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FUNCTION SPACES AND
HURWITZ-RADON NUMBERS

M. C. CRABB and W. A. SUTHERLAND

1. Introduction.

One aim of this paper is to classify the path-components of function spaces
in which the target spaces are projective spaces. We consider classification
under various equivalence relations ranging from homotopy equivalence to
isometry. It is interesting that whenever we know the answers they are the
same for all the equivalence relations considered. This was also the outcome in
[18], where a similar project was undertaken with spheres as target spaces.

Let M (X, Y) be the space of all continuous maps from a space X to a space
Y, equipped with the compact-open topology. Let RP", CP" denote real,
complex projective n-space. We give explicit classifications for the path-
components of M(S,CP") where S is any closed connected surface, and of
M(CP,CP"), M(RP",CP") and M (RP’",RP") for certain values of r and n. When
the domain is RP", there is an interesting connection with Hurwitz-Radon
numbers (Propositions 2.3, 2.4).

These results are obtained as corollaries of a more general study.
Throughout the paper we shall assume that X is a connected, finite CW-
complex. Let ¢ be a vector bundle over X and P¢ the associated projective
bundle. Instead of the above function spaces, we may consider the space I'P& of
all cross-sections of PE&. In the special case when £ is a trivial real or complex
(n+1)-plane bundle, I'P{ may clearly be identified with M(X,RP") or
M(X,CP"). We may try to classify the path-components of I'P{ under the
same equivalence relations as before. The results we get are sufficient to deduce
the classifications mentioned in the previous paragraph. These could be
obtained within the narrower context of function spaces, but with no less effort.
Moreover (see sections 2—4) our approach uses I'P¢ for non-trivial £ even in
studying function spaces.

Part (a) of Proposition 2.1 below answers a question of Graeme Segal, who
gave an elegant proof when S is a 2-sphere (private communi'catiqn). We are
grateful to him for raising the question. We are grateful also for the stimulus of
papers by Vagn Lundsgaard Hansen on function spaces, and to Ronnie Brown
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for drawing our attention to [14]. Some of our results are similar to those in
[14], and we acknowledge our indebtedness to that paper.

Since this paper was written, Jesper Michael Mgller has kindly sent us
preprints in which he studies questions similar to those in this paper, and in
particular he independently proves Proposition 2.2, by methods which are
somewhat different from those used here.

2. Results on path-components.

Throughout the paper, H*(-) denotes cohomology with integer coefficients,
and ¢ (¢,) denotes a trivial vector bundle over any base space (with fibre the
vector space V). We shall use the symbol = for an isomorphism between
vector bundles, and the (now standard) abbreviation “section” for “cross-
section”. Since all the spaces we consider are easily seen to be locally path-
connected, we may accurately write “component” for “path-component”.

In this section we state results relating to the classification of components. A
few further results on the homotopy theory of spaces of sections may be found
in section 8. At the end of this section we give the layout of the paper.

We begin with the explicit classifications mentioned in section 1. As in [18]
our function spaces admit more refined structures. The standard metric on the
sphere S" (or §2"*1) gives rise to a metric on RP" (or CP"). Using this metric on
the targef and assuming that the domain is compact, we may metrize each of
our,function spaces by the sup metric. Also, by Eells [5], each may be given the
structure of a smooth manifold modelled on a separable Banach space. We
shall say that two components are strongly equivalent if they are isometric and
diffeomorphic.

First let § be a closed connected surface. Let M, (S, CP") be the component of
M(S,CP") consisting of all maps whose degree in integral 2-dimensional
cohomology is k. Here k is an integer for S oriented and a mod 2 integer for S
non-orientable. The following proposition was known for n=1 ([9], [18]).

ProrosiTioN 2.1. (a) If S is oriented then M,(S,CP") and M,(S,CP") are
strongly equivalent for k= +1, and not homotopy equivalent otherwise.

(b) If S is non-orientable then M,(S,CP") and M,(S,CP" are strongly
equivalent for n odd and not homotopy equivalent for n even.

Graeme Segal proved (a) for S a 2-sphere by showing that then
H?"(M,(S,CP)) is cyclic of order |k|(n+1), for k0. This will also be
proved in a forthcoming paper by Jesper Michael Maller.

It suggests the next proposition, in which k again denotes degree in integral
2-dimensional cohomology. The result was known for n=1 ([20], [13]).
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ProprosiTiION 2.2. Let 1<r<n. Then M,(CP",CP") and M,(CP",CP" are
strongly equivalent for k= +1 and not homotopy equivalent otherwise.

Next we take the domain to be RP". Let a, ., denote the order of [H] —[&g]
in the Grothendieck group KO(RP"), where [H] is the class of the Hopf line
bundle. Similarly let b, ,, be the order of [H® C] —[ec] in K(RP").

Prorosition 2.3. Let r>0. The components of M(RP",RP") are strongly
equivalent if n+1 is divisible by a,, . Provided r<n—1, the two components
of M(RP",RP") are homotopy equivalent only if n+1 is divisible by a,, ,.

ProprosiTiON 2.4. Let r>1. The components of M(RP",CP") are strongly
equivalent if n+1 is divisible by b, , . Provided r <2n—1, the components are
homotopy equivalent only if n+1 is divisible by b, , ;.

The case r=2 of Proposition 2.4 follows from Proposition 2.1(b), which
originally suggested Proposition 2.4 and thence Proposition 2.3.

As mentioned earlier, Propositions 2.1-2.4 are corollaries of results on
spaces of sections. Before stating these we introduce some notation. Let & be a
real or complex vector bundle over X equipped with a Riemannian or
Hermitian metric. We write S¢ for the sphere-bundle associated with &, and
RP¢, CP¢ or simply P& for the corresponding projective bundle. One may
study the spaces of sections I'S¢, 'RP{, 'CP¢ each equipped with the
compact-open topology, and we touch on the homotopy theory of all three.
Our methods work best for 'CP¢, so unless the contrary is stated, from now
on ¢ will denote a complex (n+ 1)-plane bundle over X equipped with a
Hermitian metric, P¢ the associated complex projective bundle, and H, the
Hopf line bundle over P¢.

When we study the component in I'P¢ of a section s, it is convenient to
assume that s arises from a section of S¢.

LEMMA 2.5. A section s of PE lifts to a section of S¢ if and only if s*H, is
trivial.

We write N¢ for the space of all such sections. Notice that N¢ is a union of
components of I'P&. As on p. 236 of [14], we may always assume that s is in a
space of type N& provided we are willing to replace £ by A® ¢ for some line
bundle A over X. The study of I'P¢ for a given ¢ thus reduces to the study of the
spaces N(A® ¢) for all line bundles A over X. (We present this in detail in
section 3.) Because of this, most of our remaining results are stated in terms of
N¢
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The advantage of working with N¢ is indicated by the next result, which is a
key ingredient in our approach (cf. [14] in the real case).

