A NOTE ON τ -CONSTANT FAMILIES OF PLANE CURVES

STEIN ARILD STRØMME

Introduction.

If $\{X_y\}_{y\in Y}$ is an algebraic (or analytic) family of (germs of) isolated plane curve singularities with "constant τ " (i.e. the dimension $\tau(X_y)$ of the base of the miniversal deformation of X_y is independent of $y\in Y$), it seems to be well known (cf. the discussion in [6, p. 667]) that if the parameter space Y is nonsingular, then the family is equisingular (in the sense of Zariski, [8]). The notion of equisingularity has been extended to families over Artinian base schemes by Wahl [7], and he proves that the equisingular deformation functor is smooth. On the other hand, the notion of τ -constant families has an obvious infinitesimal analogue, called equicohomological families in this note. However, the implication equicohomological \Rightarrow equisingular no longer holds; the purpose of this note is to provide a counterexample. The same example shows that the equicohomological stratum in the prorepresentable hull of the deformation functor is singular.

1. Equicohomological deformations.

- (1.1). Let R = k[[X, Y]] be the algebra of formal power series over an algebraically closed field k of characteristic 0, let $f \in R$ be a reduced power series of order $r \ge 1$, that is $f \in (X, Y)^r (X, Y)^{r+1}$, and put B = R/(f). By definition, B is an algebroid isolated plane curve singularity.
- (1.2). Denote by C the category of local k-algebras of finite length, and by $D: C \to Sets$ the deformation functor of B, and let (H, ξ) be the prorepresentable hull of D, see [5]. It is described as follows: Let $g_1, \ldots, g_{\tau} \in R$ induce a k-basis of $R/(f, f_X, f_Y)$, and let t_1, \ldots, t_{τ} be variables. Then $H = k[[t_1, \ldots, t_{\tau}]]$, and if we put

$$\tilde{f} = f + \sum_{i=1}^{\tau} t_i g_i \in R \otimes_k H = R_H,$$

then $\tilde{B} = R_H/(\tilde{f})$ induces a semiuniversal family for D.

Received May 27, 1983.

- (1.3). Denote by $H^i(k, B, B)$ the algebra cohomology groups of André [1]; then the tangent space of D (or of H) is canonically isomorphic to $H^1(k, B, B)$, which in turn is (non-canonically) isomorphic to $R/(f, f_X, f_Y)$. Similarly, $H^1(H, \tilde{B}, \tilde{B})$ is isomorphic to $R_H/(\tilde{f}, \tilde{f}_X, \tilde{f}_Y)$.
- (1.4). For any morphism $A' \to A$ in C and any deformation $B_{A'} \in D(A')$, there is a natural base-change map

$$H^1(A', B_{A'}, B_{A'}) \otimes_{A'} A \rightarrow H^1(A, B_A, B_A)$$
,

where $B_A = B_{A'} \otimes_{A'} A$. Representing $B_{A'}$ as a quotient of $R_{A'}$ by $f' \in R_{A'}$ and using similar isomorphisms as those in (1.3), we easily see that the base change map is an isomorphism.

- (1.5). Definition. A deformation $B_A \in D(A)$ is equicohomological if $H^1(A, B_A, B_A)$ is a flat (hence free) A-module. In view of (1.4), these families form a subfunctor EC of D.
- (1.6). Let $\tau = \dim_k H^1(k, B, B)$, and denote by $J \subseteq H$ the $(\tau 1)$ th Fitting ideal of the finite H-module $H^1(H, \tilde{B}, \tilde{B})$. Put $\bar{H} = H/J$ and $\bar{B} = \tilde{B} \otimes_H \bar{H}$. By [3, Lecture 8, case n = 0], for any morphism $H \to A$ with A in C, it factors through \bar{H} if and only if $H^1(H, \tilde{B}, \tilde{B}) \otimes_H A$ is flat over A. In view of (1.4) above, this happens exactly when $\tilde{B} \otimes_H A$ is equicohomological. Hence (\bar{H}, \bar{B}) is a prorepresentable hull of EC.
- (1.7). Remark. In [2] it is proved that (\bar{H}, \bar{B}) actually prorepresents EC, and that EC is the maximal prorepresentable subfunctor of D (in the terminology of that paper, EC is the prorepresentable substratum of D).
- (1.8). By Hilbert's syzygy theorem, the R-module $H^1(k, B, B)$ has a free resolution of the form

