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CAPACITARY INTEGRALS
IN DIRICHLET SPACES

TORBJORN KOLSRUD

Introduction.

In the present paper we deal with capacitary integrals in Dirichlet spaces.
This stems from a wish to generalize the following problem and its
consequences, and also to put matters in their proper context.

Let E be an open, say, set in R?, d=3, and define H(E) as the closure of all
C&(RY functions harmonic in E, with respect to the norm (f|Vf]?dx)*.
Characterize the points x such that the map f — f(x), fe H(E), is bounded in
this norm. In [17] the author proved that such points are precisely those for
which the harmonic measure 6% for E is of finite energy, and also that this was
equivalent to a certain Wiener criterion. At about the same time, Fuglede [13]
investigated the spaces H(E) from a fine-topological point of view.

Another interesting fact was that the Wiener criterion could be expressed by
means of certain capacitary integrals. With this tool, Adams [2] characterized
the obstacles for which the obstacle problem in the Sobolev space WJ2(Q2) has
a solution.

These results form the starting-point of this paper.

Here we will concentrate on the capacitary approach. In [19] we treat the
fine-potential theoretic aspects of the problem described. We also give a
general theory for fine superharmonicity in Dirichlet spaces.

The appropriate spaces in which to work are the so-called Dirichlet spaces,
originally introduced by Beurling and Deny. By results of Fukushima [14], this
is, under certain regularity conditions, equivalent to working with symmetric
Hunt processes, so the probabilistic theory is included, although the approach
of this paper is analytic and not probabilistic. In fact, a good deal of work had
to be done in order to “translate” the probabilistic theory to the usual set-up of
potential theory.

Although we build up the Dirichlet space W from a sub-Markov transition
function p(t,x, E) and not from a Dirichlet form as in [14], this is merely a
difference of exposition. We have however added some extra assumptions, viz.
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(a) the Green operator is proper, (section 1.2),
(b) the measures (t,x,.) are absolutely continuous for t>0, (section 3.1),
(c) the excessive functions are lower semi-continuous, (section 3.3).

The following are consequences of (a)-(c):

— The fine topology is generated by the excessive functions, which puts us in
a situation where we can use the axiomatics of Brelot [4]. (This follows from
(a).)

— From (b) follows that potentials of measures can be defined everywhere,
and not only quasi everywhere. We also get a simpler situation concerning
exceptional sets.

— Condition (c) implies that the balayage operation f — R s is an upper
capacity (with values in the lattice of excessive functions) for which the theory
in [11] is applicable. We will use this fact on several occassions below and in

[19].

A general theory with emphasis on fine topology and quasi topology in
Dirichlet spaces is sketched: In section 1 we construct the Dirichlet space, and
in section 3 we consider excessive functions and related concepts. In Theorem
3.10 we deduce the Choquet property, essential to fine-topological
considerations.

In section 2 we prove a strong-type capacitary inequality (cf. [1]) for
functions in the Dirichlet space W, and in section 4 we prove a converse result:
if u is excessive and a certain L2-capacitary integral of u is finite, then u € W.
We also consider a parallel of this result for non-linear potentials.

The fifth section is devoted to a study of the obstacle problem, which in its
turn means a closer look at the just mentioned functional R - We use the
Choquet capacitability theorem and the earlier results of sections 2 and 4 to
prove that for a large class of functions f, including the Borel functions, we get
a solution to the obstacle problem with obstacle f, if and only if the L2-
capacitary integral of f is finite.

Disregarding considerations of the measurability of the obstacle, this is
precisely the Adams result alluded to above.

Apart from the articles [2] and [17], referred to already, we would also like
to mention the work of Hansson [15], which has a lot in common with the
material in our sections 2 and 4.

The author considers it a pleasure to acknowledge the help he has received
from Lars Inge Hedberg and Bent Fuglede. Thanks also to Peter Sjogren for
helpful remarks.

This paper is a new version of chapters 1-5 in Research Report 1983:4,
Department of Mathematics, University of Stockholm, 1983.
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0. Preliminaries.

Throughout this paper, X will denote a locally compact Hausdorff space
with a countable base for its topology 7. We write C=C(X) for the
continuous and real-valued functions on X, C,=C,(X) denotes all compactly
supported functions in C, and C, = C_ (X) is the closure of C, with respect to
the supremum norm. That is, C_ consists of all continuous functions which
vanish at infinity. The Borel sets are denoted by #=%(X)=0(7), that is, # is
the sigma-closure of 9. We write .# =.#(X) for the class of (real-valued)
Radon measures on (X,4%). By the Riesz representation theorem, valid in
(X, B), {ue M: [ydlul<oo} is the dual of C. The g-algebra #* of universally
measurable sets is defined as the intersection . #B*, where 8" denotes the com-
pletion of # with respect to the measure u, and where u ranges over all
probability measures on (X, %).

Any function f:X — [—o00, +00] taken under consideration, is tacitly
assumed to be #*-measurable: f e #*. (As a general rule, we will write fe &
to indicate that f is measurable with respect to the o-algebra #.) Whenever
convenient, we may consider any u € .# as a measure on (X, %%*).

Given a collection o of measures of functions, we denote by o/ * (or &) its
positive members. In the case when o = .#, we denote by o/ (M) the class of all
ue .o/ carried by the (universally measurable) set M. We will use the notation
1,, for the indicator (characteristic function) of M. The restriction of a measure
u, or a function f, to M will be denoted by u| M or f'| M, respectively. As usual,
u* =max (1,0)=u v 0, and u~ = —min (4,0)= — (u A 0), denotes the positive
and negative parts of a function u. We will write E, —E, for the vector
difference of two sets: E;,—E,={x,—x,: x; € E;}, whereas E,\ E, is the
set-theoretic difference.