PROPOSITION 2.6. Let G=M(X,S"). Then G is a Lie group (in general infinite-
dimensional) which acts on I'SE by complex scalar multiplication, and N& may be
identified with the orbit space I'SE/G. The resulting projection of 'S¢ to N¢ has
the structure of a smooth locally trivial principal G-bundle.

Next we decribe the components of N&. As usual, ¢;¢ denotes the ith Chern
class of ¢ with integer coefficients. Proposition 2.7 follows from Proposition 2.6
and well-known facts about S¢, except for the description of n, in (b), which
we prove in section 7.

ProrosiTioN 2.7. (a) If dim X <2n+1, then N& is connected.

(b) If dimX<2n+2, then N& is non-empty and my(NE)
~H* 1 (X)/c,&. H (X).

(c) If dim X <2n+3, then N¢ is non-empty if and only if c,,,£=0.

Recalling that & has a Riemannian or Hermitian metric, we can give each of
our spaces of sections the structure of a metric space and of a smooth manifold
just as in the case when ¢ is trivial (cf. [6, p. 779]). Strong equivalence then
makes sense for spaces of sections. The next proposition lists some easy
sufficient conditions for equivalences between spaces of the type N&. As usual,
& denotes the bundle conjugate to ¢&.

ProvposiTioN 2.8. (a) If & and n are isomorphic then N¢ and Nn are strongly
equivalent. '

(b) N& and NE are strongly equivalent.

() If @: Y— X is a homotopy equivalence then N (@*&) is homotopy
equivalent to N¢&.

Part (a) is immediate. The proofs of (b) and (c) are straightforward and will
be omitted.

We shall later need to choose basepoints in spaces of sections. The next
proposition follows from more elaborate results stated and proved in section 5.

ProPosITION 2.9. For any two points s,, s, in the same component of I'SE (or
N&) there is a strong equivalence of I'SE (or N&) which maps s, to s;.

Now we come to the main results on N¢&. First, here is a partial converse to
Proposition 2.8(a).
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THeoREM 2.10. Suppose that dim X <2n—1 and that &, ¢ are complex (n+ 1)-

plane bundles over X with ¢ trivial. If N¢ and Ne are homotopy equivalent then &
is trivial.

For any complex line bundle A over X let M, be the subspace of M(X,CP")
consisting of all maps fsuch that f *H = A, where H is the Hopf line bundle over
CP". When dim X <2n+1 the M, are precisely the components of M (X, CP").
In section 4 we deduce the following corollary of Theorem 2.10 and show how
it illuminates the appearance of Hurwitz-Radon numbers in Proposition 2.4.

COROLLARY 2.11. Let A, u be complex line bundles over X. If (n+DA and
(n+ Dy are isomorphic then M, and M, are strongly equivalent. If dim X <2n—1,
if u is trivial and M is homotopy equivalent to M, then (n+1)A is trivial.

The next theorem is similar to results in [9], [14]. In the statement w,,
denotes the mod 2 Stiefel-Whitney class and [ X] the fundamental homology
class of X.

THeoReM 2.12. Let X be a closed connected 2n-manifold and & a complex
(n+ 1)-plane bundle over X. Then n,(N¢&) is a central extension

(1) 0 — Z/c,([X] — n,(NE) — H'(X) — 0 if X is oriented,

(i) 0 = Z/2/w, l[X] — m (NE) — H'(X) — 0 if X is non-orientable.

In case (i) the extension is classified by the skew-symmetric map from
HY(X)x H (X) to Z/c,é[ X] defined by

(a,b) — (2abc,_ 5[ X] modc,E[X] .

In case (ii) n,(NE) is Abelian and the extension is split.

When n=1, the two parts of this theorem are equivalent to Theorems 1 and
2 of [14]. To see this, note first that the oriented 2-plane bundle # on p. 233 of
[14] may be represented (uniquely ui) to isomorphism) by a complex line
bundle {. Our S(n@eg) is S(n@e') in the notation of [14], and the section s of
S(n@e') in [14] is the constant section 1 of ¢'. We may identify S(n@e') with
P({@¢c) in such a way that s corresponds to the section s’ of P({@ec) which
picks out the fibre of ¢c over each point of X. Clearly s is in N({@¢&c) and we
get

n (IFSm®eh),s) = n (N(Dec)s) -

(Note that N({@sc) is connected by Proposition 2.7(a).)
For handling situations involving two non-trivial bundles, so that Theorem
2.10 does not apply, we use another partial converse of Proposition 2.8(a).
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THeoOREM 2.13. Let X be a closed connected oriented 2m-manifold and &, n
complex (n+ 1)-plane bundles over X with n=m. If N¢ and Nn are homotopy
equivalent then ¢, = +c,n.

Before turning to N¢ in the real case, we give a result on I'S¢ which will be
proved in [4]. In the remaining results, X is again just a connected finite CW-
complex.

THeorREM 2.14. Let &,n be real (n+1)-plane bundles over X with
n>2dim X + 1. If 'S¢ and I'Sn are homotopy equivalent then the stable Thom
spaces X ~° X ~" are homotopy equivalent, and in particular S& is fibre homotopy
trivial if and only if Sn is.

The real analogues of Lemma 2.5, Propositions 2.6, 2.7 (see section 7), 2.8(a),
(c) and 2.9 all hold. However, in place of Theorem 2.10 we have:

ProposiTION 2.15. Let dim X <n—1 and let &, ¢ be real (n+ 1)-plane bundles
over X, with ¢ trivial. If N¢ and Ne are homotopy equivalent then S is stably
fibre homotopy trivial at the prime (2).

For the real case we have the following addition to Proposition 2.8. In the
statement, L denotes a product real line bundle with the non-trivial Z/2-action.

PROPOSITION 2.16. If £ and n are real vector bundles over X such that S(L®¢)

and S(L®n) are Z/2-fibre homotopy equivalent then N& and Ny are homotopy
equivalent.

The proof is immediate. Together with Theorem 2.14 above, Proposition 1.1
of [3] and an easy covering space argument (see Remark 8.9 below) this yields:

THEOREM 2.17. Let &,6¢ be real (n+1)-plane bundles over X with
n>2dim X + | and ¢ trivial. Then N& and N¢ are homotopy equivalent if and
only if S& is fibre homotopy trivial.

