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ON THE FINITENESS OBSTRUCTION OF
CERTAIN PERIODIC GROUPS

STEFFEN BENTZEN

0. Introduction.

For groups G with periodic cohomology, the Tate cohomology groups
A" (G, Z) are isomorphic to Z/|G| for all multiples of the period d. Each
generator e of A™(G,Z) can be realized by a periodic resolution P, of Z by
finitely generated projective ZG-modules, and the resolution can be taken to be
free exactly if the element

nd—1
onle) =Y (=1[P]

i=1
vanishes in K,(ZG)=Cl(G). This element o,(e) is called the finiteness
obstruction because its vanishing is equivalent to the existence of a free
simplicial action of G on a finite simplicial complex X, homotopy equivalent to
the (nd — 1)-dimensional sphere, such that £/G has e as its first k-invariant. The
calculation of g, is therefore of interest from a topological as well as from an
algebraic point of view.

By results of [8] the groups of particular topological importance are the
groups Q(8a, b,c) x Z/d. In this paper we consider the group Q(8a, b) which is a
semi-direct product of Z/ab with Q(8) such that the kernel of the action of ()
on Z/ab is Z/2. This group has cohomology of period 4. By Corollary C of [4]
there is a special class of generators of H*(Q(8a, b), Z) that is of interest for the
topological space form problem; these are the almost linear generators
considered below. We take such an almost linear generator e, and calculate
64(ep) (Theorem 1). The result is a generalization of Milgram’s result for
Q(8p,q) where p and q are primes, cf. [S] or [1].

Unfortunately, Theorem 1 gives the answer in terms of non-trivial number
theoretical questions. If both a and b are prime powers, these questions have
been almost completely settled in [1].

Before stating the main result, we fix some notation that will remain in force
throughout the paper.

Like in [1] we use Frohlich’s description of Cl(G) in terms of character
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6 STEFFEN BENTZEN

homomorphisms. For details on this formalism we refer to [2] and the
appendix of [3], but let us briefly sketch the basic features. Let H be a Galois
functor from the category of extension fields of Q to abelian groups. It can be
extended to a functor on commutative finite-dimensional semi-simple algebras
over Q by letting H(ITL)=T1H(L)). Then there is a basic isomorphism

(0.1) H(Z(QG)) = Homg (R(G),H(Q)

for any finite group G. Here Z denotes the center, Q is the full Galois group of
Q, and R(G) is the virtual character ring of G. The left hand side is convenient
for notational purposes while the right hand side is convenient for calculations,
and we shall constantly change from one side to the other.

Taking the exact sequence

0.2) Z(QG): — J(Z(QG))./Nrd (U(ZG)) & CI(G) — 0
of [2, Theorem 2] and using (0.1) we get
(0.3) Homg (R(G),Q*) - Hom}, (R(G),J(Q))/Det (U(ZG)) & CI(G) — 0,

where U(ZG) is the group of unit ideles:
uize) =[] (Z,6)*
p

with p running through all primes, including the infinite, cf. [3, 1.10]. Similarly
there is an exact sequence

(04) Hom} (R(G),0F) — HomQ<R(G), 1o >/Det(n z G) )
|

pllG pllG|
- D(G)—> 0

describing the kernel group, [F2, 11.2]. Here F is any number field containing
all character values, and Hom/, (R(G), 0}) denotes the character homomor-
phisms f for which f(x) is real and positive at every infinite prime (real or
complex) of F whenever y is symplectic. The middle term in (0.4) decomposes
into

]'_'!” Hom, (R(G),@;)/Det ((Z,6)7).

p
The component at p is called the local kernel group (at p) and is denoted DP(G).
The whole product is denoted D(G).

A basic feature of the character homomorphism formalism is that the

restriction and induction maps on class groups are determined through
induction and restriction of characters, cf. [3, VI and VIII].
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We are considering the group n=Q(8a, b) which is defined as follows. Let
0@B) = (X, Y| X*=Y*=1, X2=Y2%1, XYX " '=Y"")

be the quaternion group of order 8. Let X act on Z/a x Z/b by inversion on Z/a
and the identity on Z/b, and let Y act by inversion on Z/b and the identity on
Z/a. This gives an action on Q(8) on Z/ab and Q(8a,b) is the semi-direct
product Z/ab x Q(8) defined through this action.