General references are Fukushima [19], Blumenthal and Getoor [3], Brelot
[4], and Fuglede [11]. On quasi topology, see also Fuglede [10, 12].

1. Construction of the Dirichlet space.

The construction to be outlined below is essentially equivalent to that in
[14]. For practical reasons we work with a sub-Markov transition function
instead of a Dirichlet form.

To clarify what is actually assumed, we mark the assumptions (A1), (A2), etc.

1.1. A sub-Markov transition function on (X, %) is a function
p=ptxE), t>0 xeX, Eec®
satisfying (A1)}-(A5) below.

Math. Scand. 55 — 7
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(A1) 0=ps=s1t,

(A2) p(t,x,.)e #, t>0, xeX,
(A3) p(t,.,Eye B, t>0, EeXB.
Defining

pSf(x) = L p(t,x,dy)f(y), feB%,

where p(t, x,dy) is the Radon measure given by (A2), we also assume that
(P),>o is a semigroup:

(A4) PiPs = Di+s t,s>0,

and that

(AS5) limp(t,x,") = 0,, xeX.
t|0

Writing p, =1, the identity (A4) is thus valid for all ¢,s=0.
The convergence in (AS5) means of course that p,p(x) > ¢@(x) for any
¢ e C(X).

1.2. We define the Green operator by

Gf=f pSfdt, fe®%,
V]

and we assume that G is proper:
(A6) K compact = Glg(x) < 00, VxeX.

(A6) says that E — Glg(x) is a Radon measure for all x.

This is the classical condition for transience. In [14], a less restrictive notion
of transience is employed, however.

We note that if p, satisfies (A1)-(AS5), then e”*p,, 1> 0, satisfies (A6). Thus
we have already taken care of the possible passage from p, to e”*p,.

Next we assume that a measure m € #* with suppm= X is given, such that
(), >0 is symmetric with respect to m; that is

(A7) f f-pgdm =f p.f-gdm, fge B%.
X X

1.3. We shall now introduce the Hilbert space W in which things will take
place. We note that by [14, Lemma 1.4.3], (p),>o is a strongly continuous
semi-group on L2(X,m), so the theory in Fukushima [14] is applicable. For
u=Gf, v=Gg, f,g=20, we define
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(L. (ulv) = j. Gf-gdm = J Gg fdm .
X X

It follows from the symmetry and the semi-group property that
,[X GUfi—f) (fi—f)dm 20, f,,f, € BY,

whenever this makes sense. Thus we may extend (1.1) to (extended) real-valued
functions Gf to get an inner product. The real Hilbert space obtained by
taking the completion of all u=Gf=G(f,~f,), f;, /20, such that [, Gf,f;dm
< 00 is denoted by W. This corresponds to the construction in [ 14, section 1.5],
and in the terminology of that book, (p,),», is transient and W an extended
Dirichlet space (see the remark following (A6)).

A further assumption to be made is that W be regular:

(A8) C,,NWis dense in C,, and in W.

1.4. By the results of Fukushima [14, Chapter 6], there is a Hunt process
(essentially a strong Markov process with right-continuous trajectories, see
Blumenthal and Getoor [3, p. 45]) on (X, %;) such that

p(t’x’E) = Px(Zl € E) ’

where Z, denote the process at time ¢, and where P, is the corresponding
probability law for a “particle” starting at x. (Here 0 is the point at infinity
(added as an isolated point in case X is compact), X;=XUJ, the
compactification of X, and %, the corresponding g-algebra.)

This means that the theory in Blumenthal and Getoor [3] is at our disposal.

1.5. ExampLEs. Let X =R? d=3; the case when the semigroup is given by the
normal density will be referred to as the Newtonian case. That is,

Y
p(t’XQE) = (2ﬂt)‘d/2J‘ exp(_lx .V| )dy ,
E 2t

and Gf is the classical Newton potential:

Gf(x) = L‘ b=y~ f () dy .

(Let us make the agreement that all “explicit” formulae are to be read modulo
constants of no importance.)
The scalar product is defined by
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ulv) = f Vu-Vvdx .
Rd

We obtain W by taking the closure of CY(R? with respect to the
corresponding norm. (The elements of W are known in the literature as BL
(Beppo Levi) or BLD (D as in Deny) functions.)

If we replace p, in this example with e ‘p,, we obtain the Sobolev space
W12(R9), with inner product

(ulvy) = J (Vu-Vo+uv)dx ,
Rd

and as above, we obtain the Dirichlet space when taking the closure of C$ (R
in this norm. (In this case, the assumption d > 3 is unnecessary.) After a Fourier
transformation, we get

.
(u]v) = J GB(1+ 1% de
Rd
which we recognize as a case of Bessel potentials. In fact, if we replace (1 +|¢|?)
by (1+|&%)% 0<a<1, this is also the scalar product of a Dirichlet space. This
is not the case when a> 1, however.
A fourth example is obtained from the I'-semi-group on [0, 00). If

xt—l

A (dx) = o

e *dx, x>0, t>0,

we can symmetrize 4, to get a convolution semi-group of probability measures
M, on X =R:

o0

pSf(x) = j fx+y)du(x),

- 00

where

wE = AP = (—ﬁl—éfj- = exp{—tlog (1 +£&)} ,

and where ji denotes the Fourier transform of a measure . The Dirichlet space
W is characterized by the inner product

00

(u|v) = f A(&)D(EW (E) dé

- 00

and

W= {udel?(YOd)}, ¥(©) =1+log(1+&%).
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(If ¢ is replaced by log (1+¢2), we do not obtain a transient case, see [14,
Example 1.5.2, pp. 38-40].)

We note that this is a limiting case of Bessel potentials.
—In all these examples, m is the Lebesgue measure.

