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ARITHMETICAL QUADRATIC SURFACES
OF GENUS 0, I

J. BRZEZINSKI
Introduction.

If feZ[X,, X;,X,] is a primitive ternary quadratic form, then the
singularities of the Spec (Z)-scheme M(f)=Proj(Z[X,, Xy, X,]/(f)) depend
on the prime numbers dividing the determinant d(f) of f. In the first part of this
paper we were concerned with the regular schemes M(f). Such schemes
correspond to hereditary quadratic forms f, that is, the quadratic forms with
d(f) square-free. This part contains two results about arbitrary schemes M (f).
First of all, we prove (Theorem (2.1)) that the normalization of M(f) is
M (B(f)), where B(f) is the Bass closure of f (the quadratic form B(f) will be
defined in section 1). In particular, M (f) is normal if and only if f=B(f) is a
Bass form (see [7] for different characterizations of Bass forms). The second
result (Theorem (2.12)) shows how to resolve the singularities of a normal
scheme M (f). We prove that for each Bass non-hereditary quadratic form f
there exists a chain of quadratic forms f, =/, f,,. . ., f, such that M(f;,,) is an
elementary transform of M(f;) at the singular points of the fiber M(f),, p; a
prime number, and M (f,) is regular. Hence it is possible to consider a process
of resolution of singularities of a quadratic form f which consists of its
normalization B(f) and a chain of elementary transformations starting with
B(f) and ending with a hereditary quadratic form (Proposition (1.8) and
(2.24)). A similar result is true if Spec(Z) is replaced by Speci{k[T]) (or
Proj (k[ Ty, T,])) for a perfect field k, and f by a ternary quadratic form whose
coefficients are polynomials in T (respectively, homogeneous polynomials of
the same degree in T,, T;). The process of resolution of singularities by using
quadratic forms only is closely related to the usual process of resolution of
singularities by normalizations and blowings-up. More details about this will
be published in a subsequent paper by P. Salberger.

The paper consists of two sections. In the first we prove a number of results
about extensions of lattices on ternary quadratic spaces. This part depends
strongly on [6] and [7]. In section 2 we prove the main results formulated
above in the particular case of integral quadrtic forms. These results are valid if
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Spec (Z) or Proj (k[T,, T,}) is replaced by an arbitrary perfect Dedekind
scheme S (that is, an integral, noetherian and normal scheme of dimension 1
such that the residue fields k(p) are perfect for all closed points p € S), and the
quadratic forms are replaced by arbitrary S-lattices (that is, locally free S-
sheaves of rank 3) on a half-regular ternary quadratic space over the field of
rational functions on S. Note that considering a perfect Dedekind scheme
instead of S=Spec(A4), A a perfect Dedekind ring, we get a slight
generalization of the situation in [4] (we discuss this change in the relevant
places).

The paper is a continuation of [4] and we follow the notations and
definitions introduced there.

1. Extensions of lattices.

Let 4 be a complete discrete valuation ring with maximal ideal p = (%) and
residue field k = A/p which will be assumed to be perfect. Let F be the quotient
field of 4 and (V,q) a half-regular quadratic space over F ([4, p. 185]). We
follow the notations introduced in [4, sections 1 and 3]. In particular,
n(L),v(L),d(L) denote respectively the norm, the volume and the determinant
of an A-lattice L on V (recall that d(L)=v(L)n(L) 3. If L=Y Ae, for an A-
basis {e;} of L and n(L)=(a), a € F*, then

(1.1 q. = (l/a)(z ale)X?+ 3 b(ea,e,-)XeX;>s
i i<j

where b(x,))=q(x+y)—q(x)—q(y) for x,yeV, is a quadratic form
corresponding to L. O(L) denotes the A-order corresponding to L in the
quaternion algebra Q=Cy(V,q) (see [4, p. 192]). N and T denote the reduced
norm and trace in Q. We recall some facts contained in [6] and [7]. An A-
lattice L on V is called a Bass lattice if the order O(L) is a Bass order, that is,
-each order in Q containing it is a Gorenstein order. An A-order A4 in Q is called
a Gorenstein order if A*={x € Q: T(xA)= A} is a projective left (or right) A-
module. An A-order A in Q is a Gorenstein order if and only if A= O(L) for an
A-lattice L on V ([5, (3.9)]). If A is an arbitrary A-order in Q, then there is an
A-ideal b(4)= A and a uniquely determined Gorenstein order G(A)> A such
that A={1,b(A)G(A)) (for a subset X of an A-module we denote by {X) the
submodule generated by X). We have b(A)=d(A)N (A%, where d(.1) is the
discriminant of A ([6, (1.4)]). G(A) is called the Gorenstein closure of A. Let
e,(L)=ep(D(L)), where e (A) was defined in [6, (1.8)] in such a way that

2l = dim, (A/J(A))
and e, (A) <0 if and only if A/J(A) is a quadratic field extension of k (J(A)is the
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Jacobson radical of A). fe (L) +1 is equal to the rank over k of g, modulo p
and e,(L)<0if and only if q; has rank 2 modulo p and is irreducible over k ([7,
section 3]). We write ¢,(V)=11if Q=C,(V,q) is non-ramified and ¢, (V)= —1if
Q is ramified over F. Note that in the first case the quadratic space (V,q) may
be anisotropic.