If a=T1,;p!, b=T1;q™ is the prime decomposition of a and b we let P,
={pi|i}, P,={q™|i}, and P=P, U P,. With an abuse of language we shall by
a statement like “p € P,” mean that for some power p" of p we have p”" € P,.
Likewise, by P, \ {p} we shall mean P,\ {p"}. For each set SS P, let n(S) be
the subgroup of n obtained by deleting the prime powers not in S. Let further
C=C,(Z/ab) be the cyclic subgroup of n of order 2ab, centralizing Z/ab.

For each prime power p" in P we choose a generator 4, of Z/p", and for each
A, welet X, and Y, be defined by: If X "'A4, X =4, welet X, =X and Y, =Y.
If Y7'A,Y=A, we let X,=Y and Y,=X. Furthermore we let for each A, x,
be the generator of Ch(Z/p") with y,(A4,)=e*"/"", and we let x, be the unique
irreducible representation of Q(8) of dimension 2.

As mentioned, = has cohomology of period 4. For each p" € P, let

e, = ¢;(x,+x, ") € H(Z/p", Z)
and let
e, = c,(x) € 1:14(Q(8), Z).

Here ¢, denotes the second Chern class. These e’s are generators of the different
cohomology groups, and we define e, to be the generator of A*(Q(8a,b),Z)
that restricts to these e’s under the isomorphism

A*(Q8a,b),Z) = [] A*Z/p" Z)®A*(Q(8),2).

p"eP

4

This is the almost linear generator for which we shall calculate a,(e,).
Once and for all we make a choice of roots of unity: If n=p™, then {, = e*"/?",
and if n=[7 p", then é,,=l_[(:,,¢.. Further, for any n e N we let n,={,+{; "
For any number ring A we let A™ denote the units of A4, and, if A4 is real, we
let A* denote the totally positive units. For any finite prime £ of A we let ¢ p
denote the reduction map ¢,: 4 — A/
Our main result is

THEOREM 1. 0, (e,) is of order at most 2; it lies in the kernel group D(n) and it is
zero if and only if for any pair (a, B) of square free numbers with o.| B, B| b and a, B
*1 there exist numbers x, ;3 € Z[N,,15]™, V4,5 € Z[N,,1p]* such that
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1if fla
Q/,(xa,ﬁ) = {—l lf ﬁlﬁ
Q4(Vap) = 4 for sfaf

Note that since o,4(e,) is 2-torsion, we can in Theorem 1 replace 4 by its 2-
primary part in (Z[n,,n,]/£)".

1. Decomposition of the class group.
For p e P, let E, be the idempotent endomorphism of n that sends the
Sylow-p part to 1 and is the identity on the rest. It factors as

E,:n— n(P\{p}) »> m,

where # — n(P\ {p}) is the projection and n(P\ {p}) — = is the inclusion. If
no power of p is in P, we let E, be the identity. These maps are defined on all
the subgroups n(S) and C of =, and they commute with the inclusion maps.
Furthermore these endomorphisms will induce commuting idempotents on the
virtual character rings R(n(S)) and R(C) and on the projective class groups
Cl(n(S)), CL(O).

LemMMA 1.1. On the class groups we have

a) Reszp. (py°E, = Resgp ) forall pe P

It

b) Reszp. iy°E, = EjoResyp for all g € P\ {p}

4q})

Il

) RestoE, E,oRes¢ forallpeP.

Proor. Obvious.

Note. Concerning (c) of Lemma 1.1 we actually have a stronger result: E,
commutes with induction of characters from C to 7, so the diagram

R(C) 1nd, R(m)
LE, LE,
R(C) 1" R(n)

is commutative.
For any ScP, let

Es=1T]E, ][] 1-E,).