1.6. The capacity of a compact set K in X is defined as
(1.2) capK = inf{||ul]® : ue Co(X)NW, uz1},

and cap is then extended as an outer capacity in the usual manner. The set
function obtained is a Choquet-capacity, see [14, Theorem 3.1.1]. We will use
the term “quasi everywhere” (g.e.) meaning outside a set of zero capacity; we
write “for q.e. x”, to be read “for quasi every x.” More or less by definition, in
view of (A8), functions in W are quasi continuous: Given ¢>0 and u € W we can
redefine u so that u| X \ e is continuous in the relative topology of X \ e, where
cape<e and e may be chosen as an open set.

Strictly speaking, it is of course a question of identifying abstract elements
with functions defined q.e. on X, but from (A8) we know that continuous
functions are dense in W.

We are always referring to quasi continuous representatives when speaking
of functions in W.

1.7. The following expression of the scalar product will be useful. Let
u,v € W and define, for t>0,

(1.3) E,(u,v) = 1 J (1—-pJu-vdm,
tJx

and

(1.4) E,(u) = E,(u,u) .

Then (see [14, section 1.3], and also [14, Lemma 1.5.4], where the proof is
carried out for the corresponding approximation with the resolvent)

(1.5) limE,(u) = ||ul?
t]0

and the limit is increasing. The symmetry of (p,) with respect to m yields easily
the following representation of E,.

(1.6) Eu) = %;JX . (u(x)—u(y) e, (dx,dy)

+%J u(x)*(1 —p(t, x, X)) m(dx) ,
X
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where a,(dx,dy)=p(t,x,dy)m(dx) is a symmetric Radon measure on X x X.
From (1.6) it is clear that every normal contraction operates continuously on W.
(The map u — Tu is a normal contraction if for every x, y in X, |Tu(x)| < Ju(x)|
and |Tu(x) — Tu(y)| = |u(x) —u(y)l.)

2. Capacitary integrals.
2.1. For a continuous function u in W, the estimate

t*cap (lu>1) < |u|?, 20,

is trivial. The following result shows that a strong-type estimate holds.
THEOREM. If u € W, then

2.1 j cap (lu|>t)dt*> £ const. ||u|?.
0

(Here dt®>=d(t?)=2tdt; the integral in (2.1) is called a capacitary integral.)

Proor. We start by proving that

22 Y, 2’"capA, £ const. |u|?,
where
2.3) A, = {x: 2"<Ju(x)|S2"*!}, neZ.

We may assume that u=0, and to avoid the term g.e., we also assume
ue CoNW.

Let H(s), se R, equal 1if 25554, 0if s<1 or s=8, and let H be linear
elsewhere so that H is Lipschitz with |[H'|| < 1. Then the map v — H(v) is a
normal contraction, so defining

u, = HQ "*'u),

u, € W. Further, u,=1 on A, and suppu,cK,={2""'susg2"*?}. In
particular,

24 capA, < |u,l*.
We shall now use (1.5) and (1.6) to obtain (2.2). Since (u,(x) —u,(y))*> +0 only if
(x,y) € (K, x X)U (X x K,), the symmetry of g, gives

1

? (un (x) —U, (y))zat (dx, dy)
t)xxx
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1

25) = f (1a(x) = 1y, (dx, dy)
K, xX

IIA

1
@y 7 j (u(x)—u(y)o,(dx,dy)
K,xX

becéuse u, is a normal contraction of 27"*1y, For the same reason,
1. 1

(2.6) —j Uy (x)*m,(dx) < (27" j u(x)*m,(dx) ,
t)x t Jk,

where we have written m,(dx)= (1 —p(t, x, X))m(dx).
From (2.5) and (2.6) it follows that

2.7 E,(u,) = 8'2’2"{}—J (u(x)—u(y))’o,(dx, dy)
2 K,xX

+1J u(x)zm,(dx)}.
t K,

Multiplying (2.7) by 22" and summing over n € Z, gives
(2.8) Y. 2*"E,(u,) £ 24-E,(u),

where we have used that ¥ 1 k,=3. The right-hand side of (2.8) is no greater
than 24-||lu|?, so, letting t | 0 in the left-hand side of (2.8) we obtain

(29 2 2%"lu,)i* < const. ful®,

by monotone convergence. Now (2.2) follows from (2.4) and (2.9).—Let q,
=cap 4, and b,=cap (u>2"). By subadditivity,

(2.10) b, £ Y a,
kzn
so that
(2.11) Z 22", < 2-22" Z a = Z a, Z 2%
n n kzn k nsk
= Z a, 2% Z 2% = iz a2 .
k jiso 3 k

Since the left-hand sides of (2.1) and (2.11) are comparable to each other, (2.2)
and (2.11) proves the theorem.

2.2. REMARKS.

1. Strong type capacitary estimates were originally introduced by Maz’ja in
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the Sobolev spaces W!-P(R") (see e.g. [20, Satz 4.1, pp. 92-94]) in connection
with the Schrodinger equation. If L= —(4+gq), where ¢ stands for
multiplication by the distribution g, one wants to know when L maps W!-2(R")
into its dual W~12(R").

If g=p e #*(R"), u#0, an easy application of the theorem shows that this
happens if and only if u(E)< A-cap (E) for all E € £.

2. If ue #™* and u(E)<cap (E) for all E € 4, then

r

J frdp = r u(f1>nd* < r cap (|f|>t)de* .
X 0

0

Let us write fe L%(X,cap) if this last integral is finite. (To the author’s
knowledge, this suggestive notation, which coincides with the usual one in case
cap is additive, i.e. a measure, is due to D. R. Adams [2]. Integrals of the type
& cap (If|>t)dt occur already in Choquet’s fundamental treatise [6, chapter
48], though.) It follows that

L*(X.cap) = () L*X,p)
u=cap

0=
where the right-hand side may be normed by sup, <q,,{fx /> du}*.

