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ON GENERALIZED DIRICHLET PROBLEMS

NIELS JACOB
Introduction.
Let G R" be an open bounded set and
(D L(.,D) = Z D’(a,(.)DY)

o, tel”
a differential operator in generalized divergence form. Here I denotes a finite
set of multiindices and a,, € L™*(G) for each pair (o,7)e I'xI. For a

differential operator in generalized divergence form a sesquilinear form B can
be defined on Cy (G) x C5 (G) by

2 Blp,y) = Y f a,.(X)D* @ (x) D" (x) dx .
atel’ J G
We also associate with the operator L(., D) the polynomial
(3) L(.,5 = ) a,(.)eE.
a.tel

We define a subset I'* of I" such that

@) L e
can be regarded as a generalized principal part of L(.,¢).
Under further assumptions on the principal part we will prove for the
sesquilinear form B a Garding inequality in a suitable Hilbert space H}"(G).
By using the generalized Gérding inequality and a theorem which insures
the compactness of the imbedding of H*(G) into L?(G) we will prove the
Fredholm alternative for a homogeneous Dirichlet problem. Besides strongly
elliptic operators nonhypoelliptic operators, such as the operator considered in
[1] and [2], and some of those in [5], belong to our class.

The space H)(G).
Let Nj be the set of all multiindices and for o € N}, 6 =(0,. . .,0,), define
lol=0,+ ... 40, If E=(£,,...,&,) € R" we set for 6 € Nj
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&7 o= £ L&

and with D;= —id/ox;, i*=—1,let D?:=D7' ... D’ Furthermore for ,7 € Ng
we write 6=t if 0;<7;for ISjSnand o<t il g;<7;for I<j<n.

Let I' be a finite subset of N and m=max,_|o|. For an open bounded set
G < R" we denote with C7(G) the space of all complex-valued functions which
are m-times continuously differentiable and which together with their partial
derivatives up to order m are elements of L*(G). For ¢ € C7(G) we denote by
llol,, the usual Sobolev norm and we set

5) lol = ¥ | 1Dgarax+ j (I d
ocel JG G

The completion of C7(G) with respect to the norm || - |, is denoted by H™(G)
and that with respect to || || by H'"(G), respectively. Notice that both norms
are obtained from scalar products, namely from the scalar products (¢, ¥),, and

(©) (@) = % J D" (x) D (x) dx+f P (x)dx
ael J G G

respectively. The closure of Cy (G) with respect to the norm || - ||,,, is denoted by

H™(G) and that with respect to the norm (5) by HJ(G).

THEOREM 1. Ifu € HL(G) and o € T, then there exists the strong L*-derivative
D*u for all T € Nj, such that t1<o.

For a proof of Theorem 1 see [4, Satz 1.2].

THEOREM 2. Let G = R" be an open bounded set and k € N be a fixed integer. If
for each © € N}, |t| £k, there exists a o, € I' such that, 1 <o, then we have a
continuous imbedding of HY(G) into HY(G). Furthermore for each m<k the
imbedding of H!(G) into H?(G) is compact.

Proor. The first part of the theorem is obvious by Theorem 1 and the second
part follows from the compactness of the imbedding of H%(G) into H?(G) for
m<k.

Finally we would like to mention that the space of H!(G) could be regarded
as a subspace of H' (G) consisting of all those elements which have generalized
homogeneous boundary-data, [4, (Satz 1.5)].



ON GENERALIZED DIRICHLET PROBLEMS 247

A generalized Girding inequality.

In this section we prove a generalized Garding inequality for a class of
differential operators of the form (1).
Therefore we need

LeMma 1. Let G <R" be a bounded open set and for o,t € N§, 6 +£0, we assume
6 <1. Then for each £>0 there exists a constant c(g) such that
(N ID?@l§ < ellDpl§+c@lell
holds for all ¢ € Cg (G).