Pé¢S pesS

Then, on the character ring R(n):
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1=ZE$

ScpP

is a decomposition of the identity into a sum of orthogonal idempotents, i.e.
projections. This gives a decomposition

Cl(n) = [] Es(Cl(n)

SscP

of the class groups.
According to Lemma 1.1 we have

ReskoFs = EgoResy
on the class groups. Hence we get

COROLLARY 1.2. The restriction to w(S) of the S-component is the top
component of the restriction.

By the top component of Cl(n) is meant Ep(Cl ().

2. Detecting the components.
We begin by detecting the 2-primary part of the non top components.
ProrosiTiON 2.1. If SE P, then
Res?(s,: Eg(Cl(m)) — Cl(n(S))

is injective on the 2-primary part.

Proor. In Frohlich’s description of the class group
Cl(n) = Homg (R(n),J(Q))/Det(U(Z(m)Homg(R(n),Q*),
and Res;(so[],¢sE, is induced by the map
f: R(n(8)) 1 R(m) e R(n(P\ {p,}) i R(m) Ress
R(n(P\ {p,})) 1> R(m) — etc.
where P\ S={p,,p,,...}. Obviously the diagram
R(r(P\ {p})) M R(m) R R(n(PX {p;}))

\‘R(N(P\ {P:p;}) /

is commutative. Hence f is the composite map:



10 STEFFEN BENTZEN

R(n(S)) 1295 R(m) -Ress> R(n(S)) s R(nm) .

To prove the proposition it suffices to prove that ResoInd: R(n(S)) — R(n(S))
induces a map on the class group Cl (n(S)) that is injective on the 2-primary
part. We prove this by proving that this induced map is of the form id +g,
where gog=2-g, for some map g, If x is 2-primary and x+g(x)=0, then
x=2%gi(x) for all i>0, and hence x=0.

We apply the Mackey decomposition to ResoInd. We have the double cosets

1= n(S)Un®)A,n(S) U ... UnES)Ar"~Vr(S)
Un($)4,x(S) U ... Un(SArE™"n(S)
U etc.
and
An(9A, 7 N n(S) = <A, X, | 1eS) = 1(S,p).
Therefore

(ResoInd)(y) = x+ %S ((P"=1/2)'N,(x) ,
14

where N, is the map
_ n(S) n(S)
Np - Indr(s,p)oReSr(S‘p) .

If p € P,, q € P,, the Mackey decomposition gives

N,oN, = Ind™® oRes™® oInd™® oRes™

P q (S, p) (S, p) (S, 9) 1(S.q)
_ n(S) (S, p) (S, 9) n(S)
= Indt(s, p)olndy oRes, "o Res,(s, 9

_ n(S) n(S)
= Ind," 'Res, ",

where y=(A, X}|l € S).
If p,q € P, or p,q € P,, the Mackey decomposition gives

N : N
NyoN, = Ind5g o(id +@(Y,)oResls

where €(Y),) is conjugation by Y, Hence, the N,’s are commuting operators
satisfying N,oN,=2-N, Putting
N = Z ((pn_l)/z)'Np’
pé¢S

there exists an operator N such that NoN =2- N, This completes the proof of
the Proposition.

Now we turn to the top component. We shall not detect the top component
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of the class group. Instead we detect the top component of the middle term in
the exact sequence (0.2).

We shall prove

ProPosITION 2.2. Res is injective on
(E,(V(2(Qm)./Nrd (UZn)) 2.y »

where the subscript (2, ) denotes the 2-primary part plus the free part.

To prove Proposition 2.2 we shall actually have to calculate the 2-primary
parts of the local kernel groups Dp(n). To state the result, we need some
terminology. For p a prime and x an integer, we let x, denote the p-free part of
x. For two pairs (2, ) and (x, y) of integers we call (a, ) full with respect to
(x,y) if a|x, |y and any prime that divides x (respectively y) also divides «
(respectively f). Then

ProvposiTioN 2.3. The top component of ﬁp(n)m (p| a) splits into a direct sum
D, .®D, _, where both D, , and D, _ are isomorphic to

n(p)

I_I l_l (Fp®z[rla’ r’ﬂ])();) .