(1.2) ProposiTioN. If e,(L)%0 or d(L)>p3, then L is a Bass lattice.

Proor. The first part follows directly from the fact that any order A with
e,(A)*0 is a Bass order ([6, (2.4) and (3.1)]). To prove the second part, let us
note that if 4= O(L) is not a Bass order, then there is a unique overorder
A'> A such that [A": A]=p and b(A)=p ([6, (4.4)]). Thus [G(A): A]=p*,
which gives a contradiction, since d(A)=p*d(G(A").

Now we are going to prove a number of results about minimal extensions of
lattices which are direct consequences of the corresponding results for orders
discussed in [6].

(1.3) ProposiTiON. If L is a non-Bass lattice on (V,q), then there exists exactly
one lattice L' > L such that [L': L]=p? and d(L)=p*d(L"). Moreover, pL' <L
and n(L)y=n(L).

Proor. Scaling the quadratic space (V,q) we may assume that d(L)=n(L)
=p", where n=24 by (1.2). The order A= O(L) in Q=C,y(V,q).is a Gorenstein
non-Bass order, so e,(4)=0 by (1.2). Let A’ be the minimal overorder of A (see
[6, (4.4)]), and G(A') its Gorenstein closure. Since b(A")=p, we have [G(A'): A"]
=p> and d(G(A))=p" *. According to [6, (4.4)], G(A)=<{1,x;,x5, X3, A’
={1,nx,,mx,,nx3» and A= {1, nx,, nx,, n’x;), where x; are suitable elements
of Q. Let G(A')* =<{yo, ¥1» V2, V3. Using the correspondance of [4, (3.6)], we get

L = 2A) = 1" 2ny;,nys sy -
Choose
L' = a""yy, v, p3)> = p*2(G(1).
It is easy to see that L'o L, pL'<L and
d(L) = d(2(G(A)) = d(G(A)) = p"~*.

The equality n(L')=n(L) is also satisfied since d(L)=p*d(L’) and vo(L)
=p*o(L).

In order to prove the uniqueness of L’ let us choose a basis y, y,,y3 of V
such that L'= Ay, + Ay, + Ay, and L = Any, + Any, + Ay;. The equalities d(L)
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=p*d(L) and o(L)=p*p(L") imply n(L)=n(L"). Hence O(L)=<1,x,,x;,x3>
and O(L)=<{1,nx,,nx,,n’x;), where x;=n""[y, ] and ij,k is a cyclic
permutation of 1,2,3 (see the notation of [4, p. 192]). We have A= O(L),
A'={1,nO(L)) is the minimal overorder of A and G(A')= O(L"). Let L”
=p 2L Then n(L")=d(L")=p" 4 so L"=L(O(L") by [4, (3.6)]. Since G(A")
.= O(L)= O(L") is uniquely determined by L, we get that L' =p?2(G(A)) is
also uniquely determined by L.

If L is a non-Bass A-lattice on (V,q), then using (1.3) we can construct a
uniquely determined chain of lattices

(1.4) L=LycL,c..clL,

such that [L;,,: L]=p? d(L)=p*d(L,,,) and L, are non-Bass lattices for
i=0,1,...,n—1, while L, is a Bass lattice. The lattice L, will be denoted by
B(L) and called the Bass closure of L (or the normal closure of L —for this
term see (2.1)). Let us note that the chain (1.4) corresponds in terms of orders
(see [6, (4.4)]) to the chain:

(1.4y A=A,c A ... c4,,

where A; are Gorenstein non-Bass orders and A;,; =G(A)) is the Gorenstein
closure of the minimal overorder A; of A; for i=0,1,...,n—1, while 4, is a
Bass order. We shall call 4, the Bass closure of A and denote it by B(A). The
lattices in (1.4) and the orders in (1.4)" are related by the correspondence of [4,
(3.6)], that is, L;=2(A,) and A;= O(L,). In particular, B(L)=2(B(D(L))).

Now we shall look at the minimal extensions of Bass lattices. We omit some
details of the proofs since the arguments are similar to those in the proof of
(1.3). We start with a generalization of [4, (1.8)]:

(1.5) ProposiTION. Let L be a Bass lattice on (V,q) such that e,(L)=1 and
d(L)=p", n=1. Then there are exactly two lattices L' and L" containing L such
that [L':L]=[L":L]=p* and d(L)=d(L")=p""'. Moreover, pL'c L, pL"' <L,
n(L)=n(L")=p " 'n(L), and if nZ2, then e,(L")=e,(L")=1.

