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THE EXISTENCE OF GENERIC FREE RESOLUTIONS
AND RELATED OBJECTS

WINFRIED BRUNS

One of the subjects on which commutative algebra has made significant
progress during the last decade is the theory of finite free resolutions. Some of
the most remarkable recent results in this area, like the Buchsbaum-Eisenbud
theorems [4] and the syzygy theorem of Evans-Griffith [8], concern the
generic structure of finite free resolutions whose complete determination,
according to Hochster [9], is the ultimate object of the structure theory of
finite free resolutions.

To be specific: Hochster calls a pair (S, G) consisting of a commutative ring S
and a finite free resolution (with specified bases)

G:0— S8 — Sh-1 5 5 S S

generic of type (b,,. .., b,) if every finite free resolution F of this type over a
commutative ring R is a specialization of G, ie. if there is a ring
homomorphism ¢: § — R such that F=G® R with respect to ¢. Hochster
conjectures that for every possible type (b,,. . .,b,) there exists a generic pair
(S, G) and that, furthermore, S can be taken as a Z-algebra of finite type. He
proves this conjecture for n <2 by showing that in this case the generic pair can
even be chosen to be universal: the extension ¢ is always unique then [9,
Theorem 7.2].

In this article we prove the first part of Hochster’s conjecture in full
generality whereas we only establish a weaker result in regard to the finiteness
of S: there exist generic free resolutions in which S is a countably generated Z-
algebra. For n<2 we reproduce Hochster’s universal pairs, and show that the
existence of universal free resolutions is essentially limited to this case.

The range of application of our construction is not bounded to finite free
resolutions. It works for all classes of objects which can be defined by general
“exactness conditions” for systems of polynomial equations, including periodic
free resolutions, perfect free resolutions, and complexes like G above, which are
only required to be acyclic locally over certain subsets of the spectrum of the
underlying ring.
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The structure theory of finite free resolutions whose original developments
were mostly restricted to noetherian rings was extended to the class of all
commutative rings by Northcott [11]. If Hochster’s conjecture concerning the
finiteness of the rings underlying generic finite free resolutions is true, then
there is nothing special about such resolutions over noetherian rings. However,
not far away from finite free resolutions one can find objects for which the
general and the noetherian theory differ significantly: Examples are supplied
by exact sequences

R— R—-> R*>R
and periodic exact sequences

R— R*> R.

t

NOTATIONS AND TERMINOLOGY. All rings and algebras R are assumed to be
commutative and to contain an identity element 1+40. For the general theory
of commutative rings we refer the reader to Matsumura’s book [10]. The
notion of grade is always used for the true grade as defined in [11]. We only
attribute a rank to a matrix if its rank and its reduced rank in the sense of [11]
coincide. For systematic reasons we allow matrices with zero rows or columns.
A u-minor of a (m, n)-matrix x is the determinant of a (u, u)-submatrix of x. The
value of a u-minor is 1, if u=0, and 0, if u>min (m, n). The ideal generated by
the u-minors of a matrix x is denoted by I,(x). The matrix x has rank r if and
only if gradeI,(x)=1 and I, , ,(x)=0. A (m, n)-matrix specifies a map R™ — R".

Let KcZ be an interval and (b,),.x @ family of non-negative integers. A
complex of type (by),x (of finitely generated free modules with specified bases)
is a sequence C = (x*), . x of matrices over R, where x* is a (b, b, _,)-matrix and
the sequence

k k-1
ce. = Rbv X, Rbuoy x , Rbx-2

is a complex in the usual sense. By abuse of language we also call the pair
(R, C) a complex of type (b)), k- Given complexes (R, (x¥) and (R, (%) of the
same type, (R, () is said to be a (universal) specialization of (R, (x¥)), if there
exists a (unique) ring homomorphism ¢: R — R such that (p(x',-‘j)=i{.‘j for all
k,i,j. It is understood that a finite free resolution of type (b,,. . ., b,) is an acyclic
complex of type (0,b,,...,b).

