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A NOTE ON 7-CONSTANT FAMILIES
OF PLANE CURVES

STEIN ARILD STROMME

Introduction.

If {X,},cyis an algebraic (or analytic) family of (germs of) isolated plane
curve singularities with “constant 7” (i.e. the dimension 7(X ) of the base of the
miniversal deformation of X, is independent of y € Y), it seems to be well known
(cf. the discussion in [6, p. 667]) that if the parameter space Y is nonsingular,
then the family is equisingular (in the sense of Zariski, [8]). The notion of
equisingularity has been extended to families over Artinian base schemes by
Wahl [7], and he proves that the equisingular deformation functor is smooth.
On the other hand, the notion of t-constant families has an obvious
infinitesimal analogue, called equicohomological families in this note.
However, the implication equicohomological = equisingular no longer holds;
the purpose of this note is to provide a counterexample. The same example
shows that the equicohomological stratum in the prorepresentable hull of the
deformation functor is singular.

1. Equicohomological deformations.

(1.1). Let R=k[[X,Y]] be the algebra of formal power series over an
algebraically closed field k of characteristic 0, let fe R be a reduced power
series of order r=1, that is fe (X, Yy —(X,Yy*! and put B=R/(f). By
definition, B is an algebroid isolated plane curve singularity.

(1.2). Denote by C the category of local k-algebras of finite length, and by
D: C — Sets the deformation functor of B, and let (H,& be the.
prorepresentable hull of D, see [5]. It is described as follows: Let g,,...,8, € R
induce a k-basis of R/(f, fy, fy), and let t,,...,t be variables. Then H
=k[[t,,...,t.]], and if we put

7 JF=/f+Y tg e R®H = Ry,
i=1
then B=R ol (f) induces a semiuniversal family for D.
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(1.3). Denote by H'(k, B, B) the algebra cohomology groups of André [1];
then the tangent space of D (or of H) is canonically isomorphic to H!(k, B, B),
which in turn is (non-canonically) isomorphic to R/(f, fy, fy). Similarly,
H'(H, B, B) is isomorphic to Ry/(], Ty, Ty).

(1.4). For any morphism A" — A in C and any deformation B, € D(4’),
there is a natural base-change map

HI(A”BA’,BA')®A'A - Hl(A’BA’BA) s

where B,=B,® , A. Representing B, as a quotient of R, by f' € R, and
using similar isomorphisms as those in (1.3), we easily see that the base change.
map is an isomorphism.

(L.5). DeriniTioN. A deformation B, e D(A) is equicohomological if
H'(A,B,,B,) is a flat (hence free) A-module. In view of (1.4), these families
form a subfunctor EC of D.

(1.6). Let t=dim, H' (k, B, B), and denote by J < H the (z — 1)th Fitting ideal
of the finite H-module H'(H,B,B). Put H=H/J and B=B®yH. By [3,
Lecture 8, case n=0], for any morphism H — A with A in C, it factors through
H if and only if H'(H, B,B)® 44 is flat over A. In view of (1.4) above, this
happens exactly when B®jA is equicohomological. Hence (H,B) is a
prorepresentable hull of EC.

(1.7). ReMARK. In [2] it is proved that (H, B) actually prorepresents EC, and
that EC is the maximal prorepresentable subfunctor of D (in the terminology
of that paper, EC is the prorepresentable substratum of D).

(1.8). By Hilbert’s syzygy theorem, the R-module H'(k,B,B) has a free
resolution of the form

0——+R2—£~>R3—'L>R,

where  is the row vector (f; fy, fy). Furthermore, since coker () has finite
support, the image of i is the ideal generated by the maximal minors of ¢. The
3 x 2 matrix ¢ = (¢;;) will play a key role in the description of the tangent space
Tgc of EC. By definition, this is EC (k[e]), where k[e] is the ring of dual
numbers (g2 =0). Tgc is a subspace of T,,=H"(k, B, B) and can be described as
follows:

(1.9). ProposiTiON. For any g € R, let B,=R[e]/(f+¢g). Then the following
are equivalent:
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(i) B, is equicohomological, i.e. in Tgc.
(i) go1;+8xP2;+8yes; € (f fx, [¥ESR  (j=12).
ProoOF. Put ¥, =(g,gx,gy) (the vector), then B, € Tgc iff
coker (f +&y,) : R[e]® — R[e]

is flat over k[¢]. By a well-known theorem [4] this happens iff ¢ can be lifted to

a matrix ¢ +e&@, such that (Y +ey,) (@ +ep,)=0, that is Y@, +y,0=0. The
existence of such a ¢, is clearly equivalent to (ii).