The layout of the rest of the paper is as follows. In section 3 we explain our
approach to sections of projective bundles, in particular proving Lemma 2.5
and Proposition 2.6. In section 4 we illustrate how to deduce our results on
function spaces from results on spaces of sections. In section 5 we deal with
basepoints, proving Proposition 2.9. Theorem 2.10 and Proposition 2.15 have
similar proofs, and we give these in section 6. Theorem 2.12 and Proposition
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2.7(b) are treated similarly in section 7. In section 8 we begin to study the
homotopy type of N¢ and prove Theorem 2.13.

It is perhaps worthwhile mentioning that our methods have evolved during
the preparation of this paper. Initially our technique was closer to methods
used in [20], [8], [9], and [10], with ordinary Whitehead products replaced by
higher-order Whitehead products of the kind considered in [17]. The present

formulation seems to be more general in applicability and less Gothic in detail
for the questions we study here.

3. Sections of projective bundles.

In this section we describe in detail the method outlined in section 2 for
studying sections of projective bundles. The ideas are well known (see for
example [1], [2], [12], [14]) but it is convenient to review them here.

As a preliminary we recall conventions about Hopf line bundles. Let V be a
complex vector space and PV the corresponding projective space. For any non-
zero vector v in V we write [v] for the point in PV which is the line Cv through
the origin in V spanned by v. The dual Hopf bundle H* over PV is the bundle
whose fibre over a point [v] of PV is the line Cv. The Hopf bundle H is the dual
of H*. We write H§, H, when we wish to emphasize the vector space i
question. These notions readily extend to vector bundles: if £ is a complex
vector bundle, the Hopf bundle H, and its dual H¥ are both complex line
bundles over PE.

For any complex line bundle A over X, we define I',P¢ to be the (possibly
empty) subspace of I'P¢ consisting of all sections s such that s*H,~A Note
that only the isomorphism class of A matters in this definition, and that N¢ in
section 2 is I, P¢ with A=¢c. We can now list the steps in our approach to the
components of I'P&.

(1) Under suitable dimensional restrictions (Lemma 3.4) the components of
T'P¢ are precisely the spaces I';P¢ as A ranges over the group PicX of
isomorphism classes of complex line bundles over X.

(2) We replace I',P¢ by N(A®¢) using Corollary 3.3 below.

(3) We study any space of type N¢ via the bundle projection of I'S¢ to N¢ in
Proposition 2.6.

Step (2) probably deserves most explanation, and we turn to it immediately.
For simplicity let us first consider a single complex vector space V. Suppose
that a 1-dimensional complex vector space L is also given. With these data, (cf.
[1, p. 45]) there is no canonical isomorphism of V with L@V, but there is a
canonical projective equivalence of PV with P(L®YV) given by [v] « [I®v]
for any non-zero vector [ in L. We shall identify PV with P(L® V) in this way,
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but when it is desirable for clarity we name the equivalence 8: PV — P(L®V).
Now H} gy over P(L®V) corresponds to ¢ ® H} over PV (with I®v over
[/®v] corresponding to /®uv over [v]). Hence H, g corresponds to ef @ H,
so g ®H, g, corresponds to & ®¢f@H,, which is in turn canonically
isomorphic to Hy. To sum up, H, over PV corresponds to ¢; ® H, o over
P(L®YV), ie. there is a canonical isomorphism between these bundles covering
the equivalence 6.

By naturality this all passes to bundles. Let £ be a complex vector bundle
over X and let A be a complex line bundle over X. Write p for the bundle
projection of P£ or of P(A® &). Then there is a canonical equivalence 8 of P¢
with P(A®¢) under which H, corresponds to p*A®H g, Or equivalently
p*A*®H, corresponds to H g,

Now let s: X — P& be a section. As in [14], s determines a 1-dimensional
sub-bundle A of £, whose fibre over a point x of X is the line s(x). The next
lemma is rather obvious.

LemMmA 3.1. With the above notation, s*H} =A.

Proor. We may define a tautologous bundle map from A to H} covering s,
by mapping the vector v in the line s(x) (where s(x) is thought of as the fibre of
A over x) to v itself (where s(x) is now thought of as the fibre of H, over the
point in P£ which is again the line s(x)).

LemMA 3.2. For any line bundles A, u over X, I';P¢ is strongly equivalent to
r,n@lp(ﬂ@é)- ’

Proor. From the above discussion, there is a 1 —1 onto map from I',P¢ to
eg:P(p®¢) in which any s in I';P¢ is mapped to fos. Note that
(0os)*H,g¢ = s*(p*u*@®H,) = p*@s*H, = u*Q®A4,
so fos is indeed in I’ el (u®&). It is straightforward to check that this is a
strong equivalence.

CoRroLLARY 3.3. ', P¢ is strongly equivalent to N (A®¢).

Proor. Apply the lemma with p=A and recall that N(A®¥¢) is F,P(i@{)
where e=¢c.

This completes our account of step (2) above. The relevant lemma for step
(1) is well known at least when ¢ is trivial, and in general it follows at once
from Corollary 3.3 and Proposition 2.7(a).
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LemMA 34. If dim X <2n+1 and & is a complex (n+ 1)-plane bundle over X,
then I',P¢ is a single component of I'P¢ for any A in Pic X.

Finally we complete step (3) by proving Proposition 2.6. It is convenient first
to prove Lemma 2.5.

PROOF OF 2.5. We write n: S¢ — P¢ for the natural projection. If s lifts to a
section § of S¢ then s*H ¢=8§*n*H,, and n*H ¢ 1s trivial since it is a line bundle
with a nowhere-zero section given by the diagonal map of S¢. Conversely
suppose that s*H, is trivial. By Lemma 3.1 the line bundle 2 picked out by s is
trivial. Let § be a nowhere-zero section of A. We may clearly assume that §(x)
has unit norm for every x. Then § defines a lift of s to S¢.

Proor oF 2.6. It is straightforward to check that G is a Lie group. (We
analyse its structure in section 8.) Let @: I'S& — N¢& be the map given by
s +— mos, where n: S&€ — P¢ is again the natural projection. By Lemma 2.5, ¢
exists and is onto. Now G= M (X, $*) acts on I'S¢ by pointwise complex scalar
multiplication, and ¢(g.s)=®(s) for any g in G and s in I'SE. Conversely, if
®(s,)=P(s,) then s,(x)=pu,.5,(x) for some unique complex scalar u, of unit
norm, and it is easy to check that u, varies continuously with x. Thus @
induces a map ¥: I'S/G — N¢ which is 1 —1 and onto.

It is now sufficient to prove that I'S¢ is locally G-diffeomorphic to N¢ x G.
The proof is analogous to the proof that H* is locally a product over CP".