Proor. We may assume that d(L)=n(L)=p", n=1. The order A= O(L) has
exactly two minimal overorders since ey(A4)=1 by [6, (2.3)]. These orders A’
and A" satisfy [A": A]=[A": A]=p and e (A)=e,(A")=1 if n22. Using [6,
(5.4) and (2.3)] we get A=<1,x;,x3,x3>, A'={1,x;,n" x,,x;> and A"
={1,x,, x5, " 1x;), where x; are suitable elements of Q. Let L'=2(A") and L"
=2(A") (see [4, (3.6)]). Then it is easy to check that the lattices L' and L"
satisfy all the requirements. In order to prove the uniqueness let us note that
the equalities [L': L]J=[L": L]=p? and d(L)=pd(L)=pd(L") imply that
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n(L)=n(L")=p 'n(L). Hence n(L)=»d(L") and n(L")=bd(L"), so by [4, (3.6)],
we get L'=2(O(L)) and L”=L(O(L"). But it is easy to check that O(L’) and
O(L") are the two minimal overorders of O(L), so L' and L" are uniquely
determined by L.

(1.6) ProposITION. Let L be a Bass lattice on (V,q) such that e,(L)=—1and
d(L)=p", n=2. Then there is exactly one lattice L' containing L such that
[L': L]=p and d(L)=p""% Moreover, pL'< L and n(L)=n(L). If c,(V)=1,
then n is even and e, (L= —1 when n24. If ¢, (V)= — 1, then n is idd and e ,(L')

=-1.

PROOF. As earlier, we assume that d(L)=n(L)=p". If A= O(L), then e, (A)=
—1, so there exists a unique minimal overorder A’ of A such that [A’: A]=p?
(see [6, (3.1)]). By [6, (3.2)], A'={1,x;,x5,%x;» and A=<1,x,,nx,, nx,) for
suitable elements x; € Q. Now it is easy to check that the lattice L' =p€(A")
satisfies the requirements. To prove the uniqueness, note that the assumptions
[L': L]=p and d(L)=p?d(L") imply that n(L")=n(L). If we define L”"=p~'L’,
then -

d(L") = d(L) = p"?
and
n(L") = p (L) = p" 2,

so D(L")=n(L"). Thus L"=2(O(L") by [4, (3.6)]. Now it is easy to check
that A'= O(L')= O(L") is the minimal overorder of A= O(L). Hence
L'=pL(O(L") is uniquely determined by L.

(1.7) ProposITION. Let L be a Bass lattice on (V,q) such that e,(L)=0 and
d(L)=p", n=2. Then there exists exactly one lattice L' containing L such that
[L': L]=p? and d(L)=p""'. Moreover, pL'< L, n(L')=p 'n(L), L' is also a
Bass lattice, e, (L)=0 if n23 and e, (L)=c,(V) if n=2.

Proor. Assume, as earlier, that d(L)=n(L)=p", n=2. This time A= O(L) is
a Bass order with e,(4)=0 and d(A4)=p", n22. Hence there is exactly one
minimal overorder A of A and [A: A]=p by [6, (4.1)]. We have, A’
={1,x,x,,x3p and A={1,x,,x,,7x;>, where x; € Q. Defining L' = £(A") it is
easy to check that we get a required extension of L. To prove its uniqueness,
we note as in the previous cases, that the assumptions [L': L]=p? and
d(L)=pd(L) imply that n(L)=pn(L). Hence d(L)=n(L’), which implies
L'=2(O(L") by [4, (3.6)]. But we check easily that A'= O(L") is the minimal
overorder of A= O(L), so L' is uniquely determined by L. The two last
statements of the Proposition follow at once from [6, (4.1) and (1.2)].
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We end this section with some remarks concerning global versions of the
above notions and results. Let S be an arbitrary perfect Dedekind scheme (see
the Introduction), F the field of rational functions on S, and (V,q) a half-
regular ternary quadratic space over F. An S-lattice L on V'is a locally free S-
subsheaf of rank 3 of the constant S-sheaf V. The group operation in the divisor
group Div (S) will be denoted multiplicatively. The determinant d(L) and the
norme n(L) are the elements of Div (S) such that d(L),=Dd(L,) and n(L),
=n(L,) for each closed point p € S. If L and L’ are S-lattices on V, then [L": L]
is the divisor on § defined by the condition [L": L],=[L}: L] for each closed
point p € S. If L is an S-lattice and p a closed point of S, then we shall say that
L is a Bass lattice at p if L, is a Bass Og ,-lattice. L is a Bass S-lattice if L is a
Bass lattice at p for each p € S. This means that each stalk O(L),= D(L,)
= Co(V,q) of the sheaf of S-orders ©(L) is a Bass Og ,-order (note that
oLYU)=N D(Lp), p € U, for any open subset U of S). If a is an invertible
sheaf on S considered as an S-subsheaf of the constant sheaf F, then we shall
denote by aL the tensor product a® L considered as an S-latticeon V. If p € S
is a closed point, define e,(L)=e,(L,). By the well-known “local-global
principle” describing lattices on V in terms of their local components L, (see
e.g. [2, Chapter 7, § 4, Theorem 3 and Proposition 4, Cor.], (1.3) is valid if L, is
not a Bass lattice at p, (1.5)if e,(L)=1, (1.6)if e ,(L)= —1, and (1.7) if e,(L)=0.
The Bass closure of L can be defined as the uniquely determined S-lattice B(L)
such that B(L),=B(L,) for each closed point p € S. These remarks in
connection with the local results of this Section imply the following result:

(1.8) ProPOSITION. Let S be a perfect Dedekind scheme and (V,q) a half-
regular quadratic space over the field of rational functions on S.

(a) If L is a non-Bass lattice on V, then there is a chain
(1.9) L=L,cL,...c L, = B(L)

such that L,cL,,, satisfies Proposition (1.3) (with L=L, L'=L,,,, p=p;
a closed point of S dividing d(L)) and L, is not a Bass lattice at p; for
i=0,1,...,m—1, while L,,=B(L) is the Bass closure of L.

(b) If L is a Bass non-hereditary lattice on V, then there is a chain
(1.10) L=1lycl c... clL,

such that L;,c L, satisfies one of the Propositions (1.5), (1.6) or (1.7) (with
L=L, L'=L;,,, p=p; a closed point of S dividing d(L))) and L, is a Bass
non-hereditary lattice for i=0,1,...,n—1, while L, is a hereditary lattice.

(©) If p?|d(L), then L., in (1.9) or (1.10) is uniquely determined by the
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condition p;|[L;4: L;] unless e, (L)=1 in which case there are two possibilities
Jor L, (this is only possible in (1.10)).

(1.11) Remark. Let L be a given lattice on V and d(L)=]Tp*®, p€e S. In
order to construct the chains (1.9) and (1.10), we can check whether Lyis a
Bass lattice at p or not using the characterizations of Bass lattices given in [7,
(3.4) and (3.5)]. If L=L, is not a Bass lattice at p|d(L), then by the proof of
(1.3) it is possible to construct L, =L". If L= L, is a Bass lattice and a(p)=2, it
is possible to compute e (L) and afterwards to construct L, =L’ by the
methods described in the proofs of (1.5), (1.6) or (1.7). Note however that the
same point p can appear several times.

2. Resolution of singularities.

Let S be a perfect Dedekind scheme with field of rational functions F and E
a finitely generated regular extension of F of genus 0. Let (V,q) be a half-
regular ternary quadratic space corresponding to the extension E/F (see [4, p.
1957). Recall that an S-model of E is an integral S-scheme a: M — S, where o
is a proper, dominant morphism and the induced map a*: R(S) — R(M) of the
fields of rational functions on S and M is an embedding of F=R(S) into E
=R(M). In [4, p. 183] we defined regular quadratic S-models of E and proved
that each model of that type is S-isomorphic to an S-model M (L), where L is a
hereditary S-lattice on V ([4, (4.5)]). Now we shall consider models o; : M (L)
— S corresponding to arbitrary S-lattices L on V (see [4, p. 189] for the
defintion of «;). In order to underline the presence of L already in the definition
of M = M(L) we shall call M a conic bundle (S-)surface. We shall identify the S-
models M of E with the corresponding sets of local subrings Oy, (< E for
x e M. If M=M(L), define d(M)=D0(L)— this generalizes the definition of
d(M) given in [4, p. 183]. Define also e,(M(L))=e,(L).

If 4 is a discrete valuation ring with maximal ideal p=(n) and X an A-
module, then we denote by X the completion of X in the p-adic topology. If
qr € A[Xo, X, X,] is a quadratic form corresponding to the A-lattices L on
(V,q) (see (1.1)), where L is an A-lattice on (V,q), then for each integer N>0
there is a quadratic form g, corresponding to L such that q; =q; +n"Ng with
q € A[X,, X, X,]. Throughout the proofs in this section it will be convenient
to write q; =q without specifying N which should be chosen sufficiently large
in order to make the arguments correct.

(2.1) THEOREM. (@) M(L) is normal if and only if L is a Bass lattice.