2. An example.

(2.1). Put f=(X*— Y*?— X! This example has been studied by Wahl [7,
6.8]. Let R/(f, fx»fy) = Tp be the isomorphism induced by the cor-
respondence g — B, as in (1.9); then T, will be identified with R/(f, fy, fy) via
this isomorphism. Wahl shows that the tangent space Tgg of the equisingular
deformation functor ES is the ideal generated by (X, Y)!° and X2Y?(X*— Y%
in R/(f, fx» fy)

(2.2). PropPosITION.
(i) A k-basis for Tp is given by {X'Y/ | (i,j) € B}, where
B ={0,...,5} x{0,...,6} U{(6,0), (6,1), (6,2), (6,3), (7,3), (8, 3)}.
(i) A k-basis for Tgc is given by the following:
(@ X'Y), (,)eB,i+j=9,
(b) X*—Y*+4X5-4X?Y*
-Xv*
48X*Y=-48Y5 —-5X6Y
X’Y-Xxys
32X4X2-32Y%-5Xx6y?

X3Y2-XxYy*
XéYy—-Xx?%y?
XeY?—-Xx%y®
X3ys.

In particular, t=48 and dim Tgc=18.
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(2.3). CoroLLARY. There exist equicohomological deformations that are not
equisingular (not even equimultiple along any section, see [7] for definitions).

(2.4). ProrosiTiON. EC is obstructed, that is H is singular.

Proor oF (2.2). (i) is basically an exercise: First find a monomial base of
R/(fx, fy), then express the residue class of fand its multiples in this basis. (In
fact u=dim R/(fy, fy) =57, and the annihilator of f modulo (fy, fy) is the ideal
(X?, Y?).) The multiplication table in T}, should be generated by the relations
X'0=XY*=(X,Y)'?2=0, Y'=X*Y3, X" =X3Y*4+3X5Y%

(i) From these computations we may construct the following matrix ¢:

40Y? 8X3-10x3
o =] —4XxY?3 iyt — x4+ x¢
X*-5Y*  —iX3v+3X°Y
and one checks easily that its minors are f, fy, and f}. With all this, we are in a

position to apply the test of (1.9), reducing everything to a system of k-linear
equations.

(2.5). REMARK. To make a check on these computations, put for example
g=X>—XY* Then

0118+ 9 8x+ 938y = —2Xfy
0128+ P228x+ P38y = (11-20X7)f+ 2X° - X)fx+ GX*Y—-1Y)fy

hence f+eg and its partial derivatives are the maximal minors of ¢ +eg;,
where

0 20X2—11
o, =0  Xx-2x3
2X  1y-3x?y

This can of course be verified directly.

ProoF ofF (2.4). From the explicit description of the semiuniversal family of
(1.2) it is clear that it is algebraizable: it is, in fact, defined over #,
=k[t,,...,t,]. Passing to an affine open neighbourhood Spec # < Spec #’; of
the origin, H*(#, B 4, B,) is a finite #-module, and we may form a quotient
H of # in the same way as in (1.6), the equicohomological stratum. Then H is
the completion of # at the origin, and it suffices to show that # is singular.
Assuming the contrary, we may extend the deformation f+ &g, where g=X"
Math. Scand. 55 — 5
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— X Y? to an equicohomological family defined over a nonsingular curve. The
general fiber in this family would be an isolated singularity no worse than that
defined by g=0, an ordinary 5-ple point. Hence the invariant 7 of the general
fiber is at most 16, whereas in any equicohomological family, t is constant,
since the formation of H! commutes with base change. Since t=48 for the
special fiber, we have the desired contradiction.

(2.6). REMARK. In this example, it happens that Tgg< Tge. In the general case,
this is not so, as can be seen from the example X°+ Y*+&eX3Y3, which is
equisingular but not equicohomological.

Note ApDED IN PROOF. G. Pfister recently discovered that the family
X3+ X2Y2 4+ Y +tX* is t-constant but not equisingular.
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