Proor. Since 0 <o <t and g +0 there exists g, € N{ such that 0% ¢, <o and
o+0,=1 For ¢ € Cg(G) it follows that

D73

Il

(D@, D@}y = (D”" "', D"" ")y
m D™ " @ll5 + (1/m)ID”~ "ol

for an arbitrary positive 5,. Using Theorem 1 we obtain with a suitable
cohstant ¢,

IIA

(8 ID"@l§ < ey D*@ll5 + (1/n)ID” " "0ll5 -

Now, if 6 — 6, =0, then the lemma is proved, otherwise we have ¢ — o, <t and
therefore there exists o, € Ni, such that 0+0,<0—0, and 6 —0,+0,=1. We
conclude as before

9 ID"""0ll5 < camalD'@l3+ (1/n )1 D7 "7 "0

for ¢ € C§(G) and an arbitrary positive 1, and a suitable ¢,. If 6—06, —0,=0,
the lemma follows from (8) and (9), otherwise we repeat the conclusion made
above. Hence after a finite number k of steps we have

k
ID°0l5 < ¥ q;ID9l5+4qlleld
j=1

where

cim; :
q; = AJT!—, = l, and = (1/’1 ) .
A AL a= 1o

i=1

Now given >0, then take n, =¢/kc, and

j-1 :
n; = (S/kcj) l_l m j=2,....k.
1=0

It follows that
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and therefore the lemma is proved.

Now we will define the subset I'* of I’ mentioned in the introduction. We say
o € I' is a maximal element in I" with respect to the relation < if and only if
there is no 1, € I" such that ¢ <7, The set of all maximal elements of I is
denoted by I'*. In other words, if I"=I'"\T#*, then ¢ € I'" if and only if there
exists t, € I'* such that o <t,. Notice that an element ¢ € I" which can not be
compared with any other element of I' belongs to I'*.

We pose the following generalized ellipticity condition on L(.,D): For at
least one x, € G, there exists two constants ¢, >0 and R =0 such that for all
¢e R [E|>R,

(10) Re Y a,(x)E& =2 ¢, Y &%

o,tel* cel*

holds. Let B be the sesquilinear form (2) associated with the differential
operator (1). We claim

THEOREM 3. If the differential operator (1) satisfies condition (10) and if for all
(o,71)e T'*xTI* "

1y sup |a,,(x)—a,.(xo)] = co/2k

xeG

holds, where k is the number of elements of I'*, then there exist a nonnegative
constant ¢, and a constant c,>0 such that for all ¢ € CF(G) we have

(12) Re B(g,9) = cyllolt—cillol .

Proor. A. We consider first the case where a,,=0 for all (g,7) e (I'xT)
—(C'*xT'*). For ¢ € CY(G) it follows

ReB(p,¢) = Re ) J a,.(X)D*p(x)D°p(x) dx
o,1el* J G

1

Re Y aﬂ(xo)J D' (x)D°p (x) dx
G

o,tel*

—Re ) J (a5e(x0) — e (X)) D' (x) D70 (x) dx .
o,1el™* J G

We denote by (Fg)(¢) the Fourier transform of ¢. By using Plancherel’s
theorem we get
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ReB(p,¢) = Re ¥ J a,.(x0)(F (D)) (&) (F (D)) () d& —
o

o,tel*

- X j |ase(xo) = g (X)ID*(x)[[D° @ (x)| dx .
G

o,1el*

Furthermore it follows

Re B(p,¢) 2 Re[ Y. an(xX)E EN(F) (I dE +

||>R a,1el*

+Re f Y (XN (F) (O dE —

1E|<R o,tel*

- X L a4 (x0) — a4, (x)| D* (x)[ D" (x)|| dx .