1. Generic finite free resolutions.
Let R be a commutative ring and

f:0— R»4, Rby o, _, RY 2, Rbo
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a finite free resolution of type (b,,. .., b,). Since the ranks of the cokernels of
the maps (represented by the matrices) a* are non-negative, the inequality

rei= Y (=179, 20
=k

holds for k=0,...,n. We refer to this set of inequalities as the rank condition
for (b,,. . .,by) and to the numbers r, as the ranks associated with (b,,. . ., by). If
(b, . ..bo) satisfies the rank condition, then there are obviously free
resolutions of type (b,,...,b,) over every commutative ring R.

THeOREM 1. Let (b,,. . .,b,) be a sequence of non-negative integers satisfying
the rank condition. Then there exists a generic free resolutions (S,G) of type
(bys- - > bg), in which S is a countably generated Z-algebra.

Proor. We construct a direct system (S;a;:S; = S;i1)ien of finitely
generated Z-algebras and ring homomorphisms o; and a complex G, of type
(0,b,,...,by) over S, such that the following conditions are satisfied for the
system (S;, «;) and the associated direct system (G,) of complexes, G;:=G,® S;:

(a) The homology of G; is mapped to zero by the induced homomorphism
H(G,) - H(G;,,) for all i e N.

(b) For every finite free resolution (R, F) of type (b,,. . .,b,) there exist ring
homomorphisms ¢,(R, F): S; — R such that
(i) F=G;®R (relative to ¢;(R, F)),

(i) the diagram S; % §,,,
(R, F) /wﬂ-l(RsF)
R
is commutative for all i € N.

Let S be the direct limit of the rings S;, and choose G:=G,® S. The complex
G is acyclic by virtue of condition (a), and every free resolution (R, F) of type
(b, . .,by) is a specialization of (S,G) via the direct limit @(R,F) of the
homomorphisms ¢;(R, F). Hence (S,G) is a generic free resolution of type
(bps- - - bo).

We begin the construction by choosing

So = Z[XY :k=1,...,n, i=1,..,by j=1,...,b,_,]/a

where the X¥; form a system of indeterminates over Z and a is generated by
the entries of the product matrices X*X*~!, k=2,...,n. There is an obvious
choice for G,:

Go: 0— Shr=% Sh-t . — Shi X, gh
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is the complex of the maps represented by the matrices x* whose entries are the
- residue classes of the X%,

Assume that S,,. . ., S, have been constructed as desired. G,, is a complex of
finitely generated modules over the noetherian ring S,,, hence its homology is
finitely generated. Let the cycles

Vo= 0k k) e S u=1. Ly,
represent a system of generators of H,(G,,), k=1,...,n. We take
Sme1 1= SalZM:k=1,...,n—=1 u=1,...,u, 1=1,...,b, /b,

the Z¥ forming a system of indeterminates over S, and the ideal b being
generated by the polynomials

by+y

k kl k+1 — —_ H—

V= Y ZExETY k=1 n—1, u=1,.. ,u, j=1,...,b,
1=

and the elements

y:j, u = 1,...,“,,, ]‘=1,-~abn'

(Here xj;! denotes the image of xj;'' € S, in §,,) Finally we let a,,:S,,

— §,,+1 be the natural homomorphism. For this choice of S, ,, and «,,
condition (a) above is evidently fulfilled.
Let now R be an arbitrary commutative ring and

F:0— Rb»-9 Rt » 5 Rbi &, Rbo
a finite free resolution over R. By induction hypothesis there is a ring

homomorphism 7n:= ¢, (R, F): §,, — R such that af;=n(xf) for all k,i,j. The
elements

&, := (a(iy)s- - - 7(Vip) € R™
are cycles. Since F is acyclic there exist elements

eR, k=1,... ,n—1, u=1,...,u, l=1,...,b,,,

such that
by
™ =k = duxtth)y =0, k=1,...,n—1, u=1,...,u,,
/ 1+1 ! *
j=1...,b,
Furthermore
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Hence the homomorphism
B :S,.[Z¥: k,u,l as above] — R

given by B|S,:=n and B(Z¥):=c¥ factors through S,,, and we take the
induced map to be ¢, (R, F), thereby satisfying property (b).

Since (b,,. . .,b,) obeys the rank condition, there exists a homomorphism
Pm+1(Z,F): S,,+1 — Z, ensuring us against S, ,,; being the null ring! —

For future reference we call the construction above generic exactification.