(b) The surface M(B(L)), where B(L) is the Bass closure of L, is the
normalization of M(L). In particular, the normalization of a conic bundle
surface is again a conic bundle surface.
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Proor. By its definition [4, p. 189], M(L) is a Cohen—-Maccaulay scheme
since M (L) is a local complete intersection in the projective 2-space over S (see
e.g. [10, pp. 108-109]). Thus, in order to prove that M (L) is normal, it suffices
to check that it is regular in codimension 1 (see e.g. [10, p. 125]). Since the
generic fiber of the morphism a,;: M (L) — S is regular for any S-lattice L, we
have to prove that if L is a Bass lattice, then the local rings on M (L) of non-
closed points in the fiber M (L), are discrete valuation rings for each closed
p € S. We already know this if d(M(L)) is square-free ([4, (2.3)]). We may
assume that S=Spec (A), where 4 is a discrete valuation ring and p?|d(M (L)),
where p = (n) is the maximal ideal of A. We shall consider 3 cases:

Case 1. If e,(L)=1 and A= D(L), then A=E"P n=2by [6, (2.1) and (5.4)].
With the choice of the basis for A in [6, (5.4)], we have L=g(A)=Ae, + Ae,
+ Ae,, where e, e, e, is a basis for L such that (see (1.1)):

(2.2) g, = "X+ X,X,.

Hence the ideal in A[X¢, X, X,1/(q,)= A[xo, x,, x,] defining M (L), is (n) and
there are two projective primes in the fiber: [, = (%, x,) and I, = (=, x,). Since
xo & l; (i=1,2) and [, NI, =(n), the local ring at I, on M(L) is regular with
maximal ideal generated by n. Note that the only singular point of the fiber (on
M(L)) is the intersection point (=, x,,x,) of the two projective primes.

Case 2. If ey(L)=—1 and A= O(L), then A=E{™" or I'\"", n21 by
[6, (5.4), (5.6), (5.8)]. Using the bases for A given in [6, (5.4), (5.6) or (5.8)] we
get L=2(A)=Ae,+ Ae, + Ae, and

(2.3) qL = 71'"X0X1+Xf—X1X2+£X§ )
24) g, = " X2— X34+ X,X,—eX3,
(2.5 q, = n*"X3-2ar"Xo X, —2Bn"X X, + (a® — )X} + 208X X, +

+(B*-nX3,

where we have (2.3)if A=E{ ™", (24)if A=V and ¢, (V)= —1and (2.9 if A
I and cy(V)=1. In (2.3) and (24), e € 4 is such that X>—X +¢ is
irreducible over k(p). In (2.4), n € A*. In (2.5), o, € A, &, € A* and the
quaternion algebra (g,n) is a skewfield over k(p). Hence the ideal in
Al[Xo, X1, X,1/(q) = Alxo, Xy, x,] defining the fiber M(L), is I=(m,p)=(n),
where p=x}-x;x,+ex} in (23) and (24), u=(®—e)x?+20px,x,
+ (B2 —nx3 in (2.5 (so the fiber is a form of two intersecting projective
primes). Since e.g. x, ¢ I, the local ring at / on M(L) is regular with maximal
ideal generated by 7. Note that the only singular point of the fiber (on M(L))
is the k(p)-rational point (=, x,, x,).
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Cask 3. If e,(L)=0 and A= O(L), then A~E®, n22 or I'", n>1, by [6,
(5.4), (5.6), (5.8)]. With the bases for A chosen according to [6, (5.4) with oy Xy
+a,X, +nx; replaced by max, +x, + nfixy, where a € A, B € A*] or [6, (5.6)
with o) =na, a, =f, ay=1, where a, § € A], we get L =2(A)= Ae,+ Ae, + Ae,
and

(26) q, = X, X,—naX, X, —npXi+ X2,

Q7T gL = XX, —maXoX, +nX2— X2,

(28) g = n¥ 7 IX] 2o X o X, — " (14 28)X X, +na(1 4+ 2P X o X, +
+r(B*+B+e)Xi+ (na® —ninX2,

29 qp = " X3-2n"anX | X, —n"(1 +2B) X o X, +ma(1 + 2B X X, +

+r(ra?—nn X3+ (B2 +B+e) X3,

where we have (2.6) if A=EQ, r=1, 2.7)if AZED,,, r=1, 2.8)if A=I'9_,,
r=1,and (29)if A=Y, r>1.In (2.8) and (2.9), &,n € A* and X2 — X +¢ is
irreducible over k(p). Let A[xq, x;,Xx,]1=A[X0, X1, X,1/(q;)- The ideal defining
M(L), is = (m, x,) so the fiber is a double projective prime). It is easy to check
that the local ring at / on M (L) is regular with maximal ideal generated by e.g.
Xo/x,;. Note, however, that there is exactly one singular point (on M(L)) in the
fiber M(L),, in all the cases but one: If r=1 in (2.6), then there are exactly two
singular points (r, x4, x,) and (x, xg, x, — Bx,). If r=1 in (2.8), then the only
singular point is “quadratic” (a form of two singular points): (n, x,, (8> + 8
+&)x2— (1 +2B)x,x, +x3). In all the remaining cases the singular point is
(7, xg, X1)-

It remains to show that the model M (L) is not normal if L is not a Bass form
and to prove the second part of the Theorem. Both results follow at once from
the following Lemma:

(2.10) LEMMA. If L is not a Bass lattice at p and L' is the lattice satisfying
(1.3), then there is a finite morphism (not an isomorphism) M (L) — M(L).