(@,8) i=1

ps—

Here (a, f) runs through the pairs of (positive) integers that are full with respect
to (a,,b) and p"P) is the exact power of p dividing a. Furthermore, the map

EP(¢p) : EP((QE(Qn), ) E(Dp(n))m
in the exact sequence describing E p(D(m))2) factors into &, . ®P, _, where

n(p)

Dy s i [] 11 ZDaponpd™ = [1 (F,®Zn.1D)5

(a,B) i=1 (@, 8)
and
n(p) n(p)
P, - (H) .-Ul Z[1yp1p)* — (ﬂ) .-Ul (F,®Z[1,151)3)

are the natural reduction maps. Furthermore, the top component of Dz(n)(z, is
trivial.

Proor (of Propositions 2.2 and 2.3). First of all we have the exact sequence
0 — U(Z(Qn)),/Nrd (U(Zn)) — J(Z(Qn)),/Nrd (U(Zn)) — I(n) — 0.
Here U(Z(Qm)) is the group of unit ideles of Z(Qn), and I(n) is nothing but the
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product of the ideal groups of the field components of Z(Qmn). Since I(n) is free
and U(Z(Qm)),/Nrd(U(Zn)) is finite, we get the split exact sequence
0— [U(Z(Qn))+/Nrd(U(Zn))](2) - [J(Z(Qﬂ))+/Nrd(U(Z"))](2,f) -
— I(nr) > 0.

Here,
U(Z(Qm)),/Nrd (U(Zn)) = :H[; [(@Z(Qn)')"/Nrd (Zm)*)] = D(n)

since Z;n is a maximal order (respectively Q,r) for [ ,{’ || (respectively [ infinite).
We get the diagram

0 — D(n) - J(Z(Qn),/Nrd (U(Zn)) - I(n) - 0
JRes | Res
0 — D(C) — J(QC)/Nrd (U(ZC)) — I(C) — 0
and Proposition 2.2 will be proved if we prove that Res is injective on
(EpD(m))2) and on Epl(n).
The group algebra decomposes as

Qr = Q++®Q+-(‘BQ—+(‘BQ——@HQ
@[] (M2(Q(n)y=1®M2(Qn.)y- -1 ®Hq,,)

ala

a¥l

(‘B}}, (Mz(Q('?p))x=1@M2(Q(’1ﬂ))x=‘l@HQ(m,ﬂ)
p+1

® I]_‘I”b (M4(Q(11,, 1) ® A(Qap)/ QN Mp))) -
a,ﬁ,ﬁ:l

Here A(Q(.p)/Q(n,1p)) is a central simple algebra over Q(1,,n,). This we shall
not specify further; we only note that it does not split at R. Furthermore,
Q.+ ®Q.:-®Q_,.®Q__®Hq is the decomposition of QQ(8), where Q.
(say) is the summand corresponding to X =1, Y=1.

We choose representatives for Irr (n)/Q corresponding to this decom-
position, and we choose them in accordance with our choice of roots of unity
(cf. section 0). Let us denote these characters

X15 X2 X3, X45 X5
xu, 1° xa, -1 xa,O

Vg, 15 Vg -10 Vpo

Za,8,15 Za,8,-1 -
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Then we can tabulate the action of the idempotent E, on R(n) as in Table 2.4,
where ¢ is the generator of Gal (Q(i)/Q).

X E,(x)
X; i=1,...,5 X;
Xq 1 X, 1 (or x; +x, if « is a power of p)
Xy -1 Xy 1 (or X, +x, if ais a power of p)
Xa0 Xy.0 (or x4 if a is a power of p)
yﬁ,i i——:—l,O,l yﬂ,i
Za ot Zy p.1 (or yg1+yp - if a is a power of p)
Zap-1 Zy g1 (OF Ygot+Vgoif & is a power of p)
Table 2.4

From this table we see that Ep=[T],.p(1—E, maps all characters to zero,
except those z, 5 ; and z, ; _,, where («, B) is full with respect to (a, b). Hence
the top component of R(rn)/Q is equal to

To calculate Resg on Homg (R (n), J (Q)) we must induce characters from C to
n. We decompose :

QC = l_[ (Q(Cuﬁ)T:l@Q(Caﬂ)T:-]) B
HH
where T is the involution of C. We choose representatives of Irr (C)/Q
according to our choice of roots of unity, and we denote these
Wop15Wap, -1 ala, Blb.

