APPENDIX TO "PLÜCKER CONDITIONS ON PLANE RATIONAL CURVES": FAMILIES OF RATIONAL PLANE CURVES

STEIN ARILD STRØMME

This note is concerned with the relationship between families of parametrized plane rational curves and families of unparametrized plane curves. Let d be a fixed positive integer, and denote by \underline{X} the following contravariant functor on the category of k-schemes:

 $\underline{X}(T) = \text{set of finite } T\text{-morphisms } \varphi \colon P_T^1 \to P_T^2 \text{ such that for all geometric points } t \to T$, the fiber φ_t of φ is birational onto its image, which is a curve of degree d with only ordinary nodes and cusps as singularities.

Clearly X is represented by an open subscheme X of projective (3d+2)-space. Denote by $\tilde{\varphi}: P_X^1 \to P_X^2$ the universal family.

Let A_1 be the Hilbert scheme of plane curves of degree d (i.e. projective $\frac{1}{2}d(d+3)$ -space), and let $A \subseteq A_1$ be the open subscheme corresponding to irreducible curves with only nodes and cusps as singularities. Since $\tilde{\varphi}$ is finite, the formation of $\tilde{\varphi}_*(O_{P_X^1})$ commutes with arbitrary base change on X. Hence the closed subscheme $\tilde{C} \subseteq P_X^2$ defined by the zeroth Fitting ideal of $\tilde{\varphi}_*(O_{P_X^1})$ defines a morphism $\psi \colon X \to A$.

THEOREM. The morphism ψ factors as follows:

$$\begin{array}{ccc} X & \xrightarrow{\psi} & A \\ \varphi \downarrow & \uparrow i \\ Y & \xrightarrow{n} & R \end{array}$$

where $R \subseteq A$ is the closed subscheme corresponding to rational curves (with reduced subscheme structure), $n: Y \to R$ is the normalization morphism, and $\varphi: X \to Y$ is a principal PGL (2)-bundle. Furthermore, Y is nonsingular and n is a homeomorphism.

COROLLARY. Put $\lambda = n \circ \varphi \colon X \to R$. For any subset $U \subseteq R$, we have $\lambda^{-1}(\bar{U}) = \overline{\lambda^{-1}(U)}$.

Received May 6, 1983.

REMARK. One may show that n is an isomorphism precisely over the open subset $R_0 \subseteq R$ corresponding to curves without cusps. More precisely, if $r \in R$ corresponds to a curve with γ cusps, the germ of R at r is analytically isomorphic to a product of γ ordinary (1-dimensional) cusps and a smooth part (of dimension $3d-1-\gamma$).

PROOF OF THE THEOREM. We shall define Y via its functor of points, and later show that it coincides with the normalization of R.

For any A-scheme T, let $C_T \subseteq P_T^2$ be the pullback of the universal family $C_A \subseteq P_A^2$. Consider the following functor \underline{Y} on the category of A-schemes:

 $\underline{Y}(T)$ = set of subschemes $S \subseteq C_T$ with the following properties:

- (i) S is étale and finite over T of rank $p = \binom{d-1}{2}$.
- (ii) $S^{(2)} \subseteq C_T$, where $S^{(2)}$ is the first infinitesimal neighborhood of S in P_T^2 (defined by the square of the ideal of S in P_T^2).

Note that condition (ii) is equivalent to the condition (ii)': S is contained in the singular locus of the morphism $C_T \to T$ (defined, for example, by the first Fitting ideal of $\Omega^1_{C_T/T}$).

Clearly \underline{Y} is represented by a locally closed subscheme Y of $Hilb_{P^2}^p \times A$. I claim that the natural morphism $v: Y \to A$ is proper. Indeed, by the valuative criterion for properness, it suffices to complete the following commutative diagram

$$T_0 \to Y$$

$$\downarrow \\ T \to A$$

where T is the spectrum of a discrete valuation ring, and $T_0 = T - \{t\}$, $t \in T$ the closed point. So we are given C_T and $S_{T_0} \subseteq \operatorname{Sing}(C_{T_0}/T_0)$. Put $S_T = \operatorname{closure}$ of S_{T_0} in P_T^2 . Then S_T is flat and finite over T and condition (ii) holds. It remains only to show that the closed fiber S_t is nonsingular. If not, there are local parameters (u,v) of P_t^2 such that $I_{S_t} \subseteq (u^2,v)$. But then $I_{C_t} \subseteq (u^4,u^2v,v^2)$, contrary to the assumption that C_t has only ordinary nodes and cusps.

Now let L_Y be the blowing up of C_Y along S_Y . I claim that L_Y is flat over Y, and that for any base change $Y' \to Y$, the pullback $L_{Y'}$ of L_Y coincides with the blowing up of $C_{Y'}$ along $S_{Y'}$. Indeed, the question is local on C_Y (for the étale topology) hence the claim follows from [2, 1.3 and 1.6]. In particular, all the geometric fibers of L_Y are projective lines, and $L_Y \to Y$ is a P^1 -bundle. Let $\varphi' \colon X' \to Y$ be the associated principal PGL (2)-bundle [1]. Its functor of points on the category of Y-schemes is $X'(T) = \sec$ of T-isomorphisms P_T^1

 $\to L_T$. Let $\alpha: P_{X'}^1 \to L_{X'}$ be the universal isomorphism. Then the composed map

$$P_{X'}^1 \xrightarrow{\alpha} L_{X'} \rightarrow C_{X'} \rightarrow P_{X'}^2$$

defines a morphism $\beta: X' \to X$.

I claim that β is an isomorphism. Indeed, define a closed subscheme $\widetilde{S} \subseteq P_X^2$ by the first Fitting ideal of $\widetilde{\varphi}_*(O_{P_X^1})$. Then \widetilde{S} is étale and finite of rank p over X, and defines a morphism $\varphi \colon X \to Y$. Clearly, the map $\widetilde{\varphi} \colon P_X^1 \to \widetilde{C} \subseteq P_X^2$ coincides with the blowing up of \widetilde{C} along \widetilde{S} . Therefore φ can be lifted to an inverse of β .

Summing up our result so far, we have defined the following part of the diagram of the theorem:

$$X \xrightarrow{\Psi} A$$

$$\varphi \searrow f \quad v = i \circ n$$

$$Y$$

Furthermore, we have shown that φ is a principal PGL (2)-bundle, hence Y is nonsingular. Since any rational plane curve of degree d with ordinary nodes and cusps has a total of p of these singularities, v is injective on geometric points. Since v is proper, it is a birational homeomorphism onto its image R. This also shows that Y is the normalization of R.

REMARK. There is a natural action of PGL (2) on X. Starting in the other end, one may check that this action is free, and construct (Y, φ) as a geometric quotient of this action.

REFERENCES

- J.-P. Serre, Espaces fibrés algébriques in Anneaux de Chow et Applications, Seminaire C. Chevalley, 2e Année, 1958, pp. 1-37, Secrétariat Mathématique, Paris, 1958.
- J. M. Wahl, Equisingular deformations of plane algebroid curves, Trans. Amer. Math. Soc. 193 (1974), 143-170.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BERGEN ALLÉGT. 53-55 5014 BERGEN NORWAY