We shall consider the case of an infinite sequence, the finite
sequence case being an easier variant of the same argument. The restriction of
P(x,g) to each of the intervals I, thus coincides on I, with a linear function
l.(x)=a,x+b,, where a,= (gl,")”gO and also b, =0 since, by concavity, P(x, g)
<1,(x) for all x=0. Since

P(x,g) = infl,(x) = P(x, f)

we have that

P(x,g) = lim P,(x),

n—=oc

where

P, (x) = min (I, (x),P(x,f)) and P,(x) = min (l,(x),P,_,(x)).

We may thus obtain a sequence of operators (S,);-; by the above construction,
such that S, € Z,(LP)N Z,(L™) and for the functions f, defined by f; =S/,

Jo=Sufu-1s
P(x, f,) = Py(x) = min (/,(x), P(x, f,-,)) -
Now for all x not in the closure of I,, [,(x)> P(x,g) and, since P(x,g) and
P,_,(x) coincide on each I, for m<n—1, the set
Jo={x20] LZP, (0}

is disjoint from the interior of each I,. We deduce that (S,h)x; =hy, for all
m<n-—1,and all h e L?+ L*™.
Let U,=S,S,-:...S,; and define U by

Uh = Y (U, forallhel?+L>.
n=1

Since Uh and U,h coincide on U%_Y I, for all n and UZ_, I, =R, it follows
immediately that U € &,(L?)N £, (L*). Finally Uf restricted to I, coincides
with U, f=f, and P(x, f,) and P(x, g) coincide for x € I,. By differentiation, Uf

=g on I, for each n and thus Uf=g.



A NEW CHARACTERIZATION OF THE INTERPOLATION ... 261

Proor oF (ii). The function Q(x, ¢) as defined in (6) plays a réle analogous
to that of P(x, ¢) in the proof of (i). Our first step is to show that, given any
non-increasing linear function [(x)=ax+b and any non-negative non-
increasing function ¢ € L'+ L? with the property that, for some non-negative
non-increasing convex function Q(x),

(8) Q(x,) = max (I(x),Q(x)) for all x=0,

then there exists an operator Te Z,(LYN Z,(L% such that Te is non-
negative and non-increasing and

9) 0(x,Tp) = Q(x) for all x>0.

(See Figure 1.) Subsequently we shall obtain V as a composition of operators
of this type.
To construct T we let

J={x20] 120} = (x20]| I(x)=0(x, )} .

As before the cases where J is empty or a single point can be treated by taking
T to be the identity operator. Otherwise J is an interval. If J is semi-infinite
then necessarily a=0, since Q(x)=0 for all x>0. But then also b=0 since
lim,,  Q(x,p)=0. Consequently Q(x)=Q(x,¢) and again T is the identity
operator. Thus we can assume that J is a bounded interval J=[a, fi].

We introduce the function ¢ defined by

d l/q
¢(x) = <_2§Q(")> .

Since Q(x) is absolutely continuous on each compact subinterval of R it is
clear that ¢ is defined for almost every x in R, and Q(x, £)=Q(x). The given
properties of Q(x) thus imply that £ coincides almost everywhere with a non-
negative non-increasing function on R . By differentiation, ¢ (x)=&(x) for a.e.
x ¢ J whereas on J we have ¢(x)=(—a)'? ae. and

L S(s)ds = Q(,9)—Q(B,0) = Qo 0)—Q(B, ) = j @(s)ds .

J
The operator T is defined by

Th = hyg, s+ 17" j h(s)yds(—a)~"9¢y, for all he L'+L%.
J

It is a routine matter to verify that Te %, (LY)N .#,(L% and that Tp=¢ so
that T has all the required properties.

Now let f and g satisfy the hypotheses in part (ii) of the lemma. Let
(I)n=1,2,... be a finite or infinite sequence containing all the intervals of
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constancy of f. As before we shall consider the case of an infinite sequence,
leaving the reader to complete the details of the easier finite case.