Given s in N¢&, we first find a chart I for a neighbourhood of s in N¢&. A lift §
of s to I'S¢ gives an orthogonal splitting £ ={ @ec, where { is a complex n-
plane bundle and 3 corresponds to the constant section 1 of ¢c. Let i embed the
total space E{ of { in P({@&c)= P& by i(v)=[v,1]. Thus i is a fibrewise version
of the usual chart 1: C* — CP" which maps (z,z,,...,2,) to [2,25,. .., 2, 1].
Let I'{ denote the Banach space of sections of the Hermitian vector bundle (.
Then i induces an embedding I of I'{ in I'P¢, which is pointwise the chart 1.
The zero-section of { is mapped by i to s, and it is easy to check I maps I'{ onto
an open subset, U say, of N¢&.

We now find a trivialization of 'S¢ over U. An explicit trivialization

0: E{ x S* — n~1(i(EQ)
of S& over i(E(Q) is given by
0(v,4) = A. (0, 1)/I(w, DI,

where ||-| denotes norm. Define @:I'{xG — @ '(U) by O(s,f)(x)
=0(s'(x), f(x)). Then © is G-equivariant since 0 is S'-equivariant, and it is
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straightforward to check that @ is a diffeomorphism which gives rise to a local
trivialization of I'S¢ as required.

4. Deducing results on function spaces.

First we derive Corollary 2.11. Let ¢ be a trivial (n+ 1)-plane bundle over X,
so that A®ex(n+1A and similarly for p. If (n+1)A and (n+1)u are
isomorphic then N(A®¢) and N (u®¢) are strongly equivalent by Proposition
2.8(a), hence so too are I';Pe and I',Pe by Corollary 3.3. Since ¢ is trivial we
may identify I';Pe, I',Pe with M;,M,. Therefore M, and M, are strongly
equivalent. Conversely, if M; and M, are homotopy equivalent with y trivial,
then so too are N(A®¢) and N(u®¢), and by Theorem 2.10, A®c¢ is trivial, i.e.
(n+ DA is trivial.

Proposition 2.4 follows by taking X =RP" in Corollary 2.11, in view of the
next two remarks. First, r <2n+ 1 whenever n+ 1 is divisible by b, , |, so in both
parts of the proposition the components are M, and M, where 4 is non-trivial
and p is trivial. (Recall that r> 1, so Pic (RP")~ Z/2.) Secondly, by definition of
b, ., it follows that (n+1)A is trivial if and only if n+1 is divisible by b, | ;.

Next we compute n,(M,(CP",CP") using Theorem 2.12. Note that
M, (CP",CP") may be identified with I',Pe where ¢ is a trivial complex (n+ 1)-
plane bundle over CP" and A=H* By Corollary 3.3, I',Pe is strongly
equivalent to N& where ¢ = H*® e (n+ 1)H*. Then ¢, ([CP"] = + k"(n+1), and
Theorem 2.12(i) shows that n, (M, (CP",CP") is cyclic of order (n+ 1)k|" for
k0.

Our other results on function spaces can be derived similarly. We omit
details but offer the following guide. Those parts of Propositions 2.1-2.3
asserting existence of strong equivalences follow from Proposition 2.8 and its
real analogue. The non-equivalence parts of Propositions 2.1(a) and 2.2 follow
from Theorem 2.13, and the analogous parts of Propositions 2.1(b), 2.3 follow
from Corollary 2.11, Proposition 2.15 respectively.

5. Basepoints.

We now prove Proposition 2.9 by establishing the following stronger results.

PRroPOSITION 5.1. Let & be a real vector bundle with a Riemannian metric over
X and let sy, s, be homotopic sections of SE. Then there is a strong equivalence of
I'SE which maps s, to s, and is homotopic to the identity through strong
equivalences.

PROPOSITION 5.2. Let & be a real or complex vector bundle with a Riemannian
or Hermitian metric over X, and let s,,s, in I'SE be such that their projections
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[s0],[s1] in N& are homotopic. Then there is a strong equivalence of I'SE which

maps s to s,, and a strong equivalence of N¢ which maps [sq] to [s,] and is
homotopic to the identity through strong equivalences.

Each strong equivalence in these propositions may in fact be induced by an

isometric automorphism of ¢ Proposition 5.1 follows quickly from the next
lemma.

LEemMA 5.3. Under the hypotheses of 5.1, there is an isometric automorphism f

of &, homotopic to the identity through such automorphisms and such that fos,
=s,.

Proor. Let s, (0=t <1) be a homotopy from s, to s,. Suppose first that for
each t the section s, +s, of ¢ is nowhere-zero. Take f, to be (fibrewise) the
composition of reflection in the hyperplane perpendicular to s, and reflection
in the hyperplane perpendicular to s,+s, Then fos,=s, and f,=1. We may
take f=f] in this case.

In general, since X is compact, there is a real number 6 >0 such that s, +s, is
nowhere-zero whenever |t —u|<J, and f can be taken to be the product of a
finite number of automorphisms of the above type. Clearly f induces a strong
equivalence of I'S¢ of the kind required in Proposition 5.1. _

To prove Proposition 5.2 in the real case, we note that when [s,] is homotopic
to [s,], there is an element b in G=M(X, S°) such that T(b)os, is homotopic
to s,, where T(b) is the isometric automorphism of S& given by (fibrewise)
multiplication by b. We apply Proposition 5.1 to T(b)es, and s,, to get an
isometric automorphism f of & which is homotopic to the identity and maps
T(b)osq to s,. Then s — foT(b)os is a strong equivalence of I'S¢ mapping s, to
sy, and [s] — Pfo[s] is a strong equivalence of N¢ which maps [s,] to [s,] and
is homotopic to the identity through strong equivalences.

For the complex case of Proposition 5.2, we need one modification of the
above proof. Given a in G=M(X,S") and a nowhere-zero section s of &, we
define the complex reflection R(s; a) to be the (unitary) automorphism of £
which fixes vectors orthogonal to s and multiplies s by a. We now re-define

fi = R(sg+s,; a)oR(sq; —1),
where

a, = — (1+{so,50)/ (1+<50,57) »

and {-,-) is the Hermitian inner product. (Note that this reduces to the
previous f, in the real case.) Then again f,oso=s, and fy=1. The rest of the
proof follows exactly as in the real case.
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REMARK. We could prove that the homotopy type of 'S¢ or N¢ as a pointed
space is independent of choice of basepoint within a fixed component just by
verifying that any basepoint in I'S¢ or N¢ is non-degenerate. However, we
believe that the strong homogeneneity results in this section are also of interest.

6. Proofs of Theorem 2.10 and Proposition 2.15.

We deduce Theorem 2.10 from the following proposition, which is very
similar to work of Arunas Liulevicius (see for example [15]). We include a
proof for completeness.

