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TRIPLE PRODUCTS IN THE STEENROD ALGEBRA

JAMES H. FIFE

1. Introduction.

In this paper we shall study triple products in the Steenrod algebra. Let p be
a prime number, and let o/ =./(p) be the mod-p Steenrod algebra. If
o, f,y € o with fa=0 and yf=0, then the triple product <{y, f,a)> is defined
and is an element of .&//(y.of + o).

Triple products in the Steenrod algebra were introduced by Leif Kristensen
in 1967 ([4]-[8]) to help describe the action of the Steenrod algebra on the
cohomology of a two-stage Postnikov system. Since the early 1970’s little
seems to have been done with these triple products. In, this paper we shall
propose a new definition of triple products in the Steenrod algebra, based on
some work of E. Spanier [10]. Using our definition, we are then able to obtain
some new results and provide new proofs of some old results of Kristensen.
Our first main result (Theorem 3.1) shows, for stable two-stage Postnikov
systems E, how the action of .o/ (p) on H*(E; Z ) is related to the triple product
structure of .« (p). Let x: &/ (p) — o/ (p) be the canonical antiautomorphism of
the Steenrod algebra [11]. Our second main result (Theerem 4.2) asserts that if
o, B,y € /(p) are such that fa=0 and yf=0, then

x<ys By = () x(B) x () -

As corollaries of these two results, we are able to compute {y, ,a) in the case
p=2 and a or y=Sq' or Sq*.

Let A4, B, C, and D be pointed spaces, and let f: 4 — B, g: B —» C, and h:
C — D be maps such that the compositions g fand hg are null-homotopic. Then
the triple product (h,g, > is defined modulo a certain indeterminancy; it is a
map from X A, the (reduced) suspension of 4, into D. The definition and basic
properties of (h,g, /> are due to Spanier [10], who generalized earlier work of
Toda [12]. In the next section we shall generalize Spanier’s constructions to
the stable category, and in section 3 we shall use these results to define triple
products in the Steenrod algebra and to compute <y, B,«> when a=Sq" or Sq?.
Finally, in section 4 we shall use a result of E. Brown and M. Comenetz [3] to
prove the theorem about the canonical antiautomorphism and to compute
{y,B,a) when y=8q* or Sq>.
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The results in this paper formed a portion of the author’s doctoral
dissertation, written at Yale University under Professor W. S. Massey. I would
like to thank Professor Massey and Professor W. G. Dwyer for their
considerable help.

2. Triple Products in the Stable Category.

Let A, B, C, and D be spectra (in the sense of Adams [1]), and let f: A — B,
g: B — C, and h: C — D be maps of degrees n, m, and r respectively. Suppose
gf=~x* and hg= «; that is, gf and hg are null-homotopic. Note that gf'is a map
of degree n+m and hg a map of m+r. We shall define the triple product
<h, g, f>. This will be a homotopy class of maps from A to D of degree n+m+r
+1, defined modulo a certain indeterminancy.

First, let E be a spectrum. There is a map o: SuspE — E of degree —1,
defined as follows:

6,: (SuspE), = S'AE, ~ E,A 8! = ZE, =Vas E

(See [1, pp. 151-152] for the relevant definitions.) It is easy to see that ¢ is a
map of spectra. Note that the image of ¢ is a cofinal subspectrum of E. Note
also that if E’ is a cofinal subspectrum of E, then Cone E’' and Susp E’ are
cofinal subspectra of Cone E and Susp E, respectively.

Suppose that f,g: Cone E — F are two maps of degree r such that f|E
=g| E. We define a map d(f,g): E — F of degree r+1 in the following way:
Let E' be a cofinal subspectrum of E, and let f* and g’ be functions from
Cone E' — F representing f and g. Then for each n, f),: I A E, — F,_, and
g I AE,— F,_, are such that f(1,x)=g,(1,x) for all x € E,. Then, as in
[10], we can define a function

d(fn8):S' AE, > F,_,
by the rule
fn(2t,x) if 0
d(f,,g)t,x) =" .
&) {g;(z—zt,n i 4

Furthermore, the following diagram commutes:

I(S* A E) —Z4Uet) , yF

1ag,) 1oa-s
S'AE, a

— F
wt1:8n+1) n-r+1

Thus we get a function d(f",g’): SuspE’ — F, of degree r. Since Susp E’ is
cofinal in Susp E, we therefore get a map d,(f,g): SuspE — F, of degree r.
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Finally, since the image of o: Susp E — E is cofinal in E, it follows that we

have a map J(f,g):E — F of degree r+1, such that the following diagram
commutes:

Susp E O, F

al / .