On each interval I, the function Q(x, f) coincides with a linear function /,(z)
=a,x+b, where a,= — (f|I,)? <0. We define a sequence of non-negative non-
increasing convex functions (Q,(x));%, by

Ql (X) = max (ll (X), Q(X, g))

and

Q,(x) = max (I,(x), @, (x)

for each n=2. The functions f, defined for a.e. x € R, by

i = (- s0m)

are non-negative and non-increasing and satisfy Q(x, f,)=Q,(x) for each n. We
may thus obtain a sequence of operators (T,);%,; by the above construction,
such that T, e Z,(L"YN #,(LY and T,f,=f,_, for n22 and T, f,=g.

By convexity [,(x)<Q(x, f) for all x not in the closure of I,. Also, since
Q(x,2)=0Q(x, f) for all x, the functions Q(x, f) and

Q,_.(x) = max< max [, (x),Q(x, g))

1sms=n-1
coincide on each I, for m<n—1. Consequently the set
Jo = (x20] L(0)Z20,-1(x)}

is disjoint from the interior of each I, for m<n—1. It follows from the
construction of T, that T,(hy;)=hy, for al m<n—1and all he L'+L"
Let V,=T,T,... T, and define V by

Vh = Y Vi(hy)

n=1
for all h e L'+ L4 Since
V(hxur-1) = Valhyys,) foralln

and UZ_,I,=R,, a simple density argument shows that
Ve Z,(LYN L, (L9).

Finally we must show that Vf=g. Since Q(x, f) and Q,_,(x)=Q(x, f,_,)
coincide on each I,,, m<n—1so do fand f,_, (except possibly on a subset of
measure zero). Thus :

Vi= Y Valfaorx)+VUiu,,.1)

ms<n-1
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= Vn—l(fn—lXU,,,é,,,,l,,,)+ V(fXU,,g,,l,,)
= Vo1(fu-1)— Vn—l(ﬂn—lXUmg,lm)_*_ V(fXU,,,;,,I,,) .

The first term equals the function g for each n and the third term tends to
zero in L' + L7 as n tends to infinity. Thus the proof that Vf=g can be reduced
to showing that the sequence (¢,);=, defined by

&n = Ia-1xu,, a0+ Lo

has a subsequence which tends to zero.

At this stage we have to be more specific about how we choose the order in
which the intervals of constancy of f appear in the sequence (I,)3%,. If one of
these intervals has left endpoint zero then the order of the sequence is irrelevant
for our purposes and the reader will be able to show that lim,_, ¢,=0 by a
simpler version of the argument to be presented here. Accordingly we can
assume that there exists a subsequence which we will denote by (4,);%, of the
intervals of constancy of f such that, if «, and f, denote the left and right
endpoints respectively of A4,, then f,,,<a, and
(10) lima, =0.

For each n we can choose a finite (possibly empty) sequence of other intervals
of constancy of f, B, |, B, , ... B, all lying to the right of 4, and all distinct
from all the intervals A, and all intervals B,, ; for m<n, such that

(11) J f(x)¥dx < 1/n
[2, VINE,

where

n knm
E.= U (A,,,U U Bm'j>.
m=1 j=1
To form the sequence (I,),~, we take the intervals 4, and B, ; in the following
order: By ,By ... By » Ay, By gy By Az, By y,... . If fis zero on a
(necessarily semi-infinite) interval let B, , be that interval. The conditions (10)
and (11) guarantee that all other intervals of constancy (where f is strictly

positive) appear in the sequence. Let m, =k, +k,+ ... +k,+nso thatl, =4,
and E,=U7z, I, Then

Em+1 = "fm,,XU,,,g,,"Hl,," L'+L9

= "fm"XR*\E"”LL{-L'