These characters will induce as tabulated in Table 2.5.

X Indc ()
Wi X1+ X+ X3+X,
Wi, -1 2-xs
Wer,1  oFl Xq,1FXq, -1
Wa1,-1 aF1 Xq,0F Xz,0
wig1 o B*l Vg1 tYp -1
Wig -1 B*l Va0t V.0
W 5.1 a,f+1 Zy. 8,1
Wap,-1 % B+1 Z4,8,-1

Table 2.5.
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It follows that on Ep(J(Z(Qm))), Res is the inclusion
l_[ (J(Q(r’m ”ﬁ))@)J(Q("a’ ”ﬂ))) - l—[ (‘](Q (guﬂ))®J(Q(Caﬂ)))

and on Ep(I(n)), Res is the inclusion

[1 Q1) ®I(QM.np) = [ ((QUep)DI(QLep))

Now we turn to Ep(D(n)). Let p||n|, p#2. We shall calculate Ep(D,,(n)),,), so we
decompose Z,n and calculate the p’-part of E P(Dp(n)). Let us assume p|a.

Zm = 2:Z[Z/p VX | X2=1]y_ .,
® 2 [ ((Z,®ZILDIZ/P )X | X2=1]

afa,
a*l

© [l ((Z,®ZILIZ/PNIX, Y X2 =Y =1]

ala,B|b
p*1

® [l (Z,®Z[DZ/PNIX, YIX?=Y?=—1].

alap, Blb

We suppress everywhere the relations X{, X ~'={;"', Y{,Y '={;'. The top
component involves only the blocks

By + = (Z,QZ[(H DZ/p")) X, Y| X2 =Y?=1]
and

Byp - = ((Z,®Z[{, {DIZ/P"NIX, Y X2 =—1],

where (a, p) is full with respect to (a),, b). We shall have to distinguish between
the two cases: (1) when P, contains at least two prime powers, and (2) when P,
contains only p". We first consider (1). We assume that Q({,s)/Q(1,, 1) does
not split at p (leaving the split case to the reader), so we assume that

Ba,ﬂ, + = Zp[Caa Cﬂ][Z/p"]![X’ Y' X2 = Yz = 1] ’
and must calculate the p’-part of

Zp[na’ r’a] ) ®Zp[nap9 "ﬂ] ) @ e @zp[r’ap"’ t’ﬂ] )

D(B,,, .) = Nrd ((B, 5, +)")

Let J be the ideal
J=(4,-1)B,; , .

This ideal is topologically nilpotent. Therefore we get an exact sequence
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0— (1+J0) > B g+ = Z[, L X, YIX?=Y2=1]" - 0.

By a result of Auslander-Goldman-Rim, cf. [7, Theorem 40.14] the rightmost
term is a maximal order, so by taking reduced norms we get the diagram

00— (1+J)*

Ba):ﬁ,-f- — Zp[Ca’Cﬂ]'[X7YIX2=Y2=1]X -0

INrd ) | Nrd l
l:ll Zp[napi’ "ﬂ] ) - l:!) Zp['lapi’ ’1;3] oo Zp["a, rhj] X
! ol !
CJ - Dp(Bu,ﬂ,+) - 0.

If we let Ny, Ny,. .., N, denote the components of the reduced norm map on

QUwlHZ/PTIX, Y |X?=Y?=1] = [Io M, (Q,(p1p)) »

then for x € B, 5 , we have the relations
Ni(x) = Nj(x) in Fp®z[nm 'Ip]’ all 19] .