3. Clearly L?(X,cap) is not contained in W. For instance, any function f in
Co(X) is a member of the former space, but in general not of the latter. For a
“converse result”, see section 4.

4. In [18] we use capacitary integrals (with respect to condenser capacities)
to solve a problem on removable singularities for functions in the Sobolev
space W'P, 1 <p<oo.

See also the introduction and 4.4 below for further applications.

3. Excessive functions and related topics.

3.1. Our next objective is to introduce excessive functions. First however,
we add the following to our list of assumptions

(A9) p(t,x, E) = J p(t,x,y)dm(y), t>0,xeX, Ee%#.
E

In other words, p(t, x,dy) are absolutely continuous with respect to m, with
densities p(t, x, y) for all t>0. The symmetry condition then takes the form

(A7Y p(t,x,y) = p(t,y,x), mxm-—ae.,

and the semi-group property means that
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(A4y p(s+t,x,y) = jx p(s, x, 2)p(t, z, y) dm(z) .

The condition (A9) has an important consequence that concerns exceptional
sets. (For definitions, see [3, Chapter II].) It turns out that the notions of polar
sets, semi-polar sets and sets of capacity zero all coincide, and moreover, (A9)
is also necessary for this situation to occur; see [14, Theorem 4.3.4]. Thus we
may freely use the preferable adjective “polar” in place of the clumsier “of
capacity zero.”

(In [14] one uses the capacity obtained from the semi-group (e”*p,),» . This
capacity has, however, the same null-sets as the capacity used here (see [14,

Theorem 3.1.5, p. 68]), although these capacities are not comparable in
general.)

3.2. DerFINITION. A function f: X — [0, +00] is excessive (with respect to the
semi-group (p,) if

@ pf=f, t=0, and
(b) liIn pf(x) = f(x), xeX.
tl0

(3.1)

The class of excessive functions is denoted by &. We note that 1 € & and + o0

also. In view of (A9), the kernel of the Green operator is given by Green’s
Sfunction

G(x,y) = r p(t,x,y)dt,

0

so for y e .#* we may define the potential of u by

Gu(x) = L G(x,y)du(y) .

Then Gpu is excessive because

(e8]

p.Gu(x) = j jx p(s,x, y)du(y)ds T Gu(x), t10.

t

When u is absolutely continuous the definition of Gu agrees with that given in
section 1.1 (with du=f dm).

Without condition (A9), Gu will satisfy (3.1) q.e. This is rather much as in
[14]. It is convenient to have potentials Gu (and not only those of the form Gf,
f e B%) defined everywhere.
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3.3. The last assumption to be made is the following:
(A10) excessive functions are ls.c. ,

(lower semi-continuous). Then G1;(x)=0 for all x € X (E € #*), if and only if
mE =0, since by [14, Lemma 4.2.1], mE =0 iff G15(x)=0 for m-a.e. x. By (A10),
the set {G1;>0} is open, hence of positive m-measure if it is non-empty.
(Recall that supp (m)=X.) Thus m is a representing measure for (p,),»o. See
Blumenthal-Getoor [3, p. 196ff.].

In the sequel, we assume (A1)}-(A10) to hold unless otherwise is explicitly
stated.

3.4. Since m is representing, the theory developed by Doob and Meyer, see
[3, p. 196ff.], holds. This implies that & is a lattice with particularly nice
properties. For details on this, we also refer to Chapter 11.2-3 of the same book.

For a given function f; let f denote its L.s.c. envelope:

(3.2 f(x) = liminf f(y) .

y=x

For any family (u;) of excessive functions, we define
(3.3) Ay = (it}fui> .

Then A;u;e &, and there is a sequence (4;),,;<(u) with the same
pointwise infimum q.e. (Clearly u=inf,u; is super mean-valued, i.e. (3.1.a) is
fulfilled. Then i is finely continuous (section 3.8) and fulfils (3.1a), which is
known to imply that 4 is in &. In fact, # =lim, |  pu. — The regularization (3.2)
may just as well be performed with respect to the fine topology, see [19].) Also,
the function defined in (3.3) agrees with the pointwise infimum q.e. When the
index set is finite, there is no need for regularization; that is, in this case Ay,
=inf,u, In particular, u A v=inf (u,v) € & if u,v € &.

As to the pointwise supremum of a family of excessive functions, we must
demand that the family be pointwise upper directed. If this is the case, then

V u = supy,,
i i
is an excessive function.

3.5. For measures p € .# with [y G|u|d|u| < + 0o, we have, in analogy with
section 1.4,
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(34 I(p) = JGudu = Gul* 2 0.
More generally, for such measures,
(3:5) Jx pdp = (Gule), oeW,

and the energy I(y) is finite if and only if the measure u belongs to the dual W’
of W. We write & for the positive measures of finite energy. That is,

={ped* I(p<+o00}.

3.6. We know from section 3.2 that Gu e & for u e #*. Thus, by section
3.5, we have {Gu: pe &} NW.Butifu e N W, then (1.3) and (1.5) show
that the map ¢ — (u] ) is positive. Using the regularity condition (AS8), one
finds that this map is given by a positive Radon measure: (u| @)=y ¢ du, with
pe #ANW, and it follows that u=Gu. Hence we obtain the following
equivalent characterizations of ¥ N W:

(3.6) SNW={Gu:peé&} ={ueW: (ulp)20,pec W+}.

For this, cf. [14, Theorem 3.2.1].
Using (1.3)-(1.5), one sees that among excessive functions, the norm of W is
order preserving:

(3.7) [usv, u,ve #] = [ul=|vl].