g,t1el*

By (10) and (11) we have

ReB(g.¢) 2 ¢ ). L" & (Fo)OE (Fo)&)dé —clloll§ -

ogel*

— (co/2k) Zr ID°¢llo 3, I1D0llo

tel’

with a suitable constant ¢. Hence we obtain

Re B(@,9) Z collolFe—(co/2k) ). D%l Y, [Dplo—

ogel* tel*

—(co+Olelg -

By the Cauchy-Schwarz inequality we have

Y ID%0llo < k2l@le  and Y ID'plo < KM@,

oel* rel*

respectively. Hence

Re B(g, 9) 2 coll@llFs— (co/2k)@ll ok 2@l ok — (co + )@ lI12

or

Re B(, 9) Z (co/Dli@ll e (co+MollF -

B. Now we prove the general case. For ¢ € CJ(G) we have

249
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ReB(@,@) = Re ¥ | a,(0D'0(x)D"0(x)dx+

o,tel*
Re J a,. (x)D*@(x)D°p(x)dx .
(o, 00e(FxN—(r'*xr*» JG
With the abbreviation
Y = Y J lag.(X)||D @ (x)||D7@(x)| dx
(e.1e(TxN—(I*xI* J G

we have
Re B((pa (P) 2 Re Z aar(X)D'(p(x)D"(p(x) dx — Z .
o,1el* JG

Applying part A of our proof we obtain

(13) Re B(g,9) = (co/Dl@l}e—(co+l2 =Y .

We will now estimate Y. By the assumption on the coefficients a,, it follows
with a suitable constant c,

(14) LS ID" (x)||D?p (x)| dx .

(6, 00e(FxN—('*xTI* JG
As before let I =TI —TI'*. We split the right hand side of (14) into three sums

21

I

> J |D*@ (x)|| D’ (x)| dx ,
G

ogel* el

223

> D¢ (x)||ID°@(x) dx ,
ocel,1el*JG
N

) L ID*o(x)ID°¢(x)| dx .

og,tel’

s
For an arbitrary £¢>0 it follows

XS Y (lIDplg+ (/eI Dol) -

cel*tel”’

For 1 e I"" there exists g, € I'* such that 1 <o, and by Lemma 1 we have for an
arbitrary #>0 the estimate

ID*¢lI5 < nlelts+cmiel]

with a suitable constant c(n). Hence

XS Y (eIt m/elolt+ (cm)e)lold) -

cel* tel
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Given ¢, and ¢, we now choose ¢, and 5 such that

Y & < co/lbc, and Y nfe, S cof/lbe,
gel* tel’ gel* el
hold and taking c, such that
Z c(n)/e, = cs/c,
cel* tel”

holds we obtain

(15) ¢ 21 S (co/B)l@lFt+esllols .

The estimate for Y, is obtained by changing the role of ¢ and t. Before treating
>3 we observe that

Ya = Y (IDpls+ID0l3) .
o,t1el”

Now, since ¢ and 7 do not belong to I'*, there exists o, and a, in I'* such that ¢
<a, and t<a, Applying Lemma 1, we get for ¢>0

23 S 2elt X etlold X cole)+ele).

a,tel”’ o,tel”’

Taking & such that 23 . e<c,/8c, we obtain

(16) CzZs < (co/B)@lF++csllolld .
Hence we find
17 N Y = Beo/d)l@lFe+ (cs+es+cs)leld

and by (13) with cy=c,/8

‘ReB(g, ) 2 chlloli+—cyllold .

A generalized homogeneous Dirichlet problem.
We now pose

ProBLEM 1. Let G be a bounded open set in R”, L(., D) a differential operator
of form (1), and f e L%(G) a given function. Find all elements u € H)(G) such
that

(18) B(u, @) = (f,9)
holds for all ¢ € C3(G), where B is defined by (2).

The solution of Problem 1 is given by
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Tueorem 4. If the differential operator L(.,D) fulfils the assumptions of
Theorem 3 and if the imbedding of H!"(G) into L*(G) is compact (see Theorem
2), then the Fredholm alternative holds for Problem 1.

The proof of Theorem 4 follows with Theorem 3 and the obvious continuity
of B on HY™(G)x HY™(G), as the Fredholm alternative follows for strongly
uniformly elliptic differential operators, see (Theorem 14.6) [3].

The author would like to thank Prof. Dr. K. Doppel for his support and
many stimulating discussions.
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