A NOTE ON CONTINUITY OF
PSEUDODIFFERENTIAL OPERATORS
IN HARDY SPACES

LASSI PÄIVÄRINTA

The following sharp result concerning L_p-bounds for pseudo differential operators was proven by C. Fefferman in [3]: If T is a pseudo differential operator of class $L_{q, \delta}^{-m}$ where $0 \leq \delta < q \leq 1$ and $m \geq (1-q)n/2 - n/p$ then

\begin{equation}
T: L_p \to L_p, \quad 1 < p < \infty.
\end{equation}

Moreover, if $m \geq (1-q)n/2$ then

\begin{equation}
T: H_1 \to L_1.
\end{equation}

Here L_p is the Lebesgue space in \mathbb{R}^n and H_1 is the Hardy space in the sense of Fefferman and Stein (cf. [5]).

There arises the question if it is possible to extend this result to the case $0 < p < 1$ and further whether it is possible for $p = 1$ to have the same space of both sides. There is indeed a natural candidate for such a generalization, using the local or non-homogeneous Hardy spaces h_p (cf. [6], [10] or [12] p. 124).

We have not been able to prove this but only the following weaker result.

Theorem. Let $m \in \mathbb{R}, 0 \leq \delta < q \leq 1$ and $T \in L_{q, \delta}^m$. Then for all $0 < p, q, r < \infty$, $s \in \mathbb{R}$ and $s_1 < s + m - (1-q)n|1/p - 1/2|$ it holds

\begin{equation}
T: F_{pq}^s \to F_{pr}^{s_1}.
\end{equation}

For the definition and properties of Triebel spaces F_{pq}^s we refer to [9] or [12]. Note that $h_p = F_{p2}^0$ for $0 < p < \infty$.

Remark 1. For $s_1 > s + m - (1-q)n|1/p - 1/2|$ the claim is clearly false.

Remark 2. We recall that a symbol $r(x, \xi)$ is said to be in class $S_{q, \delta}^m, 0 \leq \delta \leq 1$, if

Received December 15, 1983; in revised form March 20, 1984.
\[|D_x^\alpha \partial_x^\beta r(x, \xi)| \leq C_{\alpha \beta} (1 + |\xi|)^{m + |\beta| - \varrho |\alpha|} \]

holds for any multi-indexes \(\alpha \) and \(\beta \) and for each pair \((x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n \). If \(r(x, \xi) \in S_{\omega, \delta}^m \) we say that the corresponding pseudodifferential operator \(r(x, D) \) belongs to the class \(L_{\omega, \delta}^m \).

Proof of Theorem. If suffices to show that

\[T: F_{pq}^s \rightarrow F_{pq}^{s_1} \quad \text{for } s_1 < s + m - (1 - \varrho)(n/p + \text{const}) \]

In fact, if we combine this with Hörmander's \(L_2 \) estimate (cf. [7])

\[T: F_{22}^s \rightarrow F_{22}^s, \quad T \in L_{\omega, \delta}^0 \]

the desired result follows by non-trivial interpolation (cf. [4] or [12 p. 73]). Thus for (1) it is sufficient to prove the following lemma.

Lemma. Let \(T \in L_{\omega, \delta}^{-\infty}, 0 \leq \delta < \varrho \leq 1 \) and \(m \geq (1 - \varrho)(n/\min (p, q) + n + 1) \). Then for all \(0 < p, q < \infty \) and \(s \in \mathbb{R} \)

\[T: F_{pq}^s \rightarrow F_{pq}^s . \]

Proof. For simplicity we suppose that \(s = 0 \). We write \(r(x, D) \) for \(T \). Let \((\varphi_k) \) be the sequence of test functions as in the standard definition of \(F_{pq}^s \) (cf. [8]). What we should do is to estimate the norm

\[\| (\varphi_j(D)r(x, D)f(x)) \|_{L_p^\infty}^{j=0} \|_{L_p^\infty} \]

by the norm \(\| (\varphi_j(D)f) \|_{L_p^\infty}^{j=0} \|_{L_p^\infty} \). Thus the main task will be to commute the operators \(\varphi_j(D) \) and \(r(x, D) \). We shall do this in the well-known manner by first invoking the Leibniz rule (cf. [11 p. 46]).

\[\varphi_j(D)r(x, D) \sim \sum_{\beta \geq 0} \frac{1}{\beta!} r_{(\beta)}(x, D) \varphi_j^{(\beta)}(D) . \]

Here we have used the notation \(p_{(\beta)}^{(\varrho)}(x, \xi) = D_x^\beta (iD_\xi)^\varrho p(x, \xi) \).