If a complex G,, is acyclic over S, then (S,,G,,) is of course a generic free
resolution. A priori it is by no means clear that this favourable behaviour can
be forced to occur for all types (b,,...,by). It does of course occur in the
extremely trivial case in which n=1. Here G, is acyclic already. For n=2 it is
not hard to show that our construction yields Hochster’s universal free
resolution:

CoOROLLARY. For n<2 every generic free resolution constructed by generic
exactification is universal, hence isomorphic to Hochster’s universal free
resolution.

Proor. We have to show that all the maps ¢;(R, F) as above are unique.
Since @4(R,F) is certainly unique we may assume that all the maps
@o(R,F),...,0,(R,F) are unique by induction. ¢,,,(R,F) is completely
determined by ¢,,(R, F) and the images of the indeterminates Z*. These have to
be mapped to coefficients c* satisfying (*). On the other hand, such coefficients
are uniquely determined, since the rows of the map a" are linearly independent.

So we see that the uniqueness property of universal free resolutions is just
the uniqueness of the coefficients in a linear comination of linearly independent
rows. In Section 2 we will determine all the types (b,,. . .,b,) for which there
exist universal free resolutions and see that they are essentially given by the
preceding corollary.

Though we can not even offer a mildly convincing plausibility argument, we
believe in the following conjecture:

CoNJECTURE. The process of generic exactification can be made eventually
stationary for all possible types of finite free resolutions.

With almost no effort the technique of generic exactification can be used to
provide generic models for the objects in certain classes of which finite free
resolutions are just a rather special case. We give some examples:
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(a) Bounded or unbounded complexes of free modules
C:...—> R, Rbr oy

whose homology modules H,(C) vanish for certain fixed k. We will find in
Section 3 that the underlying ring of a generic exact sequence of type

R—> R—>R*>5R
can not be chosen noetherian.

(b) Perfect free resolutions, i.e. finite free resolutions whose dual is also
acyclic. These resolutions occur as resolutions of perfect modules, in particular
as resolutions of Cohen—-Macaulay residue class rings of regular rings. A
celebrated special case is the Hilbert-Burch theorem [4, Theorem 0] which
gives an explicit description of the universal perfect resolution

0> S"H> St 8§,

A second famous result is the theorem of Buchsbaum and Eisenbud about the
structure of free resolutions

0— R R, R"55 R
which satisfy the condition x*=x!* [5]. (Here * denotes transposition.)
(c) Periodic free resolutions

Rbni'.'_, Rbn—l — .. — Rb\_’.‘l_, Rbo

t i |

of type (b,,...,by). Their generic structure is completely known for n=1,
(b, bg) = (m, m). In this case the universal periodic complex of the given type is
already acyclic, so provides the universal periodic free resolution; for m=2 cf.
[13], for general m this assertion is a consequence of results of Huneke and
Strickland (private communication). On the other hand, for all n>1 and all
possible (b,,,. . .,b) with b;=1 for i=0,. . ., n the universal periodic complex is
never acyclic!

Eisenbud [7] extensively studied periodic resolutions. His results indicate
that periodic resolutions over noetherian rings have period 1 or 2 (after a
suitable choice of bases). As a by-product of the non-noetherian example
mentioned above we will obtain a generic free resolution

§$>8 -8

t
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which is non-split and (necessarily) has S non-noetherian. It is very likely that
the rings underlying generic periodic free resolutions of period n+1, n>1, are
never noetherian (except for some trivial exceptions).

(d) Let R be a commutative ring, and C=(a*) a complex of type
(0,by,. . ., by). We call C acyclic in grade t if the localizations C ® R, are acyclic
for all prime ideals p of R with gradep=<t. The exactness criterion of
Buchsbaum-Eisenbud [3] and Peskine-Szpiro [12] (cf. [11] for the general
version needed here) shows that C is acyclic in grade t if and only if

gradel, (@) = min (¢ +1,k), k=1,...,n,

the integers r, being the ranks associated with b:=(b,,. . ., b,). The condition
on grade I, (a*) can be expressed by the acyclicity of a suitable truncation of the
Koszul complex in the generators of I, (a*), and therefore the technique of
generic exactification can be used to obtain complexes (S,(b), G,(b)) for every ¢
and every b, such that (S,(b), G,(b)) is generic for complexes acyclic in grade t.
For t=0,1 the truncations of the Koszul complexes to be “exactified” have
lengths 1 and 2 respectively. Hence (S, (b), G,(b)) are universal for t=0and t=1.
Their structure is explicitely known, cf. section 2.