ProvposITION 6.1. Let &,n be complex (n+ 1)-plane bundles over X and suppose
that there exists a map Y. PE — Pn over X satisfying y*H,=H,. Then £ and n
are stably isomorphic.

Proor. Recall from [1] that K(P¢) is a free K(X)-module on generators
1,[H,[HJ%...,[H]" and that

n+1

(6.2) Y (=D)[X¥IHI = 0.
i=0
Since A**!¢ is a line bundle, we may solve (6.2) for [H,]"*!:

[HI""' = [(A7187 Y (=) IAEH] .
i=0
There is an entirely similar equation with ¢ replaced by n. Now y*[H,]=[H,],
so Y*[H,]'=[H,]' for all i. Also, y is a map over X, so y*[A'n]=[A'n]. Hence

(41871 Y (— 1P TTREHT = [HI™ = yo[H,]

SICA E el VR

Equating coefficients of the generator 1 we get [A"*!¢]=[A"*!y], and then
equating coefficients of [H,] we get [{]=[#n] as required.

Now in preparation for the proof of Theorem 2.10, let &, ¢ be complex (n+ 1)-
plane bundles over X, with ¢ trivial and dim X <2n—1. Choose a Hermitian
metric on &. For dimensional reasons, ;(I'S€)=0for 0<i<2, so the homotopy
sequence of the fibring in Proposition 2.6 tells us that N¢ is connected, that
n,(NE)=ny(G)~H'(X), and that n,(N&)~n,(G)~Z. In the following
diagram, each vertical map is evaludtion ev, at a point x in X.
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G — I'SE - N¢

! ! !
St - S& - PE.

The associated homotopy ladder shows that ev,: N¢ — P&, induces an
isomorphism of n,.

Proor ofF THEOREM 2.10. Suppose we are given a homotopy equivalence
f: Ne — N&. We shall construct a map y: Pc — P¢ satisfying the hypotheses
of Proposition 6.1, and the required result will follow. Let ¢: CP" — Neg
denote the inclusion of the constant section of Pe. Since n,(Ne)x~Z and chasa -
left inverse, ¢ induces an isomorphism of n,. Together with the previous
paragraph, this shows that for any x in X, the composition

(6.3) CP" < Ng L» N& &=, PE,

induces an isomorphism of =m,. Let us consider the adjoint of foc as a
map 0: Pe — P¢ over X. For any x in X, the restriction 6,: Pe, — P&, is
essentially the composition (6.3), so 0, induces an isomorphism of n,. Now

Pic (Pe) ~ Pic(X xCP") ~ PicX®Z,

(the group structure- being given by tensor product of line bundles)-so 0*H,
=A® H* for some line bundle A over X and some integer k. But A must be
trivial, since for fixed z, in CP", 8| X x {z,} defines a section s=f(c(z,)) of P&
which is in N¢, so s*H, is trivial. Also, for any x in X, we have seen that

0,: {x} xCP" > P&,

induces an isomorphism of 7,, hence of cohomology H?(-), so k= +1.If k=1
we take y =0 and if k= — 1 we take i to be the composition of 8 with complex
conjugation on Pe. In either case ¥ satisfies the hypotheses of Proposition 6.1
as required.

SKETCH PROOF OF PRrorosITION 2.15. This is similar to the proof of Theorem
2.10. Under the hypotheses of Proposition 2.15 we again get a map y: RPe
— RP& over X such that y*H,~H,. Hence V lifts to a map over X from Se to
S¢ of odd degree on each fibre, and the result follows.

7. Proofs of Theorem 2.12 and Proposition 2.7(b).

In the proof of Theorem 2.12, we concentrate on the case when X is oriented,
omitting the obvious modifications needed in the (easier) case when X is non-
orientable.
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Under the given dimensional assumptions, 'S¢ and hence N¢ are connected.
We choose a basepoint s, in I'SE. The fibring in Proposition 2.6 gives an exact
sequence

(7.1) oo 1 (G) L (FSE) 22 = 1, (NE) -2 10(G) — 0.

The proof of Theorem 2.12 proceeds by applying obstruction theory to
investigate this sequence. We shall use some facts about Euler classes, and we
recall these in an appendix to this section. Note that as in section 6,
ny(G)~ H'(X) and n,(G)~ Z.

Our first goal is to construct an isomorphism

0:n,(I'S¢) - Z

and show that the image of foi, is generated by c,£[ X]. Let D? denote the unit
2-disc and write p,: D*x X — X for the projection. Given any element g of
7, (I'S&), consider a loop representing ¢ and based at s,. The adjoint of this
loop is a partial section, s say, of S(p¥¢) over S* x X. Let e(p¥¢, s) be the relative
Euler class in H*"*2(D? x X, S' x X) which is the obstruction to extending s
over D*>x X (see appendix). We define 0(c) to be the integer obtained by
evaluating e(p¥¢&,s) on the fundamental homology class of (D? x X, S* x X). It
follows from classical obstruction theory (see [7]) that 0 is an isomorphism.

We now evaluate foi,. The image under i, of a generator of n,(G) is
represented by the loop f: S' — I'SE such that f(z)(x)=z.5s,(x) for any x in X
and z in S! (where S! is viewed as the unit circle in C). The adjoint of f is
the partial section s of p¥é over S' x X given by the lift (z,x) — z.5,(x) of
Po: S'x X — X to S&. We wish to evaluate the relative Euler class of s.

As before, s, gives a splitting £ ={@D¢.. By multiplicativity of Euler classes
(see appendix),

(7.2) e(p¥¢,s) = e(Q).u,

where e({) is the Euler class of { in H*"(X) and u is a generator of H?(D?, S').
Hence evaluating e(p¥¢,s) on the fundamental class of (D? x X, S* x X) gives
the same answey as evaluating e({) on the fundamental class of X. Since e({)
=c,¢, the image of foi, is generated by c,£[ X] as required.

Finally, we show that the extension

0 — Z/c,{[X] - m,(N&) L HY(X) - 0

is central and is classified as stated in Theorem 2.12. It is sufficient to prove:
given a,b in H'(X) and any a,f in n, (N¢) satisfying da=a, df=>b, we have

apa” !t = &, (6) where 0(c) = (2abc,_,E)[X] .

For, applying this with b=0 we see that the extension is central, and noting
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that H'(X) is finitely generated free Abelian and Z/c,£[X] is Abelian, we see
that the extension is classified as required. .