This is because {, maps to 1 by reduction modulo primes above p. This
relation implies that

Nrd ((1+J)) € [_]1 Us(Zp[Mpes 1))

where U, denotes the first unit group. Since Nrd (1 +J)*) is open, there exist
integers my,...,m, such that

[Il Un(Z,[MapsMp)) S Nrd(1+J)%).

Hence the p’-part of C; must be equal to

1_1 (Fp®z["m nﬂ])x
i=1
through reduction modulo the prime in Z,[#,,,7,]. Furthermore, the above

relation implies that on the p’-part, the map C; — DP(BG' s, +) is injective and
hence

D,(B.s, )y = [1 (F,®Z[n,n50)"
i=1
via the map

(Xgs X1ye+ 23 Xp) = [__[1 (ep(xix5 M) s
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where ¢, means reduction modulo the appropriate prime over p.
If P, contains only p", then the group algebra splits in a little different way:

QUIZ/PTIX, Y| X*=Y?=1]
= MZ(Q(ﬂp))x=1@M2(Q(ﬂp))x= —1@_[-[1 M4(Q('7p‘a ”Iﬁ)) .

It we let Ny 4, Ng, —4,Ny,. .., N, denote the components of the reduced norm
corresponding to this decomposition, we get the relations

No,1(X)No, _1(x) = Ni(x) in (F,®Z[n,])

. for x € Z [{,[Z/p")'[X, Y| X*=Y*=1], i>0. This is essentially contained in
section of [1]. Now we can argue like in the previous case and find that the p'-
part of lA)p(B,,, s, +) s equal to TT/-, (F,®Z[#n,,n,])" via the map

(x0,19x0.—1’xl" . .,X") - H (Qp(xixo-,llxo_.l—l)) .

When using the same technique to calculate Dp(Ba, s, -) we get the twisted
group ring Z,[{,, {,]'[X,Y|X?=Y?=—1], where P, contains at least two
prime powers, and we must prove that the reduced norm is surjective on the
units of this ring. But Q,({, {z)/Q(n,n,) is unramified, so the ring is a
hereditary order by a result of Williamson-Harada, cf. [7, Theorem 40.15].
From the structure theorem for local hereditary orders, [7, Theorem 39.14], it
is obvious that the reduced norm is surjective. One could also argue that since
Trd (X)=Trd (Y)=Trd (X Y) =0, the proof of [ 7, Theorem 40.14] carries over to
show that the above group ring is actually a maximal order. In any case, the
above method applies and we find that the p’-part of ﬁp(Ba' 5, -) 1s equal to

i-1 (F,®Z[n,,ns])* if P, contains at least two prime powers. If P; contains
only p", the calculation is a little more complicated. The group algebra splits
like

QLY Y2 =-11®[] Qnlp X, Y| X2 =Y?>=—1].
i=1
Letting Ny, N,,. .., N, denote the components of the reduced norm, we get the
relation
(NoNp)(x) = Ni(x), >0,

for x € Z,[{,[Z/p"Y[X, Y| X?=Y?=—1]". Here N is the norm from Q(r,,)
to Q(n5) = Q(n,4np). This is essentially contained in section 2 of [1]. Therefore,
also in this case the p’-part of D,(B,, 5. -)isequal to [T/, (F,®Z[nz])* via the
map

(Xgy X1ye + 23 X,) = 1:11 (0p(x:N(xo)™1) .
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Finally, it is easy to see that E p(D,(m)),, is trivial. This proves Proposition 2.3.