Instead of considering all commutative rings one can restrict oneself to the
class of B-algebras over an arbitrary commutative ring B. After a replacement
of Z by B throughout, the technique of generic exactification leads to a generic
object (Sp, Gp) for the class of B-algebras.

2. Universal free resolutions.
Our proof of the non-existence of universal free resolutions for essentially all

types (b ..,be) with n=3 is based on the observation that universal free
resolutions already specialize to complexes which are just acyclic in grade 1:

ProposITION 1. Let (S,G) be a complex of-type (0,b,,. . .,by) such that every
free resolution of type (b,,. . .,bo) is a universal specialization of (S, G), and let
(R, C) be a complex of type (0,b,,. . ., by) which is acyclic in grade 1. Then (R, C)
is a universal specialization of (S, G).

Proor. Let C be given by the sequence (a*) of matrices. C® R is acyclic for
all elements

fe ﬁ I()=:b,
k=2

and the ideal b has grade at least two by hypothesis. The uniqueness of all the
extensions S — R, implies that these homomorphisms are induced by an
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extension S — I'(Spec R\ V(b),0), @ denoting the structure sheaf of Spec R.
Now the proposition follows from the lemma below:

LemMMA 1. Let R be a commutative ring and b an ideal in R with grade b>2.
Then the natural homomorphism R — I'(Spec R\ V(b),0) is an isomorphism.

Proor. The assertion is well-known for R noetherian and ultimately rests on
the fact that b then contains a R-sequence of length 2. This needs not to be true
in general. It is however harmless to pass to the polynomial ring R[X,, X,].
The ideal bR[X,, X,] contains an R[X,, X,]-sequence of length 2 [11].

Let R be a commutative ring, and let a=(a;) be a (u,v)-matrix over R.
Suppose that I,,,(a)=0. Then for all sequences iy,... iy, ik € {1,...,u},

Jis- - -sJp Jx € {1,.. ., 0}, Oone obtains by expansion of determinants

r+1

Y (=1a ko (@a, =0 (i, omitted)
t=1 "

where g; denotes the i-th row of a, and iy,. . .,i,...,i,+, and j,,. .., j, are the
row and column indices of a minor of a. When a occurs as the kth linear map in
a complex

— Rbr— . — Rbv-45 ROy 5
then we call the k-cycles given by these relations the determinantal k-cycles.
Note that this definition makes sense in the degenerate case b,_, =0.

Let now (R, F) be a finite free resolution of type (b,,. . ., b,), and let (T, C) be
just a complex of type (0,b,,...,b,) to which (R, F) specializes. Then the
determinantal k-cycles of F specialize to the determinantal k-cycles of C. Since
F is acyclic, the determinantal k-cycles of C have therefore to be boundaries for
all k= 1. If there is a universal free resolution for type (b,,. . ., bg), then it also
specializes to complexes which are just acyclic in grade 1, by virtue of
Proposition 1. To prove that a type (b,,. . ., b,) does not admit a universal free
resolution, it is thus enough to construct a complex of type (b,,. . ., by) which is
acyclic in grade 1, however has a non-boundary determinantal k-cycle for some
k>1.

THEOREM 2. Let (b,,...,by) satisfy the rank condition. Then there is an
universal free resolution of type (b,,. . ., b,) if and only if the following holds: For
all k=2 one has for the rank r, that r,=b, or r,=0.

Proor. Suppose first that there is a k=2 such that r %5, and r, +0. Then
necessarily n=3. For n=3 and (bs,b,, b, by)=(1,2,1,0) the complex

0 R-=LX, RZﬂRHO
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over R=Z[X, Y] is acyclic in grade 1, but has a determinantal 1-cycle, namely
1 € R, which is not a boundary.