We represent a,b by maps from X to S! also called a,b. In view of
Proposition 2.6 we may represent a, § by maps f,g: I — 'S¢ with £(0)=g(0)
=s, and f(D=a.sy,, g(1)=b.s,. The commutator afax~!'f~! is then
represented by the loop ¢ in I'S¢ shown in diagram (7.3).

a.g
a-s, a.b.s,
(7.3) f b.f!
o - b.s,
-1
g

To determine (o), we need to evaluate the obstruction to extending ¢ from S!
(the boundary of the square in (7.3)) to D? (the interior of this square), or
equivalently the relative Euler class of the corresponding partial section, s say.
of p¥& over S!' x X.

For this evaluation, we use the following device. Identify opposite edges of
the square to form a torus T=S] x S}, where the circle S} corresponds to the
vertical sides and S} to the horizontal sides. Let n: (D% S') — (T,S} v S3) be
the identification map. We construct a bundle over Tx X whose pull-back
under 7 x 1 is p¥&. First consider the line bundle 5, over S x X got by applying
the mapping torus construction to a: X — S*, so the total space of y, is the
quotient space

Ix X xC/(0,x,2) ~ (I,x,a(x).2),

where I is the unit interval and the indicated identifications are made for all x
in X, all zin C. Let n, denote also the pull-back of this bundle by the projection
of Tx X on S} x X. Define 5, analogously as the pull-back of a line bundle
over S}x X. It is straightforward to check that p¥¢ is isomorphic to
(mx D*(n,®n,®¢&), and s is the pull-back of a partial section, s’ say, of
S.®n,®&) over (S!vS)xX. The obstruction in H*"*#(D*x X, S x X)
to extending s over D? x X is the image under the isomorphism (m x 1)* of
the obstruction in H¥"*2(Tx X, (S} v S3) x X) to extending s’ over Tx X.
The advantage of this change of viewpoint is that the restriction of
H*™2(Tx X, (S} v S} x X) to H*"*2(Tx X) is an isomorphism. It is therefore
enough to calculate the (absolute) Euler class of n,®n,®¢, or equivalently
its Chern class c,, ;.

Math. Scand. 55 — 6
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Now c,n,=ua where u generates H'(S}) and c,n,=vb where v generates
H'(S%). Hence
¢1(n,®@np) = ua+vb,

and

Car1(Ma@M, R &) = ¢y &+ E(ua+uvb)+
+c,_1E(ma+vb): + ...+ (ua+vbtt .
But on dimensional grounds, c,,¢=0, ac,£ =0=bc,¢, and (ua+vb) =0 for

i>2 while

(ua+vb)® = —2abuv .

Hence

Cor1 (M, @N,®E) = —2abuvc,_ &

and the required result follows (the sign is a matter of convention).

Proor of ProposiTioN 2.7(b). This is similar to the proof of Theorem 2.12.
In the exact sequence of pointed sets

o(G) = no(I'SE) — no(NE — 0

arising from Proposition 2.6, the group n,(G) acts on 7y (I'S&) and ny(NE&) is the
quotient set. We apply obstruction theory to analyse this. Since ¢ is a complex
(n+ 1)-plane bundle and dim X <2n+ 1, the difference construction d of [7]
gives a bijection

o ('S¢ — H*"*1(X)

defined by s — d(s, s¢) for any section s representing a component of I'SE. Let
a: X — S! represent an element of ny(G). To compute the action of ny(G) on
no(I'SE) we need to compare d(a.s,s,) with d(s,s,). We have

d(a.s,sy) = d(a.s,a.so)+d(a.sg,So) »

and it is classical (see appendix) that d(a.s,a.s,)=d(s, sy). It is now gnough to
prove that d(a.s,,s,)=ac,&, where on the right-hand side a is viewed as
representing a class in H!(X)= n,(G).

We can calculate d(a.s,, s,) as follows. Let p,: I x X — X be the projection
and consider the partial section s, of p3& over I x X defined by a.s, on {0} x X
and by s, on {1} x X. Then d(a.s,s,) maps to e(p3¢,s,) under the obvious
isomorphism of H?*"*!(X) with H?"*2(Ix X,Ix X). As in the proof of
Theorem 2.12 and with similar notation, e(p$¢,s;) can be calculated using
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Cn+1(n,®¢&), and the latter is uac,¢ where u generates H'(S'). This gives the
required answer for d(a. sy, So).

PRrOPOSITION 2.7(b) IN THE REAL CASE. We consider the real analogue of
Proposition 2.7(b) worth putting on record. Let ¢ be a real (n+ 1)-plane bundle
over X, and suppose that dim X <n. As before, n,(G) acts on my(I'S¢) and
mo(NE) is the quotient set. Again we choose a basepoint s, in I'S¢, and let { be
the complementary bundle to s, in £ This time the difference construction
gives a bijection

0: mo(I'SE) — H"(X; Z(%)),

where Z (&) denotes the integers twisted by the orientation bundle of &. Also,
no(G)~ H°(X; Z/2)~ Z/2 (recall that X is connected); let t generate this group.
The Chern class c,& is replaced by the Euler class e of { (thus e € H"(X; Z(¢)), -
where Z({) is appropriately identified with Z(¢)). We can now describe the
action of ny(G) on my(I'S¢), identifying the latter group with H"(X; Z(&)) via 6.

ProPosITION 2.7(b)g. With the above hypotheses and notation, t acts by the
affine involution

_f—=x—e ifniseven,
tx) = x—e ifnisodd.

(Note that 2e=0 when n is odd.)
The proof is as in the complex case.

Appendix to section 7.

For the reader’s convenience we recall facts about Euler classes used above.
Let Y be a subcomplex of a finite CW-complex X and let ¢ be an oriented real
(2ri+2)—plane (or complex (n+ 1)-plane) bundle over X. Let E¢ be the total
space of ¢ and E,¢ the subspace of all non-zero vectors. As usual we have a
Thom class U, in H*"*2(E¢, E¢é). Let s: Y — Eo¢ be a section over Y. By for
example Lemma 1.4.1 of [2], s extends to a section §: X — E¢, and (by the
same lemma applied to (X xI, X x1UYxI) § is unique up to homotopy
through sections each of which restricts to s on Y. The relative Euler class
e(¢,s) is by definition §*U . Note that if Y is empty, we may take § to be the
zero-section, and the definition reduces to that of the Euler class e(¢).

Now suppose that we have two sets of data as above, (X;, Y;, Ens)fori=1,2.
By the previous paragraph, the homotopy class of

s =5, x5, Us;x5,: X, xY, UY;xX, = Eo(§y%85)
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is well-defined, and has §; x §, as an extension over X, x X,. It is easy to check
that

(7.9 e(&y x&y8) = e(éy,sy).e(&y,s,) .

In particular this applies if, say, Y, is empty.