We turn to the cyclic group C. If p||C|, p%2, we decompose
Z,C = [] (Z,®Z[Lw {pDIZ/p 7= 1@ (Z,® Z[L, (e DIZ/P" T 1- 1) -

ala,

Bib
The top component involves only the blocks

Agp+ = (Z,®Z[L SDZ/P 721
Agp - = (Z,@Z[L DIZ/P" 7=~

where (a, B) is full with respect to (a), b). By the same method as above we find
that ’

EplDy(dus, N = [T (F®ZLLaLs)"

via reduction modulo primes above p. Furthermore it is easy to see that
EP(ﬁz (A, i))(:) =0. N

According to the remark after Lemma 1.1 the maps Res¢ and E, commute
on the character rings. Hence Resc(Ep(D(n))<Ep(D(C)). Comparing the
results just obtained on the structure of Ep(D(n)) and Ep(D(C)) with the
tabulation of the induction map R(C) — R(m) (Table 2.5), we see that on
E P(f)(n))m the restriction map Res is the inclusion

H H (F,®Z[N, 150 — H H (F,®Z[{, {e) 2y

(@,p) i=1 (a,B) i=1

and therefore injective. Since E P(f)z(n))(z)=0, this completes the proof of
Proposition 2.2.

3. Proof of the main theorem.

Lemma 3.1. a,(e,) is of order at most 2. If SN P, or SN P, is empty, then
Es(04(e0))=0.

Proor. Let x be the character on the cyclic group C that restricts to x, on
the p-part (p|ab) and to the non-trivial character on Z/2. Let - =Ind%(x ). By
the Mackey decomposition theorem y . restricts to 2 (x,+x, 1) on the p-part
of m, for p|ab, and to 2y, on Q(8). In other words, ¢, (¥ ) restricts like the cup
product square e3 € H®(n,Z) so e3=c,(¥). Hence 0=04(e2)=2"0,(e,). This
proves half of the lemma. To prove the second half it suffices to prove that
Eg(04(e0))=0 when S=P,. By the naturality of o, with respect to restriction
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and Proposition 2.1 it suffices to prove that g,(Res;p(ey)=0. Let e
=Res;(,,l,(e0). Then e maps to ¢,(x,+x, 1) by restriction to the p-part (p|a)
and to c,(x,) by restriction to Q(8). The group Q(8a,1) contains the cyclic
subgroup C, of order 4a. Let x be the character on C, that restricts to y,
(for p|a) on the p-part and to a faithful character on Z/4. Let y be the
representation of Q(8a, 1) induced from y. Then y restricts to x,+x, ' on the p-
part (p|a) and to x, on Q(8). Hence c,(}))=e and therefore a,(e)=0.

Now we turn to the top component of o,(ey). In the previous section we
found that

Ep(D@)e) = []1 (D, +®D,,-).

plab

Let X be the element of Ep(D(n)), that decomposes as [],,(1,4)x
[1,» (—1,4) where we consider F,; mapped diagonally into (F,® Z[n,,15])2)

PropPoSITION 3.2. The top component Ep(c,(e,)) is contained in the kernel
group D(m) and under the map 0: Ep(D(n)),, — Ep(D(m)) it is the image of Z.

Proor. Corresponding to e, there is a periodic projective resolution of Z
over Zn. Following [8], this resolution defines an idele
14(e0) € J(Z(Qm))+/Nrd(U(Zn))

and d1,(eg) =0,4(ep), cf. [8, Theorem 9.1]. Our calculations center around the
diagram

Z(Qmn)} ) L E (J(Z(Qn))+
2,n F

~ ) .
0— Ep<Nrd(U (Zn)NZ(Qn)* )(2’” 9, Ep(Cl (M) — 0

Nrd(U(Zn))
lRes lRes lRes
i Qc* ‘ JQO \ ,. .
0— EP(Nrd(U(ZC))ﬂQC") ' EP(Nrd(U(ZC))> > EACHE)— 0

remembering that Res on Ep(J(Z(Qn)),/Nrd(U(Zn))),, 7 is just inclusion of
ideal groups and residue fields. When restricting to C we have Res (ey)=
c;(xc+xc'), where xc is the faithful character on C from Lemma 3.1.
Hence Res (Ep(04(e,)))=0 and