Proor. If q#p, q a closed point of S, then there is a neighbourhood U, of g
in S such that ocL"(Uq) and oc,j‘(Uq) are U isomorphic (since L =L;). We
want to show that there is a finite morphism af.'(U,) — a;'(U)) for a
neighbourhood U, of p in S. Let us choose a neighbourhood U, and a basis
€0, €5, €, for V such that L= Ae+ Age; + Age;, Ly=Aqeo+ Agne, + Agne, for
each q € U, Such a choice is possible since [L': L]=p? and pL’' < L according
to (1.3). Hence we can assume that S = Spec (A4), where A is a discrete valuation
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ring with maximal ideal p= (n). By (1.3), if q;.=3 a;;X;X;, where a;;=b(e; ¢)
for i+j and a;=q(e), then g, =3 b;Y;Y, where b;=n’a;,by,=mna, for
i,j € {1,2} and byo=ay, (since n(L')=n(L)). Hence ay, € A*. Let A[xg, x;,X,]
=A[Xo, X1, X,1/(qr) and  Alye,yy,y21=AlY,, Yy, Y,1/(q,). Consider the
birational map

o: Proj (A[xo, x;,x,]) — Proj (A[ye, y1,¥2])

induced by the homomorphism

(' A[y()syl’.VZ] - A[xo’xxaxz]

such that a4(yo)=7xg, 6o(y1)=x;, 0o(y;)=x,. It is easy to see that g is a
morphism, since ay, € A* implies that ¢ is defined at all the points of M(L').
The equality g,.=0 and a,, € A* show at the same time that ¢ is finite.

We note as a corollary the observations made in the course of the proof of
(2.1) concerning the singular points on normal models M(L). Recall that dg/g
=D(M), where M is a relatively minimal S-model of E.

(2.11) CoroLLARY. If M = M(L) is a normal S-model of E, then all the singular
points on M are in the fibers M, such that p2|d(M) and each fiber of that type
contains exactly one singular point unless p’,{’b(M), e,(M)=0 dnd p*bE/s,
when there are exactly two such points. The singular points are k(p)-rational
unless p? *D(M), e,(M)=0 and p|dgs, when the singular point is a form of two
different rational points.

(2.12) REMARK. In order to prove that M(L) is normal if L is a Bass lattice, it
is possible to replace the local ring A by its strict Henselization (see e.g. [8, p.
54]). This gives an essential simplification of the proof of Theorem (2.1): Case 2
reduces to Case 1, while Case 3 can be limited to (2.6) and (2.7). Unfortunately,
in the proof of the next theorem we need all the quadratic forms listed in the
proof of (2.1).

Now we are going to discuss the question of resolution of singularities of
normal conic bundle surfaces by a kind of elementary transformations which
replace a surface of that type by a new one with improved singularities. Let M
be a normal conic S-model of E and p a closed point of S such that there is a
singular point on M in M,. We shall say that M’ is an elementary transform of
M at the singular points in M, if there exist an S-model M* of E (not a conic
bundle surface), a blowing-up : M* — M’ at a regular closed point P' in M,
and a composition of blowings-up ¢: M* — M at the singular points in M,
(more exactly, if there are two singular points in M, then 6 =0,00,, where g,
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is a blowing-up of M at one singular point, and ¢, a blowing-up of o, ! (M) at
the inverse image of the second singular point) such that too~'())=P' for
(exactly) one non-closed point [ in M -

(2.13) THEOREM. If M is a normal non-regular conic bundle S-surface, then
there is a chain My=M,M,,. .., M, of normal conic bundle S-surfaces such that
M, is an elementary transform of M, at the singular points (on M) in one of its
fibers for i=0,1,...,n—1 and M, is regular.

Proor. Let M=M(L) be a normal conic bundle S-surface and d(M)
=TT p*". Assume that p is a closed point of S such that a(p)=2 and let L' > L
be an S-lattice satisfying one of the Propositions (1.5), (1.6) or (1.7). We shall
show that M’=M(L’) is an elementary transform of M at the singular points in
M, The Theorem follows then by an easy induction on Y a(p), because d(M)
=d(M')p®, where ¢=1 or 2.

Since Ly=L, for each closed point q#p, we may assume that S=Spec (A4),
where A4 is a discrete valuation ring with maximal ideal p= (n). Let a(p)=

n=2. Let
Alxg, x1,x,] = A[Xo, X, X,1/(qp)
and

A[yO, yl’ y2] = A[Y09 Yl’ YZ]/(qL’) ’

where q; and g, are quadratic forms corresponding to L and L'. As earlier, we
denote by E the (common) field of rational functions on M and M’. We refer to
[9, Chapter 11, 7] for general properties of blowings-up and to [1] for the way
in which we apply them calculating inside of E. We have to consider 4 cases:

Case 1. If e,(M)=1, then by (1.5) there is a basis ey, e,,e, for L' such that
L' =Aey+ Ae, + Ae,, L =Amne,+ Ane, + Ae,, q, satisfies (2.2) and

(2.14) q, = n"Yi+ Y, Y,.