E

This operation d has the following properties:

1. Let f,g,h: Cone E - F be three maps of degree r such that f|E=g|E
=h|E. Then

o(f,h) = 6(f,8)+d(g,h) .

2. Let f,g: Cone E — F be two maps of degree r such that f| E=g| E, and let
h: F — X be another map. Then

d(hf,hg) = ho(f g) .
3: Let f,g: Cone E — F be as above, and let h: X — E be any map. Then
d(f(Cone h),g(Cone h)) = 4(f,g)h .

4. Letf,g: Cone E — F both be the constant map. Then d(f, g) is the constant
map. ’

Let A, B, C, and D be spectra, and let f: 4 — B,g: B— C,and h: C - D
be maps of degrees n, m, and r respectively, such that g f>~* and hg= . Since
gf=~x* there is a map F: Cone A — C, of degree n+m, such that F|A=gf.
Similarly, since hg =~ *, there is a map G: Cone B — D, of degree m+ r such that
G| B=hg. Consider the maps hF: Cone A — D and G(Cone f): A — D. These
are maps of degree n+m+r. Furthermore, hF|A=hgf and G(Cone f)|A
=hgf. Thus there is a map

6(hF,G(Cone f)): A —> D

of degree n+m+r+ 1. Define <{h,g, ) to be the homotopy class of this map.

Thus <h’g’ f> € [A’ D]n+m+r+l'

The definition of {h, g, f> depends on the choice of maps F and G. However,
as in the unstable case ([10, p. 268]), if F,: Cone A — C and G,: Cone B — D
are other maps such that F,|A=gf and G, |B=hg, then

8(hF,, Gy (Cone ) = hy(@)+<hg, f>+1*(B)

for some o € [4,C],,m+1 and B € [B,D],,,+1; conversely, for each such a
and B there are maps F, and G, such that F,|A=gf and G,|B=hg.
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This triple product has the following properties:

THEOREM 2.1. Let A /> B %> C > D be maps of spectra such that g f= x
and hg==x. Let E,=BU Cone A be the mapping cone of f ([1, p. 154]) and
consider the following diagram:

(1) There are maps b: E; - C and a: A —
homotopy commutative.

(2) The map a in (1) is not unique; however, the homotopy class [a] € [A, D], is
a well-defined element of the group [A,D],/(h,[A,C],+f*[B,D],)

(3) As an element of this group, [a]=<h,g,f>.

such that this diagram is

Proor. For (1), see [10, Lemma 3.1, p. 269]. For (2), let b, and a, be other
maps such that the following diagram is homotopy commutative:

A-Ls B2 CtsD

\ Ibl Ial
E, 5 A.
We shall show that [a,]=h,[a]+[a]+f*[c] for some [a] € [4,C] and
[c] € [B,D].
Consider the following diagram:

[B,C] < [E,,C] <~ [4,C]
Lh
[E, D] <~ [4,D] L [B,D].

Now [b,]e€[E.C], and i*[b,]J=[g]l=i*[b]. Thus i*([b,]—[b])=0.
Therefore [b,] —[b] =j*[a] for some [a] € [4,C]. So [b,]1=[aj]+[b].

Now [a,] € [4,D], and a straightforward calculation shows that j*[a,]
=j*([hal+[a]). Thus j*([a,]—[ha]l—[a])=0. Therefore [a,]—[ha]—[a]
=f*[c] for some [c] € [B,D]. So [a,]=h,[a]l+[a]+f*[c].

Conversely, let [a] € [4,C] and [c] € [B, D] be arbitrary, and let

la,] = hla]+[a]+f*[c] and [b,] = j*[a]+[b].