Next we choose another sequence of test functions \((\psi_j) \) with \(\psi_j(D) \varphi_j(D) = \varphi_j(D) \) valid for all \(j \). Moreover we suppose that \(\psi_j(\xi) \) is supported in a set where \(|\xi| \sim 2^j \). To estimate \(r_{(\beta)}(x, D) \varphi^{(\beta)}(D)f(x) \) we write it in the integral form

\[r_{(\beta)}(x, D) \varphi^{(\beta)}(D)f(x) = \int K_\beta^j(x, y) f_j(y) dy \]

where \(f_j = \psi_j(D)f \) and

\[K_\beta^j(x, y) = \int e^{-i(x-y)\xi} r_{(\beta)}(x, \xi) \varphi_j^{(\beta)}(\xi) d\xi . \]
For the kernel \(K^j_\beta(x, y) \) we can get the following estimate

\[
|K^j_\beta(x, y)| \leq C_\lambda \frac{2^{jn}}{(1 + 2|x-y|)^\lambda}, \quad \text{for } \lambda \leq [m]/(1 - q).
\]

Namely, by partial integration one obtains for each \(\alpha, |x| \leq [m]/(1 - q) \)

\[
|(x - y)^\alpha K^j_\beta(x, y)| \leq C_{2\beta} \sum_{\gamma \leq \alpha} 2^{jn} (1 + 2^j)^{-m+(1-\alpha)} 2^{-j|\alpha|} \leq C_{2\beta} 2^{jn} 2^{-j|\alpha|}.
\]

By using \(\lambda > (n/\min (p, q)) + n \) it follows from (2) and (3) that

\[
|r_{(\beta)}(x, D)\varphi_j^{(\beta)}(D)f(x)| \leq C f^*_j(\mu, x)
\]

with \(\mu > n/\min (p, q) \). Here \(f^*_j(\mu, x) \) is the Fefferman-Stein maximal function defined by

\[
f^*_j(\mu, x) = \sup_{y \in \mathbb{R}^n} \frac{|\varphi_k(D)f(y)|}{(1 + 2^k|x-y|)^\mu}.
\]

Hence, if we write

\[
\varphi_j(D)r(x, D)f(x) := \sum_{|\beta| < N} \frac{1}{\beta!} r_{(\beta)}(x, D)\varphi_j^{(\beta)}(D)f(x) + R^N_j f(x) := g^0_j(x) + g^1_j(x)
\]

we obtain from the Fefferman-Stein-Peetre inequality (cf. [5], [9] or [12, p. 47]) that

\[
\| (g^0_j(x))_{j=0}^\infty \|_{L_p(\mu)} \leq C_N \| f \|_{F^p_{\omega}}.
\]

It remains to give a similar estimate for the remainder \(R^N_j f(x) \). In order to do that we write \(R^N_j f \) in the form

\[
R^N_j f(x) = \int e^{ix(t + \xi)} \hat{f}(\xi)p^N_j(\eta, \xi) d\eta d\xi
\]

where

\[
p^N_j(\eta, \xi) = \hat{r}(\eta, \xi) \left(\varphi_j(\eta + \xi) - \sum_{|\beta| < N} \frac{1}{\beta!} \varphi_j^{(\beta)}(\xi)\eta^\beta \right)
\]

and \(\hat{r}(\eta, \xi) \) is the Fourier transform of \(r(x, \xi) \) with respect to \(x \). By using Lagrange's remainder term in Taylor's formula and by taking \(N \) large enough one can prove that

\[
\| (g^1_j)_{j=0}^\infty \|_{L_p(\mu)} \leq C \| f \|_{F^p_{\omega}}.
\]

For the details cf. [8].
Remarks. The use of interpolation yields the corresponding result for Besov spaces.

Finally, we ask whether Fefferman's theorem remains true if $0 \leq \delta < q \leq 1$ is replaced by $0 \leq \delta = q < 1$ or more generally whether the following result holds: Supposing $0 < p < \infty$, $0 \leq q < 1$ and $T \in L_{q,e}^{(1-e)\frac{1}{p-1/2}}$ we have

$$T: h_p \rightarrow h_p.$$

For $p = 2$ this is true according to theorem of Calderón and Vaillancourt (cf. [1]). For $1 < p < \infty$ and $q = 0$ it is proved by Coifman and Meyer in [2 p. 140].

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HELSINKI
HALLITUSKATU 15
00100 HELSINKI 10
FINLAND