IIA

I S 0,0 L2+ | foma Xy, 50 B, L -
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For each x, 0<x<a,, Q(x, f,) either coincides with Q(x, g) or with the linear
function 1, (x) which coincides with Q(x, f,,) and Q(x, /) on A,=1,,. Thus on
0,a,,] we have

fu¥) £ g +S1,, S g +Hf(0) .
Consequently

(o,

I fmtpoml < J S () +g(x)dx

and this term clearly tends to zero as n tends to infinity since both fand g are
in L'+ L4 To treat the second term | f,, x(, )« gl .« We note that [o,, )\ E,
is the union of finitely many disjoint intervals F,, F,,. .. and each endpoint of
each of these intervals is also an endpoint of some interval I,, with m<m, on
which Q(x, f) and Q(x, f,,) coincide. Consequently, for each such interval F;
with endpoints y;,d;,

JF fm,,(x)qu = Q(Yjvfm,)—Q(éjvfm,)

J

= Q(p -0, f)

= f f(x)dx .
Fl

(This also holds when J;=> since then both integrals equal Q(y; f,)
=Q(y; f).) It follows that
r

.
(XY dx = J flxydx < 1n,

[, V)N E,

J [, )\ E,

so that the second term above converges to zero and lim,, ¢, ,,=0.
This completes the proof of part (ii) of the lemma and with it the proof of
Theorem A.

3. Some generalizations and counter, examples.

In this section we first briefly discuss analogues of the results of the previous
section for spaces with weights and then give examples showing that such
results do not hold in a more general setting.

Sparr originally formulated and proved his theorem [11] for a couple of
weighted L? spaces (L2, L%), thus also including the case p =g which had been
investigated earlier by Sedaev [9] and Sedaev and Semenov [10]. (Here v and
w denote positive measurable functions on Q and the spaces L? and L% are
normed by
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1p g
ISl = <J(If|v)”d#) and  ||ffl.y = <f (lfIW)"du> )

As remarked in [4, p. 234], if p+¢q, Sparr’s theorem for weighted spaces follows
from the case of unweighted spaces with the help of a “Stein-Weiss”
transformation (cf. [12]). Similarly, in the present context, one can readily
deduce that X is an interpolation space with respect to (L, L%) if and only if it
is an interpolation space with respect to both (L;u, L%) and (L?, L)) where y
and u are weight functions defined by

u= (w4 P and y =vPuT? = wiu .

(Cf. [4, p. 234.])
If p=gq the above arguments cannot be applied. However one can obtain an
analogue of Theorem A for the couple (L2, L?). Let us first recall that for each

t>0
1/p 1/p
K(t, f5 LY, LY) ~ q (lflv)”du) +t<‘[ (|f|W)"d#>
E, Q\E,

E = {weQ]| vws tw) .

where

As indicated in [4, pp. 234, 235] it is possible to give a proof of Sparr’s
theorem for this couple, essentially by using the two functionals

QNE

1/p
P(x,f) = L (Sl du, O(x, f) = (j (|f|W)”dﬂ)

in roles analogues to those played by P(x, f) and Q(x, f) in Section 2 above. In
particular we use the following analogue of the lemma of Section 2.
Lemma 3.1. For any ¢>0, if f,g € LP+ L? and either
(i) P(x,g)<P(x, ) for all x=0
or
(i) O(x.8)=0(x, f) for all x20
then there exists an operator Te &, (LDYN L, (LE) such that Tf=g.

Note that w does not appear explicitly in the condition (i) and in fact we can
show that the operator T whose existence follows from (i) is in the class
L1, (LN L, (LE ) for any weight function w,, having the property that for
each x>0 the set
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EP = {we Q| v(wSxw, (o)

coincides with E; for some y=y(x)>0. Similarly condition (ii) implies the
existence of T such that Tf=gand Te £, (L?)N ¥, ,,(L%) where v, can be
v or any other weight function having the property that for each x>0 the set

Ei ={weQ | vy (w) S xw(w)}

coincides with E, for some y=y(x)>0.

Now suppose that v, and w_ both have the properties described above and
also that any space X which is intermediate with respect to both (L7, L?) and
(L%, Ly, ) is necessarily also intermediate with respect to (L%, L?), (for example
we can require

min (max (v,, w), max (v, w,)) < max (v, w)
and
max (min (v, w), min (v,w.)) = min (v, w) .)