Note that the homomorphism ¢4: A[Y,, Y;, Y,] — A[ X, X, X,] such that
0o(Yo)=nXy @o(Y)=nX,, ¢@o(Y,)=X, induces a birational map
@: Proj (A[xq, x1,%x5]) — Proj (ALye, ¥1,y,]). Let o be the blowing-up of M
=Proj (A[x,, x,, x,]) at the singular point P = (n, x,, x,) and t the blowing-up
of M'=Proj(A[ye, y1,y,]) at the regular point P’ =(m,y,,y,). Since yo/y,
=Xo/x, and y,/y, =mx,/x, in E, we check easily that ¢ and 7 give the same S-
model of E and ¢ =100~ !. We have ¢(l,)=P’, where |, =(r,x,) (the second
prime [, = (m,x,) in M, is mapped onto I/, = (n, y,), while I} = (, y,) is mapped
on P by ¢ !). Note that if we choose P’ = (r, y,, y,), then ¢ maps I, on P’ (and
I, on IY).

Math. Scand. 54 — 20
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Cask 2. If e,(M)= —1, then by (1.6) there is a basis ey, e,,e, for L’ such that
L'=Aey+ Ae, + Ae,, L=Ane,+ Ae, + Ae,, q, satisfies one of the conditions
(2.3)-(2.5), and respectively:

(2.15) g = n""'Y Y, +YI-Y, Y, +eY3,

(2.16) q, = m*" " InYi-Yi+Y,Y,—eY3,

(2.17) qp = w7 2Y3=2an" Y, Y, = 2Bn" 'Y, Y, + (0F —e) Y]
+2aBY,Y,+ (B2 —n)Y?.

This time the homomorphism ¢,: A[Y,, Y;, Y,] = A[X,, X;, X,] such that

0o(Yo)=71Xo, @o(Y))=X,, @o(Y)=X, induces a birational map

@: Proj (A[xq, xy,x,]) — Proj (A[yo,y1,y,]). Let 6 be the blowing-up of

M = Proj (A[x, X, x,]) at the singular point P = (r, x,, x,) and t the blowing-

up of M'=Proj (A[ye, ¥1,¥,]) at the regular point P’ = (r, yo.u), where
Ho=yi—yyatey:

if g, satisfies (2.15) or (2.16) and

u = =&y +20By,y,+ (B> —n)y3

if q, satisfies (2.17). Since yo/y, =nx,/x, and y,/y,=x,/x, in E, it is easy to
check that ¢ and t give the same S-model M* of E and that =100~ '. We
have ¢(l)=P’, where |= (n, ) is the non-closed point of M, (note that o ()
= P, where I is the non-closed point of M).

Case3. Ife,(M)=0and n>2, then by (1.7) there is a basis e, e, e, for L' such
that L'=Ae,+ Ae, + Ae,, L=Aey+ Ane, + Ane,, q; satisfies one of the
conditions (2.6)-(2.9), and respectively

(218) g = n""'Y,Y,—naY, Y, +nY3—BY?,

(219) qp = n'Y,Y,—naY,Y, —nfYi+ Y},

(2.10) q, = ¥ 72Yi-2n"anY,Y,—n "L (1 +2B)Y, Y, +na(1 + 2B Y, Y, +
+m(na® = Y5+ (B +p+e)Yi,

(221) g = n* 7 'Yi-2nanY,Y,—n" (1 +2B)Y, Y, + na(1 + 2B Y, Y, +

+n(B*+Pp+e)Yi+ (na® —nnY?.

The homomorphism ¢@q,: A[Y,, Y, Y,] = A[X, X, X;] such that ¢4(Y,)
=X, @o(Y))=nX,, ¢@o(Y;)=nX, induces a  birational map
@: Proj (A[xg, X1, x,]) — Proj (A[ye, y1, y,]). Consider the blowing-up g of M
=Proj (A[x,, x;, x,]) at the singular point P = (rn, x,, x,) and the blowing-up 1
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of M'=Proj (A[ye,y1,y,]) at the regular point P'=(m,y,,y,). Since y,/v,
=nx,/Xy and y,/y,=nx,/x, in E, easy computations show that ¢ and 7 give
the same S-model M* of E and that ¢ =100~ '. We have ¢(/)= P, where |
= (m, x,) is the ideal defining M, (and ¢~ '(I')=P, where ' = (, y,)).