In particular, ¥ N W is a hereditary subcone of &: If v in (3.7) belongs to W,
then so does u.

3.7. At this stage, an alternative way of defining W is available. By Yosida
[29, Chapter IX.11] there is a semigroup (q,),>o such that H = ¥ g, dt satisfies
G=H?, that is Gu=H(Hpy). (From the formulae given in [23], it is obvious
that (g,) inherits the relevant properties of (p,), such as symmetry, 0<q(t, x, E)
=<1, etc.) A simple calculation shows that j' xGu du=j x (Hp)? dm and W could
just as well be defined as the class of all u= Hf such that f e L*(X,m), as one
sees from a limiting argument. H can also be calculated directly from p,:

1 [~ dt
H=— j P -
Vado TYt
3.8. Because of (A6), Theorem I1.4.6. of [3] permits us to define the fine

topology as the coarsest topology making all excessive functions continuous.
Furthermore, condition (A10) ensures that the theory of Brelot [4, Chapters
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I-1II] can be applied. (The fine topology is the weak topology generated by
a positive cone of Ls.c. functions.)— As a consequence, all functions in W are
finely continuous q.e. (given u € W, there is a set e with cape=0 such that
u] X \ e is continuous in the relative fine topology of X \ e, [14, Theorem
4.3.2]). Using the probabilistic approach hinted at above, we may introduce
thinness, see [3, p. 79]. Since we do not need this concept itself at the moment,
rather its consequences, we content ourselves with defining it through the
classical characterization of fine neighbourhoods. V is a fine neighbourhood of
x € Vif and only if (V, the complement of V, is thin at x. See however Brelot
[4].

If A is any set, we define its base as the set b(4)={x € X: A4 is non-thin at
x}; the fine interior of A is denoted by A’ and the fine closure of A is the set 4
= A Ub(A). We note the Kellogg property: A\ b(A) is polar, see [3, Corollary
V.1.14].

3.9. The relation between the fine topology and the original topology of X is
perhaps best described by “quasi topological” notions. Let us say that a set E is
quasi open if

(3.8) infcap (E A w) = 0, o open,

A denoting symmetric difference. We can also define what it means for a set to
be quasi compact, quasi closed, quasi Borel or quasi analytic (analytic set

=Suslin set, see [6]) in exactly the same way. We remark here that because cap
is outer, we may replace (3.8) by

(3.9) infcap (w\NE) =0, wopen, w o E.

As for quasi continuity, a function u is quasi continuous iff u~!(V) is quasi
open for all open V<[ — o0, + 00]. That u is quasi ls.c. means that {u>A4} is
quasi open for all A, and similarly for quasi upper semi-continuous functions.

The quasi Lindelof property discovered by Doob [8] holds because m is
representing. Thus, for any family (V,, i € I) of finely open sets, one can extract
a sequence (i,),>; =I such that
(3.10) U Vvi\ U Vv, is polar .

nz1

iel

See [3, Chapter V.1.17, p. 203].

3.10. We shall use the Kellogg and quasi Lindel6f properties to prove the
following indeed useful result.
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THEOREM. The capacity introduced by (1.2) has the Choquet property, i.e.
given any number £>0 and any set Ec X, there is an open set w such that
X\ b(E)cw and

(3.11) cap(ENw) < ¢.
For Choquet’s original proof in the Newtonian case, see [5, Theorem 1].
Proor. For simplicity we write e(E)= X \ b(E). By the proof of [4, Theorem
1.3], we have
(3.12) e(ENE =« U {vevy} < CE,
where each Ve ¥ is of the form
V={u<A}NQ,

for some open set Q, some u € ¥, and some number A with A=infu(y),
y € ENQ. Using (3.7) and the balayage operation, defined in section 3.12
below, it is not hard to see that the u’s may be chosen from W, and this implies
that all Ve ¥ can be chosen as quasi open. By the quasi Lindelof property
(3.10) we can find sets V;,V,,... € ¥ such that U{Ve ¥ }\UPV, is polar.
This together with (3.12) and the fact that e(E) N E is polar, gives us an open set
w, with cap w,<¢/2 such that e(E)c U V,U w,, where ¢>0 is a given small
number. ,
Now choose open sets @y, ®,,... with V;cw; such that

cap (o;\ V) < 27D ix>1.

Then
e(E) c | w;.
0

For i=1 we get
ENw; = (ENV)U (EN(w;\V)) = EN(0,\V) = o\ V,,
since V<CE for all Ve ¥". Thus

cap<E Ny coi) S capwo+ Y, cap(w\V) < ¢,
i=0 i=1
so, with w=Ug w;, we have the desired set.

3.11. REMaARKk. It is well known that the Choquet property implies that the
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finely open sets are quasi open, and similarly for finely closed sets. Thus the
concepts “quasi continuity” and “fine continuity q.e.” are equivalent, and similar
statements may of course be formulated on semi-continuity. We refer the
reader to [4, Chapter IV]. — We mention also that if we use a semi-group of
the form (e 'p,),»o, then Choquet’s original proof carries over more or less
directly.

3.12. Let f: X — [0, +00] and define its reduced function R, by

(3.13) R,(x) = inf{v(x): ve &, v2f}.
Write also

(3.14) R} = R;,, AcX.

We have (see section 3.4)

(3.15 R, = N\ {veF:v2f},
and by Doob’s Theorem, [3, p. 203],

(3.16) R, =R, qe

(In fact, Rf=ﬁnelim inf,, R,(y); see [19]) Consider now the case of a
function u € &. Then

(3.17) Ri= A {veF:v=uon A}.

Clearly RZ<u. Furthermore, R2=u qe. on A. If u=Gpu, peé&, also
RA e #NW by (3.6) and (3.7). Hence, for some measure u* € &,

(3.18) R, = Gu'.