Then [b,i]=i*[b,]=[g], so b,ix~g. Also, another straightforward calculation
shows that [a,j]1=[hb,], so a,j=hb,. Thus the following diagram is hor?otopy
commutative:
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A-L>B-& C-2 D
NITC
E, 4 A.
This proves (2).
For (3), let F: Cone A — C and G: Cone B — D be such that F| 4 =gf and

G| B=hg. Recall that E,=BU,Cone A. Then there is a map b: E; — C such
that b|Cone A=F and b|B=g. Then we have the following diagram:

A-L>B*EsC-+t5 D
\ Ib I(S(hF,G(Conef))
E, 5 A.

The triangle is commutative because b|B=g. So to prove the theorem, it
suffices to prove that the square is homotopy commutative.

To this end, it suffices to show that the following square is homotopy
commutative:

Cc D

b] 14,
E; - Susp A4

For this, see [10, Theorem 3.3, pp. 269-270].
The proof of the following theorem is similar:

THeOREM 2.2. Let A -£> B %> C ' D be as in Theorem 2.1. Let E, be the
mapping cone of h, and consider the following diagram:

D’_l"Eh

+ 1 ,
al bi \
I

(1) There are maps b: B — E, and a: A — D such that this diagram is
homotopy commutative.
(2) The homotopy class [a] € [A,D], is a well-defined element of the group

[4,D],/(h,[A,C],+f*[B,D],)
(3) As an element of this group,

[a] = —<hg f).

The following corollary of Theorem 2.1 is analogous to Corollary 34 of

[10]:
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COROLLARY 2.3. Let
AL B

h\c/g

be an exact triangle of spectra. Then the triple product {h,g, > is defined and
equals the homotopy class of the identity map A — A as an element of the group

(4, A),/(h [, CL +/*[B, A],)-

Proor. Since

A-L5 B
N/
C

is an exact triangle, there is a homotopy equivalence b: E, — C such that the
following diagram is homotopy commutative:

A-L> B2, C-ts 4

N

The result now follows from Theorem 2.1.
The following theorem is analogous to Lemma 4.1 of [10].

THEOREM 2.4. Let A~ B %> C "> D be as in Theorem 2.1, and let
A4 B2, C D be such that fi=f, g, =g, and hy=h. Then g, f, =+,
hyg,=*, and

<h1’gl’f1> = <h,g’f> .

This follows from Theorems 2.1 and 2.2; see [10, p. 272].
It follows from this theorem that if « € [4, B],, p € [B,C],, and y € [C, D],
are such that fa=0 and yf=0, then we can define the triple product

{y,B,2) € [A4,D], 4 m+r+1/indeterminacy

as follows: Let fe a, g€ B, and h €y. Then gf=+ and hg=«,so <h,g, [ is
defined. Let (y, B,a)>={h,g, f>. By Theorem 2.4, <y, f,a) does not depend on
the choice of f, g, and h.

THEOREM 2.5. Let A L» B £ C -5 D be maps of spectra such that gf= *
and hg=x. Suppose one of f, g, or h is the constant map. Then {h,g, f> is
represented by the constant map A — D.
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Proor. See [10, Corollary 4.2, p. 272].

COROLLARY 2.6. Let A > B %> C - D be maps of spectra such that gf= «

and hg=x*. Suppose f=x, g=x*, or h=x. Then {h,g, f> is represented by the
constant map A — D.

Proor. This follows from Theorems 2.4 and 2.5.
Finally, we show that triple products have the expected naturality property:

THEOREM 2.7. Suppose we have the following homotopy commutative diagram
of spectra and maps:

4, Lo B, 25 C; o Dy
al b] <l 4]
A2 77 B2 Ca5p D
such that g, fi=x*, h,g, =%, g,f,=*, and h,g,~*. Then
a*<h2’g29 f2> = d*<hl’g1’ fl> € [Al’ DZ]*/(hZ*[Ab C2] +fik[Bl’ D2]*) .