Then, analogously to Theorem A, we can show that if X is an interpolation
space with respect to both the couples (L}, L%) and (L?,LF, ) then it is an
interpolation space with respect to (L7, L?).

In order to obtain a necessary and sufficient condition in the style of the
corollary of Theorem A we need to know, in addition to all the above
hypotheses, that L? is an interpolation space with respect to-(L? | L?) and L%, is
an interpolation space with respect to (L?, L% ). Here one can invoke a
theorem of Peetre ([1, pp. 116-119]) and require that v=wh,(v,/w) and w
=vh, (w,/v), where h, and h_ are quasi concave functions. (If h, and h_, are
strictly increasing then this will also automatically imply the condition of
coincidence of each of the sets E} and EY with sets E, for suitable values of y.)

ExampLE. Given weight functions v and w we choose numbers a, 8, 0<a < f§
<1 and let

v, = [v"/%/wl/b]bla=p
and

Wy = vyl Tle = wliBy = 1E

0o
It follows that v=v!"*w% and w=v}"#wf and v, and w_, have all the required
properties. Consequently X is an interpolation space with respect to (L, L%) if

and only if it is an interpolation space with respect to (L}, L") and also with
respect to (L, L%, ).
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The above examples suggest that Theorem A and its corollary might be
merely a special case of a much more general result. However in the remainder
of this section we show that the most natural formulation of such a
generalisation which one might conjecture is false. More specifically we give
examples of spaces B,, B, P, and B, (where the notation here has been chosen
to stress the comparison with Theorem A and its corollary) such that B, is an
interpolation space with respect to (By,B,) and B, is an interpolation space
with respect to (B, B,), and there exists a space 4 which is an interpolation
space with respect to both (B, B)) and (B, B,,) but not with respect to (B, B,).

We shall use Lorentz spaces (LP? spaces) as defined in [1, p. 8], and
interpolation spaces (Ay, A,)y , and [4,, 4,]° obtained by the real method ([1,
Chapter 3]) and the “second” Calderon complex method ([1, Chapter 4], [2])
respectively.

Let ry,r., 51,5, be numbers in (1, ) such that r;+r_, s, +s.. Let

B, = L'"*@L™' and B, = L'~*@Ls!

where the underlying measure space is R, with Lebesgue measure.
Let

Bp = (Bl,Boo)lm,oo = (Lrl,oo,Lr‘.oo)”“',oc®(le,l,stl)l/“‘oo N
where 1/r, =3/4r,+1/4r , 1/s,=3/4s, +1/4s... ([1, p. 113]). Similarly we take
B, = (B1,B)34,00 = L@ L™,

where 1/r=1/3r,4+2/3r, = /ri+1/r,)/2 and similarly 1/s=1/3s,+2/3s,,
and B,=(B,, B,));/3,o- Now let

A = [B,,B]*?
— [L"va’ Lr,,,oo]l/3®[Ls,,l’ Ls*,.w]2/3
= > @LS,3 ,

where 1/r=1/3r,+2/3r, = (1/r;+1/r)/2 and similarly 1/s=1/3s; +2/3s,,
=(1/s, +1/s5,)/2. (See [2, pp. 124-125].) A similar calculation shows that 4
=[B,, B,]'>. Thus A is an interpolation space with respect to both (B,, B,)
and (B, B,) but not with respect to (B, B)) since, for example if we take r; =s,
and r =s,, the operator T defined by T(f,g)= (g, f) is bounded on B, and B,
but not on A.

We now modify the above construction so as to obtain another
counterexample in which all of the spaces B;, B, B, B, and A are
rearrangement invariant spaces of measurable functions on R . Our approach
is related to some ideas of V. I. Ov¢innikov ([8]). We simply replace direct
sums by intersections and take
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B, = LN L', By = Lv®n Lt

o0

B, = L'»* 0L+ B

P Lrx% X () [ Sk >®

and

A=L>nL3.