RZ is the outer) balayage of u onto A, and u* the (outer) balayage of u onto A.
One can prove that u* € £(A) and that

(3.19) W=t =@ pes.
This follows e.g. from [3, Theorem 1.11.4], and the Kellogg property.

4. Converse results on capacitary integrals.

4.1. The following theorem is the result referred to in section 2.2.4. As is
easily seen, it is best possible.

THEOREM. Let u € & and assume that

4.1) r cap (u>1t)dt? < 00.

0
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Then u € W and

00

4.2) lul? < const.J cap (u>t)dt? .

0

If u=Gu, p e MA~, and if for some finely closed set F
4.3) J cap{(u>t)NF}dr* < o,
0

then uf =RF ¢ W and

4.4 luf|? < const. j cap {(u>t)NF}de*.

0

Proor. Since the topology of X has a countable base, one can construct Gy,
u € &, such that Gu(x)>0 for all x € X. Then u,=u A (nGp) is in ¥ NW by
(3.7). Hence, for some pu, € &, u,= Gu,. Define

4.5) Ak = (D<u, <N keZ,

and let A, be the equilibrium measure for 4% That is, GA, =R and
4.6) cap Ak = I(¥) = j d, ,
X

since GA4,=1 q.e. on A% (That this holds can be seen e.g. from Lemma 5.2
below.) Then

I(hu'n) é 222"\[ d“n - 222“‘[ Ga‘kd.un

A
%

<2 {2"1 (M)*(J Gu, dﬂn> }

3
= { 2% cap A")*(j Gu, du,,) }
A
<

3 3
2{2 2% cap A’;} {Z f , Gttn du..}
k k An

Y
= 2{2 2% cap Aﬁ} I(u)*
k
so that

4.7 I(u,) S 4 Z 2%k cap A
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which follows after dividing by I(u,)* (which is finite) and squaring both sides.
Now

Y 2%*cap Ak < Y 2%*cap (u,>2Y
k k

< Y 2%*cap (u>2* < const. f cap (u>t)dt*,
k 0
so, since |u,|>=1(y,), we get

oo

Vi flu,)? £ const.j cap (u>t)dt® .
0

Thus, the assumption (4.1) shows that ||u,|? is uniformly bounded. Since u, 1 u,
it follows, using (1.3) and (1.5), that

oc

E®) £ const.J cap (u>s)ds?, >0,
(4]

by monotone convergence with respect to n. From monotone convergence
again, but this time with respect to a sequence ¢, | 0, we get

o0
lull> £ const. j cap (u>s)ds? ,
0

as n — 00, and this is (4.2).
To obtain (4.4) from (4.3), let (4,) be a sequence in & with GA, 1T Gu. Then

J‘ G/l,,dvTJ Gudv forallveE.
X X

In particular [y GA,dvF1 [y GudvF, for all v € &, which gives

(4.8) J GAF dv 1 J GuFdv, Vveé.
X X

Now [ #dAf={ 4npdAf, and the calculation preceding (4.7) carries over with
the result

4.9) 1(,) < 4 2*cap (AkNF),
3

so, writing u,=GAF, we get

sup |u,|| < const.
n

Thus jqu dv< 400 for any measure v of finite energy. It follows from
uniform integrability that u, — uf in L!(v) for any v € &, hence also for any
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signed measure with components in &. Recalling that {Gv: v € & — &} is dense
in W, and using that (Gv|v)={yvdv (v € W) for such measures v, we see that u,
tends to u” weakly in W as n approaches infinity. By the Banach-Saks Theorem
(see e.g. Rudin [22, Theorem 3.13]), there is a sequence of convex linear
combinations of the u,’s which is strongly convergent in W. A subsequence of
this one gives us a new sequence which converges also q.e. Clearly the limit

function has to be equal to u” q.e. Hence uf € W, and (4.4) should be clear from
4.9).

4.2. REMARKS.

1. The second part of Theorem 4.1 is an extension theorem in line with the
results of [17]. (See also [9, Theorem 1].) This is so because uf =u g.e. on F so
uf may be viewed as an extension of u|F from F to the entire space X.

2. An alternative to the second part of the theorem is as follows (suggested
by P. Sjégren). If u=Gpu, u € .#* (F) and if (4.3) holds, then (4.4) holds with uf
replaced by u — provided that u charges no polar set.

In this case one can choose A,=pu|{Gu=n}. Then A,1u because u({Gu
=00})=0.

3. The proof of Theorem 4.1 is essentially the same as the proof of the first
part of Theorem 2 in [17].

4. We return to the condition u < cap, from section 2.2.3. If this condition is
satisfied for a given positive measure y, and if also u(X)< oo, then u is of finite
energy. This can be seen as follows. Let fe W™ and assume | f||=1. Then

j fdu =I fdu+j fiu < u(X>+j £ du
X {1} {f>1} , X

00

= u(X)+j p(f>nde < u(X)+r cap (f>1t)dt?
0 0
< u(X)+const. | f||* = const.,

so u € W', and consequently u € &.

4.3. In [17] we mentioned (Remark 1, Section IV) that this technique can be
used also in non-linear potential theory. (The phrase about extension theorems
is, however, not entirely correct, which we take the opportunity to adjust now.)
To illustrate this, let K be a symmetric and positive kernel on R? x R%, and
define

Ku(x) = JK(x,y)du(y), pe#(RY.