EP(‘E:;(RCS (e0)) = EP(74(RCS (e0))) »
where 1, is the Reidemeister torsion:

t4(Res (ep) € QC*/QC* N Nrd(U(ZC)) .
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According to [6], t4(c,(xc+xc?)) is the class of
Wap, +1 = 2F Mg (xla, Blb; a-B+1)
Wi — (4a?bH)!
Wi -1 4

in QC*/QC* NU(ZC). The action of Ep on J(QC) is easily calculated by
restriction of characters, and we get: '
If (a, B) is not full with respect to (a,b), then Epwa‘p' +1=0, while

Epw, 5., = Wap 1 = WEH+Wh =+ (=DWh+. ..
EWep -1 = Wap1—WHHWo— ..+ (=DWo+...,

where W is the sum of all w, 4 ,, with yd containing all prime powers in af
except i of them.
Hence Ep(f4(Rese,)) is the class of

Wa,g, +1 (2¢’1aﬁ)W(-’T—)(a’ ﬂ)—lW(%)(“, p) ... W(%)(oc, B)(_”I cee

in J(QC)/U(ZC). Here W &(x, p) is (for i <n) the product of all 2Fn,, with yé
containing all prime powers in aff except i of them and W}, (a, B)=1/4a*b* and
W (2, B)=4 (n=card (P)). A typical factor in W& _,,(a, B) looks like (2 F#,n),
and since Ep(Z(Qn)}) contains Q(n,,1,)* 2Q(1,)*, we see that Ep(a,(e,)) is
the image under d of the element ¢ of E p(J(Z(Qn)),/Nrd (U(Zn))) that
restricts to the element given by

Wa g, +1 (21)1”,)W(%)(a,ﬂ)‘1 W(%—z)(a’ﬂ)(‘“""z = Xai,ﬂ .

Obviously Xfﬁ is a unit, so ¢ € D(n), and therefore Ep(a,(e,) € D(m). Since Com
maps to 1 by reduction module (primes above) p, we find that by reduction
modulo p, most terms in X ;—fl, cancel out, and we are left with

+1
Vip = (H (2—an)> € (F,@Zlny;n))"

Ji
bt

and

+1
Y. p = ( n (2+’1.1!)> € (F,.®Z['Ia',,a'7ﬂ])x .

o
Here | means “exactly dividing”. Adjusting X, ; by the number Tz (2
+n,) € Z[n,ns]*, we find that the D, _-components of E ,(a,(e,)) are exactly
the D, _-components of X, namely 4. To get the D, ,-components we need the
following lemma, guaranteeing the existence of a certain unit:
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LemMA 3.3. Let S, and S, be two sets of (relatively prime) prime powers. For
each set M of prime powers, define

_ 2 if A=
Na = n, if x=[1p', where p' runs through #, #+J .

Let
[T (sns,—nsns) if 2<2i<card (S, US))
sSS,US;
t 3 .car ($)=2i
SuSo2 1 otherwise
n . (ﬂsns,"lsns,) if 322i+1=Zcard(S,US,)
[ Sd%ss)' U
n ) = car =2i+
SuSp2i+l l 1 otherwise .

Put

oo |
Is,s, = I1 ts,,s,2
i=1

oc
Ns.s, = H g §,2i+1"
i=1

Then tg s and ng s, are units of Z[ng,ns,] and

[(~1)°a"“s'>—‘ [ @-n) ifpes,

ieS,US
Qﬁ<‘s_nsi) _ T
ns,.s, (—1)card (S0 [T @-n9) ifpes,.
q'eS;US,
q%p

Here 4 is any prime of Z[ng,ns ] lying above p.

The proof of this lemma goes by induction on card (S, U S,) and is left to the
reader. Applying this lemma to adjust X , we get D, ,-components exactly
as stated in Proposition 3.

Now we can easily prove the main theorem: The choice of almost linear
generator is natural with respect to restriction to the subgroups m(S). By
Corollary 1.2, Proposition 2.1, and Proposition 3.2 we can therefore conclude
that Eg(o,(eo)) is zero for all S with SN P, + ¥, SN P,+ & exactly when the
conditions (1) and (2) of the theorem are fulfilled. By Lemma 3.1 the other
components of o,(e,) are always zero. This completes the proof of the main
theorem.
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