A NOTE ON τ-CONSTANT FAMILIES
OF PLANE CURVES

STEIN ARILD STRØMME

Introduction.

If $\{X_y\}_{y \in Y}$ is an algebraic (or analytic) family of (germs of) isolated plane curve singularities with "constant τ" (i.e. the dimension $\tau(X_y)$ of the base of the miniversal deformation of X_y is independent of $y \in Y$), it seems to be well known (cf. the discussion in [6, p. 667]) that if the parameter space Y is nonsingular, then the family is equisingular (in the sense of Zariski, [8]). The notion of equisingularity has been extended to families over Artinian base schemes by Wahl [7], and he proves that the equisingular deformation functor is smooth. On the other hand, the notion of τ-constant families has an obvious infinitesimal analogue, called equicohomological families in this note. However, the implication equicohomological \Rightarrow equisingular no longer holds; the purpose of this note is to provide a counterexample. The same example shows that the equicohomological stratum in the prorepresentable hull of the deformation functor is singular.

1. Equicohomological deformations.

(1.1). Let $R = k[[X, Y]]$ be the algebra of formal power series over an algebraically closed field k of characteristic 0, let $f \in R$ be a reduced power series of order $r \geq 1$, that is $f \in (X, Y)^r - (X, Y)^{r+1}$, and put $B = R/(f)$. By definition, B is an algebroid isolated plane curve singularity.

(1.2). Denote by C the category of local k-algebras of finite length, and by $D : C \to \text{Sets}$ the deformation functor of B, and let (H, ξ) be the prorepresentable hull of D, see [5]. It is described as follows: Let $g_1, \ldots, g_r \in R$ induce a k-basis of $R/(f, f_X, f_Y)$, and let t_1, \ldots, t_r be variables. Then $H = k[[t_1, \ldots, t_r]]$, and if we put

$$f' = f + \sum_{i=1}^r t_i g_i \in R \otimes_k H = R_H,$$

then $\tilde{B} = R_H/(f')$ induces a semiuniversal family for D.

Received May 27, 1983.
(1.3). Denote by $H^1(k, B, B)$ the algebra cohomology groups of André [1]; then the tangent space of D (or of H) is canonically isomorphic to $H^1(k, B, B)$, which in turn is (non-canonically) isomorphic to $R/(f, f_x, f_y)$. Similarly, $H^1(H, \tilde{B}, \tilde{B})$ is isomorphic to $R_{H^1}(\tilde{f}, \tilde{f}_x, \tilde{f}_y)$.

(1.4). For any morphism $A' \to A$ in C and any deformation $B_{A'} \in D(A')$, there is a natural base-change map

$$H^1(A', B_{A'}, B_{A'}) \otimes_{A'} A \to H^1(A, B_A, B_A),$$

where $B_A = B_A \otimes A$. Representing $B_{A'}$ as a quotient of $R_{A'}$ by $f' = R_{A'}$ and using similar isomorphisms as those in (1.3), we easily see that the base change map is an isomorphism.

(1.5). Definition. A deformation $B_A \in D(A)$ is equicohomological if $H^1(A, B_A, B_A)$ is a flat (hence free) A-module. In view of (1.4), these families form a subfunctor EC of D.

(1.6). Let $\tau = \dim_k H^1(k, B, B)$, and denote by $J \subseteq H$ the $(\tau - 1)$th Fitting ideal of the finite H-module $H^1(H, \tilde{B}, \tilde{B})$. Put $\tilde{H} = H/J$ and $\tilde{B} = \tilde{B} \otimes_H \tilde{H}$. By [3, Lecture 8, case $n = 0$], for any morphism $H \to A$ with A in C, it factors through \tilde{H} if and only if $H^1(H, \tilde{B}, \tilde{B}) \otimes_H A$ is flat over A. In view of (1.4) above, this happens exactly when $\tilde{B} \otimes_H A$ is equicohomological. Hence (\tilde{H}, \tilde{B}) is a prorepresentable hull of EC.

(1.7). Remark. In [2] it is proved that (\tilde{H}, \tilde{B}) actually prorepresents EC, and that EC is the maximal prorepresentable subfunctor of D (in the terminology of that paper, EC is the prorepresentable substratum of D).