Math. Scand. 55 — 8
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‘We do not specify what K must satisfy, but one could think of a Riesz kernel,
K(x,y)=|x—y|* ¢ 0<a<d. The non-linear potential of u is defined by

Vu = Vg o= K{((Kpy ™'}, ne#*(RY,

where 1<p<oo and 1/p+1/p'=1. When p=2 and K is the kernel H
mentioned in section 3.7, we get the Green potential Gpu.
The energy is defined as

I(w = Ig () = JVudu-

By Fubini’s theorem, I(u)={ (Ku)” dx; hence, writing f=(Kup)* ~!, we have
fe L?, so Vu=Kfis an LP-potential (if I(u)< 00).

Capacitary estimates for LP-potentials have been obtained by Adams, Dahl-
berg, Hansson and Maz’ja. We refer to Adams [1] and Hansson [15] for
results analogous to our Theorem 2.1. For the theory of capacities, we refer to
[21] (in the case of Riesz potentials). Let u € .# * (R%. Define

A, = {Vpe[2n2"*Y}, neZ,

and let VA, be the corresponding capacitary potentials. Then, as in the above
Theorem 4.1, with C denoting a generic constant, with c , denoting (K, p)-
capacity, and with u,=pul| A4,

JVudu sCy 2"‘[.V,1,,dy,I =Cy? ‘[K#”-(K}_")p'—ldx

n

1/p’ 1/p
cy 2(J (K, dx> q (K/l,,)"“’"”dx)

1/p’
Ccy G (Ku.,)"') (2"Pck, H(An)''
. 1/p 1/p
C{Z f (Ku,)? dX} {Z 2""CK,,,(A..)}

1/p’ ] i/p
C{Z I(;t,,)} {‘[ ck (Vu>t) dt"} )
n 0

YIw,) = ZL Vudu = fVudu = I(p),

lIA

I

IIA

IIA

Again,

SO
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4.10) I(pw) = CJ cg (Yu>ryde? .

0
It follows from (4.10) that if pe .#*, [ ck,p(Vu>1t)dt? <00, and if for some
sequence (u,) with I(u,)<oo, Vu,T Vu, then I(u)<oo.

4.4. Let us, finally, see how the results from [17], mentioned in the
introduction, follows from Theorems 2.1 and 4.1. In this case W is the space of
BLD-functions in RY d >3, described in section 1.5, and H (E) is the class of
functions in W which are (finely) harmonic (q.e.) in the (finely) open set E.

From [17, Theorem 1], we know that the map f— f(x), fe H(E), is
bounded if, and only if, the harmonic measure for E at x, 6 £, is of finite energy,

or, equivalently, GS.¥ € W. The condition in [17, Theorem 2], for this to
happen was

cap (4,(x)\ E)
“1h 2 "cap (4,07

where A,(x) is the annulus {y: 27" ! <|x—y|<27"}. The nth term in (4.11) is
comparable to 22"~ cap (A4,(x)\ E). Since

GotE(y) = G(x,y) = Ix—yP"* forqe. yeCE,
we see that 4, (x)\ E is contained in the set where
2n(d-2) < G(SEE < 2(n+1)(d—2) .

The capacity of the latter set is certainly less than that of the set {GéEE
>2M4=21 50 the series in (4.11) is dominated by the series

z 22n(d-—2) cap ({655E> 2n(d—2)})

which is finite if GO'E € W, according to Theorem 2.1.
Conversely, if (4.11) holds, then an argument similar to that used in Theorem
2.1 shows that

4.12) Y 220¢-2) cap ({GSLE> 24 DI\ E) < 0.

The series in (4.12) is comparable to the capacitary integral [ cap ({GéiE
>t} \ E)dt?, so G6'E € W according to the second part of Theorem 4.1.

5. The obstacle problem in W.

We will treat the obstacle problem, well known (in the case of the Sobolev
space W) e.g. from the book [16] by Kinderlehrer and Stampacchia.
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Inspired by D. R. Adams [2], our aim is to connect the obstacle problem to
capacitary integrals.

~ 5.1. Define, for f: X — [ —o00, +00],
(5.1) K, ={veW: vzfqe},

and let 0 be a given element from the dual W’ of W. The obstacle problem in W
is to find u € K, such that

(5.2) (ulv—u) = <O,v—ud, vek,,

where (., .) is the duality bracket of W and W’, and where fis the obstacle. —
It is easily seen that this may be reduced to a homogenous problem after a
change of obstacle. We will therefore concentrate our efforts to this case; that
is: find u € K such that

(5.3) wlv—u 20, vek,.

We can assume that f>0.

5.2. Consider the set K ; and assume K+ . It is closed, because if (v,) =K
and v=Ilim,v, € W, then v=2inf,v,2f q.e. Clearly K, is convex. A standard
argument now provides us with a unique function u € K, with minimal norm
in this class. It is easily seen that this is the solution to (5.3), whenever such a
thing exists.

Now, consider this function u. By variation of ||u+t¢|2, t 20, ¢ arbitrary in
W*, one sees that (u|@)=0, so by (3.6), u € &. By definition of Rf, ugﬁf,
so (3.7) gives ||R,| < N

By uniqueness, u=R .

We have proved

LemMA. If K ;% (F, the solution to (5.3) is the function 1?,, and it has minimal
norm over the class K.

5.3. Lemma 5.2 motivates a closer look at the map
(5.9 [0, +0]%¥ 3 f— R,ey.

(We note in passing that R s may be finite g.e. although K = . The obstacle
|x|~! in the Newtonian case of R? gives an example.) In [11], Fuglede studies
capacities defined for functions rather than sets, and we will also use this
approach. As is pointed out in [12], one need not assume that the capacities
take their values in [0, + oo]; in fact, a lattice such as & may replace [0, + oo].
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(Consider the “ordinary” capacity f — [y R sdp, and let u vary over &) In
particular, R, defined by (5.4), is an upper capacity for which [11] is applicable.
That this is an upper capacity means, in complete analogy with the notion
“outer capacity”, that

(5.5) R, = A{R,:vlsc,v2f}.
To see that (5.5) holds, let & be the class of all 1s.c. functions =0. Then
Ri=A{peP:vz2f} = AR,:ve ¥ v2f} 2 A{R,:ve Z, v=f},

because by assumption (A10), ¥ = %. The opposite inequality is obvious, so
(5.5) follows.