Proor. See [10, Theorem 4.3, pp. 272-273].
This theorem has the following corollary:

COROLLARY 2.8. Let A > B %> C > D *> E be maps of spectra.
1. Suppose kh= % and hg=*. Then
Ckohogy f = <k,g,8f ) -
2. Suppose kh=x and hgf= x. Then
Ckohogfy = <k,hg, f5 .
3. Suppose khg=+ and gf~x. Then
Ck,hg, f> = <kh,g, [ .
4. Suppose hg=x* and gf=~x*. Then
Ckh,g, f) = k<h,g, f) -

In each of these equations, the indeterminary is understood to be the maximum of
the indeterminacies of both sides of the equations.
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Proor. The various parts of this corollary follow from the theorem and the
following commutative diagrams:

AL Ct DA E
1. 1l It IR R

B> C5 D E

A-L> Bk, Dt E

2. 1] le vt
AL, Cts DX E

A-L> Bt C¥s E
3. 1 1 Ik It

A-LsB-& C-2 D
4. ootk

3. Triple Products in the Steenrod Algebra.

In this section we shall use the results of the previous section to define triple
products in the Steenrod algebra. Let o, 8,y € .2 (p) be elements of degrees n, m,
and r respectively, and suppose Ba=0 and yf=0. Regard o as an element
of [HZ,HZ,]_,, B as an element of [HZ,HZ,]_,, and y an element
of [HZ,HZ,]_,. Then by the results of the previous section, the triple
product (y,B,a) is defined and is an element of [HZ,HZ,_,_,_, .,
=[HZ,HZ,]_ 4+ m+r-1) modulo indeterminacy.-Thus {y, B,a) is an element
of &/ (p) modulo indeterminacy of degree n+m+r—1. The indeterminacy is
Hoa+y. Thus (y,B,a)> is a well-defined element of

A (p)/ (A (p)a+ys (p)) -

Let o € o/ (p). Regard o as a map a: HZ, - HZ , and let E, be the mapping
cone of . We can think of E, as the stable analog of a two-stage Postnikov
system, with k invariant «. We shall show that we can get information about
the structure of H*(E,; Z,) as a module over ./ (p) from the triple product
structure of o7 (p).

Consider the following exact triangle:

HZ, %> HZ,
R/

E

a
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Passing to cohomology, we have

oA (p) = HZ *HZ, <~ HZ *HZ, = </ (p)
pt i*
HZ, *E,
Let f € o/(p) be such that fa=0. Then o*(f)=pa=0, so, by exactness, f
=i*(x) for some x e HZ ,*E,. Let y € .« be such that y=0, and consider y- x.
We have
i*(y-x) = yi*(x) =y =0,

so, again by exactness, y-x=p*(y) for some y € .&/(p).

TueoreM 3.1. The indeterminacy in the definition of v is da+y.o/, and
y={<y,B,a> modulo this indeterminacy.

Proor. Consider the following diagram:

HZ,-*» HZ, %> HZ, > HZ,

AT

Ea 7—) HZP

Regard x and y as maps x: E, > HZ, and y: HZ, - HZ, Then since f
=i*(x) and y-x=p*(y), this diagram is homotopy commutative. The theorem
then follows from Theorem 2.1.

As a corollary, we have the following result of Kristensen and Pedersen.
(They prove this for the case p=2 in [8, Theorem 3.1], but their proof works
equally well for odd p.)

CoROLLARY 3.2. Let a € o/ (p), and consider the stable two-stage Postnikov
system

HZ, 5 E
lp
HZ,-*> HZ,.
Let x € H*(E; Z,) be such that i*(x) %0, and let y € o/ (p) be such that i*(y- x)
=0. Then
VX = pry,i*(x), 0.

Proor. Let f=i*(x). Then fa=a*(f)=a*i*(x)=0, and yf=yi*(x)=i*(y-x)
=0. Then the result follows from the theorem.

Math. Scand. 55 -- 14
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THeorEM 3.3, (y,B,Sq'> =0 for any B,y € .«/(2) such that fSq'=0 and
yB=0.

Proor. Consider the exact triangle

HZ, 3%, HZ,

NV

E
Passing to homotopy, we have the exact sequence
— m(HZ,) “*> m,(E) 2> n,(HZ,) — m,_,(HZ,) —
Since n;(HZ,)=0if i+0 and ny(HZ,)=Z,, it follows that n;(E)=0if i+0 and
no(E)=2Z,®Z,or Z,;thatis E=H(Z,®Z,)=HZ, AHZ, or E=HZ,. But if
E=HZ, A HZ,, then this exact triangle is trivial, and therefore Sq' =0. Since
Sq! +0, it follows that E=HZ,.