$$0 \to R^2 \xrightarrow{\varphi} R^3 \xrightarrow{\psi} R ,$$

where ψ is the row vector (f, f_X, f_Y) . Furthermore, since coker (ψ) has finite support, the image of ψ is the ideal generated by the maximal minors of φ . The 3×2 matrix $\varphi = (\varphi_{ij})$ will play a key role in the description of the tangent space T_{EC} of EC. By definition, this is EC $(k[\varepsilon])$, where $k[\varepsilon]$ is the ring of dual numbers $(\varepsilon^2 = 0)$. T_{EC} is a subspace of $T_D = H^1(k, B, B)$ and can be described as follows:

(1.9). Proposition. For any $g \in R$, let $B_g = R[\varepsilon]/(f + \varepsilon g)$. Then the following are equivalent:

- (i) B_g is equicohomological, i.e. in T_{EC} .
- (ii) $g\varphi_{1i} + g_X\varphi_{2i} + g_Y\varphi_{3i} \in (f, f_X, f_Y) \subseteq R$ (j = 1, 2).

Proof. Put $\psi_1 = (g, g_X, g_Y)$ (the vector), then $B_g \in T_{EC}$ iff

$$\operatorname{coker} (\psi + \varepsilon \psi_1) : R[\varepsilon]^3 \to R[\varepsilon]$$

is flat over $k[\varepsilon]$. By a well-known theorem [4] this happens iff φ can be lifted to a matrix $\varphi + \varepsilon \varphi_1$ such that $(\psi + \varepsilon \psi_1)(\varphi + \varepsilon \varphi_1) = 0$, that is $\psi \varphi_1 + \psi_1 \varphi = 0$. The existence of such a φ_1 is clearly equivalent to (ii).

2. An example.

- (2.1). Put $f = (X^4 Y^4)^2 X^{10}$. This example has been studied by Wahl [7, 6.8]. Let $R/(f, f_X, f_Y) \to T_D$ be the isomorphism induced by the correspondence $g \to B_g$ as in (1.9); then T_D will be identified with $R/(f, f_X, f_Y)$ via this isomorphism. Wahl shows that the tangent space $T_{\overline{ES}}$ of the equisingular deformation functor \overline{ES} is the ideal generated by $(X, Y)^{10}$ and $X^2 Y^2 (X^4 Y^4)$ in $R/(f, f_X, f_Y)$.
 - (2.2). Proposition.
 - (i) A k-basis for T_D is given by $\{X^iY^j \mid (i,j) \in B\}$, where $B = \{0, \dots, 5\} \times \{0, \dots, 6\} \cup \{(6,0), (6,1), (6,2), (6,3), (7,3), (8,3)\}.$
 - (ii) A k-basis for T_{EC} is given by the following:
 - (a) $X^{i}Y^{j}$, $(i,j) \in B$, $i+j \ge 9$, (b) $X^{4} - Y^{4} + 4X^{6} - 4X^{2}Y^{4}$

$$X^5 - XY^4$$

 $48X^4Y - 48Y^5 - 5X^6Y$

$$X^5Y - XY^5$$

$$32X^4X^2 - 32Y^6 - 5X^6Y^2$$

$$X^5Y^2 - XY^6$$

$$X^6Y - X^2Y^5$$

$$X^6Y^2 - X^2Y^6$$

$$X^3Y^5\ .$$

In particular, $\tau = 48$ and dim $T_{\rm EC} = 18$.

- (2.3). COROLLARY. There exist equicohomological deformations that are not equisingular (not even equimultiple along any section, see [7] for definitions).
 - (2.4). Proposition. EC is obstructed, that is \bar{H} is singular.

PROOF OF (2.2). (i) is basically an exercise: First find a monomial base of $R/(f_X, f_Y)$, then express the residue class of f and its multiples in this basis. (In fact $\mu = \dim R/(f_X, f_Y) = 57$, and the annihilator of f modulo (f_X, f_Y) is the ideal (X^3, Y^3) .) The multiplication table in T_D should be generated by the relations $X^{10} = X^6Y^4 = (X, Y)^{12} = 0$, $Y^7 = X^4Y^3$, $X^7 = X^3Y^4 + \frac{5}{4}X^5Y^4$.