5.4. We define 5, as the class of functions X — [0, +00] which are u.s.c.,
finite and compactly supported. A function f: X — [0, + 00] is # y-capacitable
(with respect to R) if

(5.6) R, = sup{R,:he #, h<f}.

We say that a function is an #,-Suslin function if it can be obtained from the
class s, using Suslin’s operation (A); see e.g. Choquet [6]. (Of course N and U
should be replaced by A and v.) It is easy to show that

(5.7) futf= R, 1R, .

From [11, Theorem 3.6 (a)] one also has (clearly the capacity cap considered
here is locally finite)

(5.8) [ha€ Ho by Lh] = [Ry, | R].

(In fact the proof of the invoked result carries over mutatis mutandis to the
situation considered here.) Thus, Choquet’s theorem is valid: All 5 ,-Suslin
functions are capacitable.

5.5. Suppose f € #,. Then K .+ &, so R, =Gy for some p € & (by Lemma
5.2). Our first objective is to characterize the carrier of u. Write u=R sand E
={u>f}. Then E is open. Choose ¢ € Cg N W supported in E. Then, if t>0 is
small enough, u—t¢e>f, that is u—tp € K,. Hence

lu—tol* = [ul?,

from which it follows that (u|@)<0. On the other hand, (u|p)=[x @ du=0, so
(u] @)=0 holds. It follows, writing ¢p=¢* —¢~, that this is true for all
¢ € C,N W, supported in E, hence also that supp u= X \ E. Since R r=R;qe,
{u<f} is polar, hence a null-set for u. Thus p is carried by the set {u=f}.

We have proved
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PrOPOSITION. If f € #,, then R r=Gu, p € &, where p is carried by the set
{Ry=f}.

5.6. We can now prove a variant of Adams’ result hinted at above.

THEOREM. For any 3 ,-capacitable function f: X — [0, +00], the obstacle
problem (5.3) has a solution if and only if [§ cap (f>t)dt* < co. In particular, this
holds for any # ,-Suslin, hence for any Borel function.

We can state this result in a more suggestive way. For f as above,

(5.9) R, e W< fe L*(X,cap).

ProoF. Assume that (5.3) has a solution, i.e. that R s € W. Since R s2fqe,
Theorem 2.1 yields

f cap (f>1)dt* < f cap (R, >1t)dt* < const. ||[R,|? < oo.
(V] (4]

For the converse, let f, € #,, n=1, 2,... be an increasing sequence with
anT R,zu. Put u, =an= Gu,, 1, € €. By Proposition 5.5, u, is carried by the
set F,={u,=f,}, so that u,=Guf Hence

(*oo

lu,> < const. | cap ({u,>t} NF,)dt?
0

(*oo

= const. cap ({f,>t}NF,)dt*

< const. | cap (f,>1t)dt?
Jo
(foo
< const. | cap (f>t)dt*,
J o

where the first inequality comes from use of Theorem 4.1.. Thus (u,),>, -is
uniformly bounded in W. From monotone convergence it follows that

E,(u) = imE,(u4,) £ const. for all t>0,

since u,ue ¥ and then (1-pJhu,-u,? (1 —p)u-u, as n approaches infinity.
That u € W follows upon letting ¢ | 0.

REMARKS.
1. Any quasi ls.c. function is #,-capacitable, and the same goes for quasi
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us.c. functions, provided they vanish sufficiently rapidly at infinity. See [11,
Theorem 2.5, Lemma 4.6]. Thus the Choquet property (section 3.10) implies
¢.g. that all finely ls.c. functions are #,-capacitable —in fact, finely ls.c. q.e.
suffices —so the theorem is valid for this class of functions.‘

2. One could also introduce the capacity of f via cap f=inf{|ull,u € K }.
Clearly K, is non-void if and only if cap f<co. This is the approach of Adams
[1, 2]. As was pointed out in [11], the functional f— cap f gives rise to a
Banach space £ (X,cap), say, defining cap f=cap (|f|) if f is extended real-
valued, and taking the quotient modulo those functions which vanish q.e. The
above Theorem 5.6 actually shows that £(X,cap) and L*(X,cap) are
equivalent Banach spaces, cf. [2, Theorem 1].

That R €W <« fe #(X,cap)in the case of Newton potentials was proved
in [11, section 6.7].

3. The estimates for the measure u given in [2, Theorem 5 and Remark 4]
(see also [16, Theorem 6.11]) carry over. In fact, some of the proofs are implicit
in section 4.

4. In [16, p. 40ff.], the obstacle problem is treated in the Sobolev space
W2 (Q), where Q<R" is open and bounded. (The inner product is (u|v)
= (o Vu-Vuvdx.) There is one difference compared to our setup, though. In (5.2)
and (5.3), the term (u|v—u) is replaced by a(u, v —u), where a is a bilinear form
on W?2(8), not necessarily symmetric.

One also assumes that a, or rather the differential operator associated to a, is
uniformly elliptic. This may be expressed by the condition that a(u,u) and lul?
be comparable, independently of u € W(8). In case a is symmetric, W§2(Q),
equipped with a(.,.) as inner product, is a Dirichlet space in the sense of this
article. See [14, p. 43] and also Dynkin [7, Chapter V].

We remark that under the uniform ellipticity-type condition, our theorem
carries over to the non-symmetric case as well by use of a well-known
perturbation argument. See [16, Lemma 2.2, p. 26].
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