Case 3. If e,(M)=0 and n=2, then by (1.7) and [6, (5.4) and (5.6)] there is a
basis ey, e, e, for L' such that L'=Ae,+ Ae, + Ae,, L=Aey+ Ane, + Ane,,

(222) q, = X, X,+X}

222) g, = nYi+Y,Y,

if p|dgs and

(223) q, = nXi—n(X}—-X,X,+eX3)
(2.23) g = mYi—Y3+Y, Y,—cY?2

if p|dgss (e,n have the same meaning as in (2.4)). We have a birational map
@: Proj (A[x¢,x;,x5]) = Proj (A[ye, ¥1,y,]) defined as in the previous case.

If pfdgs let o, be the blowing-up of M =Proj(A[x,,x,,x,]) at
the singular point P, = (m, x4, x,), and o, the blowing-up of ¢, !(M) at the
singular point o[ '(P,), where P,=(m, x,,x,;). Let t be the blowing-up of
M’ =Proj (A[ye, y1,¥,])) at the (regular) point P'= (=, y,,y,). Using the same
arguments as in the previous case we get ¢ '(M)=1"'(M’) and p=100"",
where 6=0,00,. We have ¢(l)=P, where |=(n,x,) (and ¢ '(l,)=P, where
li=(m,y,) for i=1,2).

If p|dg, then we take as o the blowing-up of M at the singular point
P=(m, xo,x} —x,X,+¢x3) and as t the blowing-up of M’ at the (regular) point
P'=(m,y,,y,). We repeat the above arguments noting that ¢(/)=P’, where
@=100"! and I=(m,x,) (while ¢ ! (I')=P, where I'= (m, y} — y,y, +&y3)).

(2.24) REMARK. If M =M(L) is a normal conic bundle surface and M’ is an
elementary transform of M at the singular points of one of its fibers M, then
M’'=M(L’), where L'=L, is an extension of L in the sense of (1.8) (b). In fact,
we know from the proof of (2.13) that for each prime [ in M there is an
extension L'=L,> L satisfying (1.8) (b) such that M(L') is an elementary
transform of M at the singular points of M, and [ is mapped on a
(regular)point of M (L’). Hence, if the prime / is mapped on a point of M’, then
M’=M(L') since M’ is uniquely determined by M and the choice of a prime in
M, whose image under the elementary transformation is a point of M'.

We end the paper with some remarks concerning possibilities to generalize
the results of [4] about local behaviour of models with the same types of fibers
and singularities. As we know, two regular S-models M; and M, with the same
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types of fibers (that is, D(M,)=0(M,)) are locally isomorphic (see [4, (4.5)]).
One cannot expect that this result is true for arbitrary normal conic bundle
surfaces. In fact, it is easy to give examples of normal conic S-models M, and
M, of E which are not S-isomorphic even if d(M,)=d(M,) and ¢,(M,)
=e¢,(M,) for each closed point p € S. Let us take S =Spec (A), where A=2,,
M;=Proj (A[ X, X, X,1/(q))), i=1,2, where ¢q,=X3—nX3-n*X2 ¢,=X}
+nX{—n*X3 The quadratic forms ¢, and ¢, are not A-equivalent (see e.g.
[11,92:2]) but Cy(V,¢,)=C,(V,q,). Hence M, and M, are normal S-models
(see (1.2)) of the same filed E=R(M,). They are not S-isomorphic because of
the following result which was proved in [3, Theorem 1] for regular conic
bundle surfaces without using the assumption of regularity. Note, however,
thar s(L) should be replaced there by n(L) and ideals by corresponding
divisors.

(2.25) ProposiTiON. Let (V,q) be a half-regular quadratic space over the field
of rational functions on a perfect Dedekind scheme S. If L, and L, are S-lattices
on V, then the models M(L,) and M (L,) are isomorphic if and only if the lattices
L, and L, are similar.

Recall that the lattices L, and L, on (V, ¢) are similar if there is an invertible
S-sheaf ac F (see the end of section 1) such that L, and aL, are isometric, that
is, there is an isometry ¢ of V such that a(L,(U))=(aL,)(U) for each open
subset U of S.

The results of [6] imply however that sometimes two models with the same
types of fibers are locally isomorphic.

(2.26) THEOREM. Let S be a perfect Dedekind scheme with field of rational
functions F and E a finitely generated regular extension of genus 0 of F. If M,
and M, are conic bundle S-models of E such that d(M,)=b(M,) and ¢,(M,)
=e,(M;)+0 for each closed point p of S, then M, and M, are locally
isomorphic.

Proor. Follows at once from (2.25), [4, (3.6] and [6, (5.3)].

Let us note that [6, (5.3)] gives a possibility of a slight generalization of this
Theorem to the case in which e,(M;)=0 if at the same time p® } d(M,) for
i=1,2. If the residue fields k(p) are algebraically closed and the models M;
are normal, the last condition can be eliminated using (2.1) and the
characterization of Bass lattices given in [7, (3.4)].
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