(1.8). By Hilbert's syzygy theorem, the R-module $H^1(k, B, B)$ has a free resolution of the form

$$0 \to R^2 \xrightarrow{\phi} R^3 \xrightarrow{\psi} R,$$

where ψ is the row vector (f, f_x, f_y). Furthermore, since coker (ψ) has finite support, the image of ψ is the ideal generated by the maximal minors of φ. The 3×2 matrix $\varphi = (\varphi_{i,j})$ will play a key role in the description of the tangent space T_{EC} of EC. By definition, this is $EC(k[\varepsilon])$, where $k[\varepsilon]$ is the ring of dual numbers $(\varepsilon^2 = 0)$. T_{EC} is a subspace of $T_D = H^1(k, B, B)$ and can be described as follows:

(1.9). Proposition. For any $g \in R$, let $B_g = R[\varepsilon]/(f + \varepsilon g)$. Then the following are equivalent:
(i) B_ε is equicohomological, i.e. in T_{EC}.
(ii) $g\varphi_{1j} + g_x\varphi_{2j} + g_y\varphi_{3j} \in (f, f_X, f_Y) \subseteq R \quad (j = 1, 2)$.

Proof. Put $\psi_1 = (g, g_X, g_Y)$ (the vector), then $B_\varepsilon \in T_{EC}$ iff

$$\text{coker } (\psi + \varepsilon\psi_1) : R[\varepsilon]^3 \to R[\varepsilon]$$

is flat over $k[\varepsilon]$. By a well-known theorem [4] this happens iff φ can be lifted to a matrix $\varphi + \varepsilon\varphi_1$ such that $(\psi + \varepsilon\psi_1)(\varphi + \varepsilon\varphi_1) = 0$, that is $\psi\varphi_1 + \psi_1\varphi = 0$. The existence of such a φ_1 is clearly equivalent to (ii).

2. An example.

(2.1). Put $f = (X^4 - Y^4)^2 - X^{10}$. This example has been studied by Wahl [7, 6.8]. Let $R/(f, f_X, f_Y) \to T_D$ be the isomorphism induced by the correspondence $g \to B_\varepsilon$ as in (1.9); then T_D will be identified with $R/(f, f_X, f_Y)$ via this isomorphism. Wahl shows that the tangent space $T_{\overline{ES}}$ of the equisingular deformation functor \overline{ES} is the ideal generated by $(X, Y)^{10}$ and $X^2Y^2(X^4 - Y^4)$ in $R/(f, f_X, f_Y)$.

(2.2). **Proposition.**

(i) A k-basis for T_D is given by $\{X^iY^j \mid (i, j) \in B\}$, where

$$B = \{0, \ldots, 5\} \times \{0, \ldots, 6\} \cup \{(6, 0), (6, 1), (6, 2), (6, 3), (7, 3), (8, 3)\}.$$

(ii) A k-basis for T_{EC} is given by the following:

(a) $X^iY^j, \quad (i, j) \in B, \ i + j \geq 9$,

(b) $X^4 - Y^4 + 4X^6 - 4X^2Y^4

$$X^5 - XY^4

48X^4Y - 48Y^5 - 5X^6Y

X^5Y - XY^5

32X^4Y^2 - 32Y^6 - 5X^6Y^2

X^5Y^2 - XY^6

X^6Y - X^2Y^5

X^6Y^2 - X^2Y^6

X^3Y^5.$$

In particular, $\tau = 48$ and $\dim T_{EC} = 18$.
(2.3). Corollary. There exist equicohomological deformations that are not equisingular (not even equimultiple along any section, see [7] for definitions).

(2.4). Proposition. EC is obstructed, that is \(\tilde{H} \) is singular.

Proof of (2.2). (i) is basically an exercise: First find a monomial base of \(R/(f_X, f_Y) \), then express the residue class of \(f \) and its multiples in this basis. (In fact \(\mu = \dim R/(f_X, f_Y) = 57 \), and the annihilator of \(f \) modulo \((f_X, f_Y) \) is the ideal \((X^3, Y^3) \).) The multiplication table in \(T_D \) should be generated by the relations \(X^{10} = X^6 Y^4 = (X, Y)^{12} = 0 \), \(Y^7 = X^4 Y^3 \), \(X^7 = X^3 Y^4 + \frac{3}{4} X^5 Y^4 \).