From this complex one can obtain a complex C for each type under
consideration such that C is acyclic in grade 1 and has a non-boundary
determinantal k-cycle for some k=1, by successively applying the following
simple extension process:

From a complex C’ of type (0,b,,...,b,) one passes to a complex of type
(a) (0,0,b,,...,by) by extending C’ to the left by 0 — 0,
(b) (0,b,,...,by,0) by doing the same at the right end provided r,=0, and

©) 0,b,,....bxs 1, b+ 1,b_ +1,b_5,...,by) by taking the direct sum of
C' and the complex

00> ... > RUY RS0 ... 50

where R — R is in kth position.
Conversely, if (b,,...,b,) satisfies the condition of the theorem, then the

existence of a universal resolution follows from the same reason as in the case
n<2 treated in the corollary of Theorem 1.

In section 1, example (d) it was pointed out that for t=0 and t =1 there exist
pairs (S,(b), G,(b)) which are universal for complexes acyclic in grade t. The
explicit structure of (S, (b), Go(b)) is given by

n

So(b) = Z[X] / T LK Y T (08,
k=1

k=2

X being a sequence of matrices of indeterminates as in the proof of Theorem 1,
and

Go(b) : 0 — Sy(b)tr =5 Sy(b)rr—t — ... — So(b)P = So(b)* .

De Concini and Strickland ([6]) proved that S,(b) is a normal domain, and
G, (b) is acyclic in grade O since

k+1

rank x**!4+rankx* = r, 41 = b, k=1,...,n.

Generalizing Hochster’s theorem ([9, Theorem 7.2]) it was shown in [2] that
the structure of (S,(b),G,(b)) is determined by the Buchsbaum-Eisenbud
factorization theorem ([4, Theorem 3.1]). S,(b) is a factorial noetherian
domain and may be described as the ring of sections in the structure sheaf of
S,(b) over the locus of acyclicity of G,(b), whereas G, (b) is simply given by
Go(b)®S,(b). The complex G,(b) is acyclic for exactly the types named in
Theorem 2. In any case it is the best possible universal “approximation” of a
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finite free resolution. As an immediate consequence of Proposition 1 we have
the following corollary:

CoOROLLARY. Let (S, G) be a complex of type (0, b,,. . ., by) such that every finite
free resolution (R, F) of type b=(b,,. . ., b,) is a universal specialization of (S, G).
Then every such specialization factors uniquely through (S, (b), G,(b)).

3. A non-noetherian example.

In this section we explicitely compute a complex which is generic for the
complexes of type

=J)2
(*) R...(!L, R 0 y2) > R2 ( ,Vl); R

which are exact at R%2. We will see that the underlying ring of the generic
complex can not be chosen noetherian.

Let us first assume that R is a noetherian ring with a complex of the species
under consideration. Since Koszul complexes are known to be rigid over
noetherian rings [ 1, Proposition 2.4], the element u € R has to be zero. (It is in
fact sufficient that N, (Ry, + Ry,); =0 whenever y,, y, € p € Spec R.) Hence
there exists a universal complex of type (*) within the class of noetherian rings
which is evidently given by the ring Sy=7Z[Y,, Y,] and the exact sequence

- Y.
SN_@.L, SN (Y, Y,) S%V ( yf)r SN'

We prepare the construction of a generic complex of type (*) studying the
rings

R,_,:=2[Y,,Y,,B,,...,B/a,_,, n21,
the ideal a,_, being generated by the polynomials
B,Y,,B,Y,—B,Y,,B,Y,—B;Y,,...,B,_,Y,—B,Y,,B,Y; .
One immediately observes the existence of two epimorphisms f,,7,:
R,— R,_;:
B.(vd) = ¥ Babusy) = 0, B,(b) = b,  j=1,...,n,
a(¥) = Vi valby) =0, Vn(bj) = bj-p J

1

2,...,n+1.

(Small letters denote residue classes in R, and R,_, respectively). Obviously
Ker §,=b,,,R, and Kery,=b,R,. Let



THE EXISTENCE OF GENERIC FREE RESOLUTIONS . .. 43

b, O

b, b,
ap—y =

b, by,

0 b

LEmMMA 2. (a) The annihilator Ann y, of y, in R, _ is generated by b, and the
2-minors of a,_,.

(b) Anny, is generated by b, and the 2-minors of a,_,.