(ii) From these computations we may construct the following matrix φ :

$$\varphi = \begin{bmatrix} 40Y^3 & 8X^3 - 10X^5 \\ -4XY^3 & \frac{1}{5}Y^4 - X^4 + X^6 \\ X^4 - 5Y^4 & -\frac{4}{5}X^3Y + \frac{5}{4}X^5Y \end{bmatrix}$$

and one checks easily that its minors are f, f_X , and f_Y . With all this, we are in a position to apply the test of (1.9), reducing everything to a system of k-linear equations.

(2.5). Remark. To make a check on these computations, put for example $g = X^5 - XY^4$. Then

$$\begin{split} \varphi_{11}g + \varphi_{21}g_X + \varphi_{31}g_Y &= -2Xf_Y \\ \varphi_{12}g + \varphi_{22}g_X + \varphi_{32}g_Y &= (11 - 20X^2)f + (2X^3 - X)f_X + (\frac{5}{2}X^2Y - \frac{7}{5}Y)f_Y \end{split}$$

hence $f + \varepsilon g$ and its partial derivatives are the maximal minors of $\varphi + \varepsilon \varphi_1$, where

$$\varphi_1 = \begin{bmatrix} 0 & 20X^2 - 11 \\ 0 & X - 2X^3 \\ 2X & \frac{7}{5}Y - \frac{5}{2}X^2Y \end{bmatrix}.$$

This can of course be verified directly.

PROOF OF (2.4). From the explicit description of the semiuniversal family of (1.2) it is clear that it is algebraizable: it is, in fact, defined over $\mathcal{H}_1 = k[t_1, \ldots, t_n]$. Passing to an affine open neighbourhood Spec $\mathcal{H} \subseteq \operatorname{Spec} \mathcal{H}_1$ of the origin, $H^1(\mathcal{H}, B_{\mathcal{H}}, B_{\mathcal{H}})$ is a finite \mathcal{H} -module, and we may form a quotient $\bar{\mathcal{H}}$ of \mathcal{H} in the same way as in (1.6), the equicohomological stratum. Then \bar{H} is the completion of $\bar{\mathcal{H}}$ at the origin, and it suffices to show that $\bar{\mathcal{H}}$ is singular. Assuming the contrary, we may extend the deformation $f + \varepsilon g$, where $g = X^5$

- $-XY^5$ to an equicohomological family defined over a nonsingular curve. The general fiber in this family would be an isolated singularity no worse than that defined by g=0, an ordinary 5-ple point. Hence the invariant τ of the general fiber is at most 16, whereas in any equicohomological family, τ is constant, since the formation of H^1 commutes with base change. Since $\tau=48$ for the special fiber, we have the desired contradiction.
- (2.6). Remark. In this example, it happens that $T_{\overline{ES}} \subseteq T_{EC}$. In the general case, this is not so, as can be seen from the example $X^5 + Y^5 + \varepsilon X^3 Y^3$, which is equisingular but not equicohomological.

Note added in proof. G. Pfister recently discovered that the family $X^5 + X^2Y^2 + Y^4 + tX^4$ is τ -constant but not equisingular.

REFERENCES

- M. André, Méthode simpliciale en algèbre homologique et algèbre coummutative (Lecture Notes in Math. 32), Springer-Verlag, Berlin - Heidelberg - New York, 1967.
- 2. A. Laudal, and G. Pfister, The local moduli problem. Applications to the classification of singularities, to appear.
- D. Mumford, Lectures on curves on an algebraic surface (Ann. of Math. Studies 59), Princeton University Press, Princeton, N.J., 1966.
- 4. M. Schaps, Nonsingular deformations of space curves, using determinatal schemes, thesis, Harvard University, Cambridge, 1972.
- 5. M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222.
- B. Teissier, The hunting of invariants in the theory of discriminants in Real and complex singularities, (Proc. Ninth Nordic Summer School/NAVF Sympas. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.
- 7. J. Wahl, Equisingular deformation of plane algebroid curves, Trans. Amer. Math. Soc. 193 (1974), 143-170.
- O. Zariski, Studies in equisingularity I: Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BERGEN ALLÉGT. 53-55 5014 BERGEN NORWAY