We therefore have
HZ, % HzZ,

N/

Passing to cohomology with Z,-coefficients, we have

H*(HZ,) <% H*(HZ,)
p* "t
H*(HZ,)
Let x e H*(HZ,) be such that i*(x)=f. Then by Theorem 3.1,

yXx = p*(y,ﬁ,Sq‘) .

But HYHZ,; Z,)=lim,, H""*(Z,,n; Z,), and by Serre’s results on
H*(Z,,n; Z,) [9], we know that y-x=yB=0. Thus <y,B,Sq')>=0.

As another application of Theorem 3.1, we shall show that the existence of a
four-stage Postnikov system implies the vanishing of a certain triple product.

THeoreM 3.4. Consider the following diagram of spectra and maps of spectra:

HZ, %> E,
ll’s
HZ,-2> E, > HZ,
le
HZ, “, E, %, HZ,
lPx
E, "> HZ,
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Here E,=HZ, and

J 1‘—"—’HZ

\/

is an exact triangle for j=1,2,3. Let a=t,, B=1,i;, and y=14i,. Then
o, B,y € A (p), y,B,0) is defined, and <{y,B,a> =0 modulo its indeterminacy.

Proor. The fact that the three triangles are exact implies that fa=0 and
yB=0. Taking cohomology with Z, coefficients we have the following

o (p) < H*(E,)
. Tps .
A (p) «2— H*(E,) <=~ o/ (p)
I
2 <~ H*(E,) «*% o/ (p)
Tot .
A(p) <L o (p)

Now t¥(1)=a, ift¥(1)=p, and ift¥(1)=y. Let
u;, = t3(1) € H*(E,).
T i%(u,)=i*c*(1)=p. Since
itru)=yif) =y B =0,

we have y-u, =p¥(y) for some y € o/ (p). By Theorem 3.1,.y € <{y, B, ).
Let u,=1t¥(1) € H*(E,). Then i¥(u,)=y. Thus

viuy =y 1i(1)
=301

()

33 (uy)

=0.

I

I

Thus we may choose y to be 0 € o/ (p); that is, 0 € {y, f,a). This proves the
theorem.

E. Thomas has computed the stable Postnikov tower for BO(n) [2, pp. 132-
150]. The first few terms look like this:
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K(Zn+7 -5 E,

) ll’.x ]
K(Z,n+3) 25 E, — 5 K(Z,n+8)
) ll’z
K(Zpn+1) -4 E, —1= 5 K(Z,n+4)
ll’t

K(Zyn) ~I5 K(Zyn+2)

Thomas shows that j, =Sq?, j,i, =3,Sq? and jsi, =3, Sq*+ 5P}, where 3,
and J, are the appropriate Bocksteins. When we pass to cohomology with Z,
coefficients, we have j*=Sq2, (j,i,)* =Sq'Sq*=Sq?, and (j;i;})*=5q'Sq*+0
=Sq%. Thus we have the following results, due to Kristensen [5]:

CoroLLary 3.5. {8q°,8q* Sq?> =0.
CoROLLARY 3.6. <y, 8,Sq?> =0 for any B,y € .o/ such that Sq*=0 and yf=0.

Proor. Toda [13] has shown that the following sequence is exact:

A ——S o
Sq*? |-sd?
A|ASQ" e A/ ASQ"

Since iSq? =0, there is an a € .o/ such that f=aSq>. Then 0=y =yaSq>. Thus
there is a b € .o such that ya=5bSq>. Then by Corollary 2.8, we have

.B,89*) = {y,48q*,8q*)
= (ya,5¢*Sq*)
= (bSq?Sq’,Sq?)

b{Sq>Sq’ Sq*>

=b0=0.

Note that the maximum indeterminacy is that of the first triple product, ./Sq?
+7v./. Thus <y, B,Sq?> =0 modulo its indeterminacy.