(c) Anny, NAnny, is generated by y;~'b,(=y4"'b,) and the 2-minors of a,_,.
The proof of Lemma 2 rests on

LemMA 3. R, _, is a free Z-module with basis AU BU C, where A is the set of
monomials in y,y,, B is the set of monomials in b,,...,b, and C is the set

{(Viby, yiba. . yiby_ 2, yiby—y
yfblv X} y%bn—l ’

}";_lbl}'

SKETCH OF THE PROOF OF LEMMA 3. It is not difficult to check that AUBUC
generates R,_, as a Z-module. In an equation

Y ora+ ) rb+ Y re=0, rur,r.eZ,

acA beB ceC
all the coefficients except the one of y;~'b, can be seen to be zero by the
projections onto Z[Y,, Y,], Z[B,,...,B,] and onto R,_, via 8,_, and y,_,. In
order to show .the linear independence of y7~'b, one computes a basis of

VNa,_,, where Vis the Z-submodule of Z[Y,, Y,, B,,.. ., B,] spanned by the
monomials of degree n.

Now the proof of Lemma 2 is an easy matter, provided one uses the well-
known fact that the 2-minors of a,_, generate the same ideal as the monomials
of degree 2 in by,...,b,.

Let

So 1= Z[Y,, Yy, By 1/,

b, being generated by B,,Y,, By, Y, and put u:=b,, € S,. The rings S, are
inductively defined by
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Sn = Sn—l[Bnl" . "Bnn+l]/bn ’
b, being generated by
bn—l,l_BnlYI’Bnl YZ

bn—l,Z_BnZYl’bn—-l,l —BnZYZ

bn—l,n_BnnYI’bn-l,n—l —BnnYZ
Bnn+1Y1’ bn—l,n_Bnn+l YZ

We take a,_,:S,_; — S, to be the natural homomorphism, and G, as the
complex

RO (s ¥2) S2 (‘ii) S .

Finally we put S:=1im S, and G:=li_(n G,.

ProrposiTioN 2. (a) (S, G) is a generic complex of type (*).
(b) In S the element u is linearly independent over Z, in particular u=0.

Proor. After all, it suffices for (a) to prove that the direct systems (S,) and
(G,) are obtained from (S,,G,) by generic exactification. The polynomials
defining b, are chosen to kill the cycles

¢y = (by_1,1,0), ¢y := (bu-v,2b0-1,1)s- - »

Cp 1= (bn—l,n’bn—l,n—l)’ Cpyy += (O’bnol.n)-

So we have to show that ¢,:=(y,,y,) and these cycles generate the kernel of
S2_, —'S,_,. The substitution Y; — Y,, B, » B,_,; induces an isomorphism
0p_1: Ry_y = S,_;. Therefore we simply write b; for b, _,;.

Let (d,,d,) € Ker (§2_, — S,_,). The annihilator of y, modulo y, is
evidently generated by y,,b,,...,b,. After subtraction of a suitable linear
combination of the cycles cy,. . .,c,,; above we may then assume d, =0 and
d,y,=0. By virtue of Lemma 2, (a), each element (d,,0) with d,y, =0 is a linear
combination of c;,...,Cpy -

The element u is linearly independent in S since it is linearly independent in
all the rings S,_,.

Part (b) of the preceding proposition demonstrates that there is no
noetherian generic complex of type (*). (S, G) has been constructed such that G
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is exact at S2. Unintentionally we have obtained a sequence with much better
exactness properties:

ProPosITION 3. (a) G is an exact sequence. Hence (S,G) is generic for exact
sequences

R ), R (lesz) RZ (“if) R .
(b) Even the periodic sequence
. (—}'2)
S (797)) S2 w., g

t w |

is exact and, hence, generic for such sequences.

PRroOF. As above we identify S,_, and R,_,, S, and R,. The kernel of a, _,
contains all the 2-minors of the matrix a,_,. Therefore u generates the
intersection of the annihilators of y, and y, in S by virtue of Lemma 2, (c). This
proves (a). On the other hand y, and y, generate the annihilator of u in S since
S/Sy, + Sy, is naturally isomorphic to Z and u is linearly independent over Z,
as noted above.

Again the noetherian situation is significantly simpler as we have seen
already. In particular, every periodic resolution as considered in part (b) of
Proposition 3 is a split-exact sequence bent into a circle when the underlying
ring is noetherian.
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