Here, as before, ry,r.,s;,S, are in (1,00) and r,,r, 7,5, 5,, and s are

defined by the same formulae as above. However we now require that s, =r}

and s, =r,, where, as usual, u’ denotes the conjugate index of u, (1/u+1/u"_

=1). It follows that s, =7, s, ,=r, and s=r. We also choose both r; and r,

greater than 2 which ensures that ry>s,, r >s., r,>5,, I >S5, and r>s.
We require the following lemma whose proof will be given later.

Lemma 3.2. Let E;=L*#N L% with a;>y; for j=0,1, where all Lorentz
spaces are taken on the same arbitrary measure space (X, X, n). Then
(1) [Eo E\)° = [L%Po, L3P0 0 [L70%, 1727
) (Eo E\)g,g = (L7%Po, L7oPr)y \ (1 (LYo %0, LT01)
for all 8 € (0,1) and ¢ € [1, x0].

Using this lemma we can show in almost exactly the same fashion as in the
previous counterexample that

B, = (B1,By)ija,c = (B1; B3, 0
B, = (By,By)sja,00 = (Bp Byo)2js, o
and
A= [Bl,Bq]z/3 = [Bp,ijl/s.

Thus, as before, 4 is an interpolation space with respect to both (B,, B,) and
(B,, B,,) and it remains to find an example of an operator T which is bounded
on B, and on B, but not on A. We shall define T by Tf(x)=j(’§_'f(t) dt.

If fe L** for u € (1,00), then

|nngxﬂmm
0

IIA

llflluwf 7 dt

0

IA

S Il =1/~ 71

Thus T maps L** into L*>® and consequently is a bounded operator on
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L“>*NL*> for all u and in particular on B, and on B, Since s=r<r
the function f(x)=x"""ye.1(x) is in A=L"*NL>> However Tf(x)=
smin (1,x~ %) is not in L*3 and hence T is not a bounded operator on A.

Proor oF LEMMA 3.2. We shall prove only (1), the proof of (2) being almost
identical. First we observe that the inclusion

[EO,EJO < [Loofo L2870 N [LYo% [71:91]°

is an immediate consequence of the inclusions E; < L* b chLVf"’J, for j=0,1,
all inclusions being continuous embeddings.

Now, turning to the proof of the reverse inclusion, we suppose that fis an
element of the space

[Lﬂo»lju, Lahlh]o n [Lyo,éo’ Lvhél]f? .

This space is of course L*# N L"?, where 1/a= (1 —0)/a,+ 60/, and B,y and o
are defined by analogous formulae. In particular it follows that a>7y.

At this point it is convenient to assume that the measure space X is non
atomic and infinite. (The extension to the case of an arbitrary measure space is
routine.) Let

Wo ={xeX| If&| > f*(1)} and
W, = {xeX| f*0z|f(x)|>f*(n+1)} for n=1,2,....

If f*(¢) is strictly decreasing and strictly positive for all t> 0, then u(W,)=1 for
each n. (Otherwise we can replace f by a larger function fin L*# N L"? with
these properties and show that fis in [E,, E,]° implying the same for f) We
have

I £ fotfy  where fo = |flxy,

A=Y (J |f|du>xw,
n=1 \Jw,_,

and clearly both f, and f; are in L*# N L"°,

Let u, be the measure on X defined by uy(E)=u(EN W,). Let u, be the
(atomic) measure on X such that each W, is an atom and y,(W,)=1 for n
=1,2,... and p, (X\U, W,)=0. Let I, be the natural embedding of the
space of functions supported on W, into the space of functions on X. Let I, be
the natural embedding of the space of functions which assume constant values
on each of the sets W,, n=1,2... into the space of functions on X. It is a
straightforward matter to show that I, maps L*#:(u,) boundedly into E; and

and
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I, maps L?#%(y,) boundedly into E; for j=0, 1, since a;>y;. Consequently I,
maps L*#(u,) boundedly into [E,, E,1? and I, maps L"°(y,) boundedly into
[Ey E 1% So

Ifl £ fo+tfi = Iofo+1,f1 € [Eo,E 1.

This completes the broof of the lemma.
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