4. Triple Products and the Canonical Antiautomorphism.

_ In this section we shall study the effect of the canonical antiautomorphism of
the Steenrod algebra on triple products. We shall use the Pontrjagin duality
functor of E. Brown and M. Comenetz. First, let G be an abelian group. Recall
that its Pontrjagin dual is the group

¢(G) = Hom (G,R/Z) .
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This duality functor has the following properties:

If pis a prime, ¢(Z,)xZ,

If G is finite, ¢(G)~ G noncanonically.
If G is finite, cc(G)~ G canonically.
c(Z)~R/Z.

R -

E. Brown and M. Comenetz [3] have shown how to define the Pontrjagin
dual of a spectrum. It is defined as follows: Let E be a spectrum. If ¢(E) is the
dual of E, then we want

c(E)*(X) = ¢(E, (X))

for all spectra X. So we define ¢(E) to be a spectrum that represents the
cohomology theory c¢(E,(+)); by the stable version of the Brown
Representation Theorem, such a spectrum exists. (See, for example, [I1,
Theorem 3.12, p. 156].) Then ¢(E) is called the Pontrjagin dual of E. Note that
¢(E) is not canonically defined. Brown and Comenetz then show how to make
¢ into a functor (non-canonically); that is, given a map f: E — F, they define a
map ¢(f): ¢(F) — c(E). They then show that ¢ has the following properties:

THeoreM 4.1. (1) ¢ is an additive, antiexact, contravariant, degree-preserving
functor. (A contravariant functor c: & — &, where & is the stable category, is

called antiexact if, whenever X > Y %5 Z % X is an exact triangle, then so
is c(X) <YL ¢(Y) 98l ¢(Z) <= (X))

(2) Call E an f-spectrum if m (E) is finite for all q. If E is an f-spectrum, then
cc(E) is naturally equivalent to E.

(3) If E, and E, are f-spectra, then c¢ induces a homomorphism
¢: [Ey, Ely » [e(Ep)c(Ey]y
which is an isomorphism
(4) If E is an f-spectrum, then
n,(c(E)) = n_,(E) forallq.
In particular, if G is a finite abelian group, then c(HG)~ HG.

(5) Choose c(HZ,) to be HZ,. Then if f: HZ, - HZ, is a map, the map
c(f): HZ, - HZ, is defined canonically. Furthermore, the isomorphism

¢:[HZ,HZ,], » [HZ,HZ],
is the canonical antiautomorphism of the Steenrod algebra

x: A (p)— A (p).
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Let A -L> B %5 C "> D be maps of spectra such that gf~« and hg~ *,
and consider the following homotopy-commutative diagram:

A-L>B-EtsC- D

N

Ef—rA

By Theorem 2.1, [a]=<{h, g, f> modulo indeterminacy. Now apply the functor
¢ to this diagram:

cA <L ¢B % ¢C «* ¢D

ST

CE; «-cA.
Since ¢ is antiexact, the triangle
cA = cE; - ¢B L5 cA

is an exact triangle. We therefore have the following homotopy commutative

diagram: .
cA —b cE,

S

cD s cC Tg—? cB “c‘f—’ cA
By Theorem 2.2, [ —ca] = —{cf, cg,ch). Thus we have
c<h,g, f> = cla] = [ca] = {cf,cg,ch) .

THEOREM 4.2. Let A 1> B %> C "> D be such that gf~ * and hg =~ . Then
<h,g, > =<cf,cg,ch).

. CoroLLARY 4.3. Let a, B, and y ¢ o (p) be such that fa=0 and yf=0. Then
X<y By = x(e) x(B), x ) -

Proor. Let A=B=C=D=HZ, and use part 5 of Theorem 4.1.

COROLLARY 4.4. {Sq!,B,a> =0 for any «, B € o (2) such that Ba=0 and Sq* B
=0.

Proor. Since x(Sq!)=Sq!, we have by Theorems 4.2 and 3.3,
2$8q', B,ay = xle), x(B), x(Sq")>

= (x(a), x(B)Sa">
=0.
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Therefore {(Sq!,B,a)=0.

CoroLLARY 4.5. {8q?, B,a) =0 for any o, B € o/ (2) such that Bo=0 and Sq>B
0.

Proor. Since x(Sq?)=Sq?, this corollary follows from Theorem 4.2 and

Corollary 3.6.

L

10.

11

12.

13.
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