(ii) From these computations we may construct the following matrix \(\varphi \):

\[
\varphi = \begin{bmatrix}
40Y^3 & 8X^3 - 10X^5 \\
-4XY^3 & \frac{1}{2}Y^4 - X^4 + X^6 \\
X^4 - 5Y^4 & -\frac{3}{4}X^3 Y + \frac{5}{4}X^5 Y
\end{bmatrix}
\]

and one checks easily that its minors are \(f, f_X, \) and \(f_Y \). With all this, we are in a position to apply the test of (1.9), reducing everything to a system of \(k \)-linear equations.

(2.5). Remark. To make a check on these computations, put for example \(g = X^5 - XY^4 \). Then

\[
\varphi_{11}g + \varphi_{21}g_X + \varphi_{31}g_Y = -2Xf_Y
\]

\[
\varphi_{12}g + \varphi_{22}g_X + \varphi_{32}g_Y = (11 - 20X^2)f + (2X^3 - X)f_X + (\frac{3}{8}X^2 Y - \frac{7}{8} Y)f_Y
\]

hence \(f + \varepsilon g \) and its partial derivatives are the maximal minors of \(\varphi + \varepsilon \varphi_1 \), where

\[
\varphi_1 = \begin{bmatrix}
0 & 20X^2 - 11 \\
0 & X - 2X^3 \\
2X & \frac{3}{2}Y - \frac{5}{2}X^2 Y
\end{bmatrix}.
\]

This can of course be verified directly.

Proof of (2.4). From the explicit description of the semiuniversal family of (1.2) it is clear that it is algebraizable: it is, in fact, defined over \(\mathcal{H}_1 = k[t_1, \ldots, t_n] \). Passing to an affine open neighbourhood Spec \(\mathcal{H} \subseteq \text{Spec} \mathcal{H}_1 \) of the origin, \(H^1(\mathcal{H}, B_{\mathcal{H}}, B_{\mathcal{H}}) \) is a finite \(\mathcal{H} \)-module, and we may form a quotient \(\tilde{\mathcal{H}} \) of \(\mathcal{H} \) in the same way as in (1.6), the equicohomological stratum. Then \(\tilde{H} \) is the completion of \(\tilde{\mathcal{H}} \) at the origin, and it suffices to show that \(\tilde{\mathcal{H}} \) is singular. Assuming the contrary, we may extend the deformation \(f + \varepsilon g \), where \(g = X^5 \)
\(-XY^5\) to an equicohomological family defined over a nonsingular curve. The
general fiber in this family would be an isolated singularity no worse than that
defined by \(g = 0\), an ordinary 5-ple point. Hence the invariant \(\tau\) of the general
fiber is at most 16, whereas in any equicohomological family, \(\tau\) is constant,
since the formation of \(H^1\) commutes with base change. Since \(\tau = 48\) for the
special fiber, we have the desired contradiction.

(2.6). Remark. In this example, it happens that \(T_{ES} \subseteq T_{EC}\). In the general case,
this is not so, as can be seen from the example \(X^5 + Y^5 + eX^3Y^3\), which is
equisingular but not equicohomological.

Note added in proof. G. Pfister recently discovered that the family
\(X^5 + X^2Y^2 + Y^4 + tX^4\) is \(\tau\)-constant but not equisingular.

REFERENCES

1. M. André, Méthode simpliciale en algèbre homologique et algèbre commutative (Lecture Notes
2. A. Laudal, and G. Pfister, The local moduli problem. Applications to the classification of
 singularities, to appear.
4. M. Schaps, Nonsingular deformations of space curves, using determinantal schemes, thesis,
 Harvard University, Cambridge, 1972.
6. B. Teissier, The hunting of invariants in the theory of discriminants in Real and complex
 143–170.
8. O. Zariski, Studies in equisingularity I: Equivalent singularities of plane algebroid curves, Amer. J.
 Math. 87 (1965), 507–536.