To get (7.2), set (X,,Y,)=(D%S") and (X,, Y,)= (X, &). We may think of
pFE=p((@Dec) as ec x { over D? x X. Note that under the splitting £ ={ @D ec,
the lift (z, x) > z.s4(x) of p, to Ey& corresponds to the lift (z,x) — O0+z.1 of p,
to Eo((@ec). The partial section s of (7.2) is then s, x §,, where -

s;: St Sx (R2\{0})

is given by z — (z,2) and §, is the zero-section. It is easy to check that e(ec, s,)
is a generator u of H*(D?,S'), and (7.2) now follows from (7.4).

To check the equation d(a.s,a.s,)=d(s, s,) used in the proof of Proposition
2.7(b), consider again the vector bundle p¥¢£ over I x X and let s’ be the partial
section of S(p,¢) over I x X defined by s on {0} x X and s, on {1} x X. Then
d(s,so), d(a.s,a.s,) correspond to e(p¥&,s’), e(p3é,a.s’) as in the proof of
Proposition 2.7(b). We now replace (I x X, I x X) by any finite CW-pair (X, Y)
with X connected, let £ be a complex (n+ 1)-plane bundle over X, s a section of
S& over Y, and prove that for any map a: X — S we have e(¢,a.s)=e(,s).
For if § is an extension of s, then a.§ may be taken as extension of a.s, and we
get the commutative diagram

3 H2"+2(EC,EO€)—5+ H2n+2(R2n+2’R2n+2\{0})

< e e

(@.5*% H2"+2(E6,E0€)'E-’ H2"+2(R2"+2,R2"+2\{0}).

H2n+2(X’ Y)

The horizontal isomorphisms are given by restriction to a point of X, and the
right-hand vertical a* is clearly the identity isomorphism of infinite cyclic
groups. Hence a*U,=U, and e(,a.5)=(a.3)*U,=5*a*U,=5*U,=e(¢,s) as
required.

8. The homotopy type of N&.

As usual ¢ is a complex (n+ 1)-plane bundle (n>0) with a Hermitian metric
over X. We assume that I'S¢ is non-empty, choose a basepoint s, in I'S¢ and
take its image [s,] as basepoint in N¢. In this section we study the homotopy
type of the pointed space N¢ (which is independent of choice of s, within a
fixed component of I'S&, cf. section 5). At the end of the section we prove
Theorem 2.13.

We begin by mentioning a qualitative result on the homotopy groups of N¢.
Recall that X is a finite complex.
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ProposiTioN 8.1. With notation as above, n,(N&) is finitely generated
nilpotent. For i>1, n(N¢&) is finitely generated.

This follows by the method of [11, Chapter I1.2]. We omit the details. In
general, if s is a section of a locally trivial bundle with nilpotent fibre over a

finite complex then the path-component of the space of sections containing s is
a nilpotent space.

For our proof of Theorem 2.13 we shall use a classifying space for G

=M(X,S"). We therefore study G more closely. Let us write G(X) to
emphasize its dependence on X.

LeMMA 8.2. There is an isomorphism
G(X) = V(X)x H'(X)x S?

for some Banach space V(X).

Proor. Choose a basepoint * in X and let 1 be the basepoint in S. Let F(X)
< G(X) be the subgroup of all basepoint-preserving maps, and let us use a
superscript zero to denote the component of the constant map to 1. Using the
fact that H* (X) is finitely generated free Abelian, we may lift a set of generators
to F(X) and hence show '

F(X) ~ F(X)°xH (X) .
Also, since S' is an Abelian group we have
G(X) ~ F(X)xS'.

Now any map in F(X)° lifts uniquely to a map (X, *) — (R,0). The set V(X)
of all maps of the latter type forms a Banach space with the sup norm,
and the vector space addition in V(X) corresponds to the pointwise
multiplication in F(X)°. This completes the proof.

We can now describe a classifying space for G(X). Write T(X) for the torus
H'(X)®R/H!(X) (the “Picard variety” of X). Then T(X) is'a classifying space
for H!(X).

CoROLLARY 8.3. We may take BG(X) to be T(X)xCP>.

This follows from Lemma 8.2 since V(X) is contractible. We now fix a
basepoint in CP*, so that as pointed space it classifies S'-bundles over pointed
complexes with a given trivialization over the basepoint. From Corollary 8.3
we get:
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ProrosiTiON 8.4. For any pointed finite CW-complex K, we have
[K; BG(X)] = [K; T(X)]x[K; CP*] = (H/(KY®H'(X))®H*(K) .
In particular, n,(BG(X))~H*(X), n,(BG(X))~Z and =n;,(BG(X))=0 for i>2.

Next we want to consider a classifying map for the bundle @: 'S¢ — N¢.
To prepare for this we note:

LEMMA 8.5. The space N¢& is paracompact and has the homotopy type of a CW-
complex.

Proor. Since N¢ is metrizable it is paracompact. Also, N¢ is easily seen to be
ELCX in the sense of [16] and hence by [16] it has the homotopy type of a
CW-complex. .

In fact one may use Proposition 8.1 and the criterion of Wall [19] to show
that (N¢)° is of finite type; we shall not require this for present purposes.

We may now let ¢ (or when appropriate (&) denote a classifying map for the
bundle ¢: I'S¢ — N¢& of Proposition 2.6. It will be important for the proof of
Theorem 2.13 to have a more concrete description of the induced function
o, [K; N£] — [K; BG(X)] for finite pointed CW-complexes K.

LemMMA 8.6. Let K be a connected finite pointed CW-complex and let f:
K — N¢& represent a class [f] in [K; N&]. Let s: Kx X — P& be the lift
determined by f of the projection p,: K x X — X. Then s*H, is trivial over
{k} x X for each k, so is classified by say « in (H'(K)®H'(X))® H?*(K)
cH?*(K x X); a corresponds to 0,[f] under the correspondence in Proposition
8.4.

Proor. The first assertion is clear by definition of N¢. Now consider the two
natural transformations

[K; N&] - [K; BG(X)] ~ (H'(K)Q@H' (X))@ H*(K)

given by o, and by the construction in the statement of the lemma. We wish to
show that they coincide.

To show this on the component H%(K) it is enough to look at the restriction
from X to a point, in other words to check it for X = ». But it is easy to see that
in this case the two constructions are identical.

For the component H'(K)® H!(X) we use naturality and note that it is
enough to check the case K =S". In this case there is an element a in G(X) such
that s*H, is isomorphic to the line bundle n, over S* x X given by the mapping
torus construction as in section 7. This line bundle is classified by [a] € H*(X).
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On the other hand, the principal G(X)-bundle over S! induced by f: S! — N¢
from the bundle @: I'S¢ — N¢ is isomorphic to the bundle whose fibre over a
point z in S' is the space of sections of S(z,| {z} x X); this is obtained by
the mapping torus construction on a and is classified by
[a] € H'(X)~[S'; BG(X)] as required.

From now on we assume that m=dim X <2n+1 so that I'S¢ and N¢ are
connected.

ProvrosiTioN 8.7. With hypotheses as above,
0, : M(NE) > m(BG(X))

is bijective if i<2n—m+1 and surjective if i<2n—m+1.

Proor. We use the homotopy sequence of the fibring @: I'SE — N&. As
usual, the boundary operator of this sequence may be identified with ¢, via the
transgression isomorphism of n;_,(G(X)) with n;(BG(X)). The result follows
since n;(I'SE)=0 for i<2n—m+1 on dimensional grounds.

We apply Proposition 8.7 to get the next lemma, which is used in the proof
of Theorem 2.13.

LemmMa 8.8. Let & and n be complex (n+ 1)-plane bundles over X with dim X
<2n—1. For any map f: N¢ — Nn, there is a map f,: BG(X) — BG(X)
(unique up to homotopy) such that the following diagram homotopy commutes:

NE¢ 2@, BG(X)

s Ve
Nn -2 BG(X).

Proor. Recall that N¢ and Nn have the homotopy type of CW-complexes,
and so has BG(X) by Corollary 8.3. Using Propositions 8.4 and 8.7 the result
now follows by standard obstruction theory, viewing a(&) as an inclusion, and
examining the obstruction to extending o(n)of over BG(X).

By analysing further the homotopy classes of self-maps of BG(X) one can
prove that if N¢ and Nn are homotopy equivalent then one can get an S'-
equivariant homotopy equivalence from I'S¢ to either I'Sy or I'S# (assuming
still that dim X <2n—1). We shall not use this result, so we merely prove the:
easier real analogue, which we do need (see section 2).

REMARK 8.9. Let &,n be real (n+ 1)-plane bundles over X with dim X <n—1.
Then any homotopy equivalence of N& with Nn lifts to a Z/2-equivariant
homotopy equivalence of 'S¢ with I'Sn.
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Proor. As we mentioned in section 2, N¢ is locally path-connected. We
observe that I'S¢ is connected, n,(N&)~Z/2 and the map from I'S¢ to N¢
(which is the real analogue of @ in Proposition 2.6) is a universal cover; and
similarly with ¢ replaced by #. The result readily follows.

We now come to the key lemma for the proof of Theorem 2.13.

Lemma 8.10. Let &, be complex (n+1)-plane bundles over X with
dim X =m<2n—1, and suppose that N& and Nn are homotopy equivalent. Let
u be any complex line bundle over a finite pointed CW-complex K such that
dim K <2n—m+3 and H*(K)=0. Then at least one of ¢, (u®¢E), c,+, (R E)
vanishes if and only if at least one of c,,(U®N), C,+, (L@ 7) vanishes.

Proor. Since H!(K)=0, it follows from Proposition 8.4 that
[K; BG(X)]~H?*(K). Now we prove that the following conditions are
equivalent:

(i) cps1 (@& =0,
(ii) the class [u] lies in the image of

o,: [K; N&1 - [K; BG(X)] ~ H*(K).

For each of these is equivalent to:

(iii)) N(u® &) is non-empty.

The equivalence of (i) and (iii) follows immediately from Proposition 2.7(c)
applied to K x X. It is straightforward to check that the equivalence of (ii) and
(iii) follows from Corollary 3.3 (applied to bundles over K x X) and Lemma
8.6.

Let f: Né —» Nn be a homotopy equivalence. From Lemma 8.8 we have a
commutative diagram of set functions, for which we use the same names as the
maps inducing them:

[K; N& =95 [K; BG(X)] ~ H*(K)
(8.11) sl Il
[K; Nn] 2% [K; BG(X)] = H*(K) .

From the proof of Lemma 8.8 it is clear that f, here is multiplication by +1.
Lemma 8.10 may now be deduced as follows. Suppose that ¢, (u®¢)=0 or
cn+1(p®&)=0. Note that the latter condition is equivalent to c,,, (Z® &) =0.
By the equivalence of (i) and (ii) we get that +[u] lies in the image of a(¢&).
Commutativity of (8.11) now yields that +[u] is in the image of o(y), and
again by equivalence of (i) and (ii), either c,,;(u®n)=0 or ¢,,,(u®#7)=0.
Clearly this argument reverses to complete the proof.
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Proor oF THEOREM 2.13. We show first that the case m=n can be settled by
looking at fundamental groups. By Theorem 2.12(i), ¢,& =0 if and only if

rank n, (N¢) = rank H'(X)+1,

and if c,¢ is non-zero, then the number of elements of finite order in n, (N¢&) is
lc,E[X]|. Similar statements hold for 5. But if N¢ and Nn are homotopy
equivalent then certainly their fundamental groups are isomorphic, and it
follows that c,¢= +c,n.

Assume now that X is a closed oriented 2m-manifold with m <n. Theorem
2.13 will be established in this case by applying Lemma 8.10 with various
(K, p). Fix a prime power ¢g>1. Let n: § — CP"~™*1! be the projection of the
S'-bundle associated with the tensor power HY, so that S is a lens space of
dimension 2(n—m)+ 3. Let u be the line bundle n*H over S. For K we take (a
finite complex of dimension 2(n—m+1) homotopy equivalent to) the
complement of an embedded open (2(n—m)+ 3)-disc in S. Then H?"~™*!(K)
is cyclic of order q, generated by (c,u)""™*!. Also,

H2(n+1)(Kxx) ~ HZ(n—m+l)(K)®H2m(X)

and

Cor 1 (U®E) = ()" ™+ cyé

Hence by Lemma 8.10, ¢,,[ X]=0 (mod g) if and only if ¢,#[X]=0 (mod g).
(Note that c,,&= +c,¢) Since this holds for all q, ¢, ([ X]= +cn[X]

REMARKS. (a) The group of kth roots of unity acts on S¢ for any complex
vector bundle &. The orbit space of this action is a bundle of lens spaces over X.
The methods of this paper may be used to study its space of sections.

(b) Considerations of length have prevented our treating also spaces of
basepoir{t-preserving maps here, but our methods give some results on them,
too. It is perhaps worthwhile mentioning that, in contrast to the classical cases
when Y is an H-space or X is a co-H-space, in general distinct path-
components of a space F(X,Y) of basepoint-preserving maps need not be
homotopy equivalent. An example is given by F(RP",RP") for 1 <r<n and n
even: one component has m,_, finite and the other has =,_, infinite.
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