ONE-DIMENSIONAL K-TYPES IN FINITE DIMENSIONAL REPRESENTATIONS OF SEMISIMPLE LIE GROUPS: A GENERALIZATION OF HELGASON'S THEOREM

HENRIK SCHLICHTKRULL*

1. Introduction.

Let G be a semisimple connected noncompact real Lie group, and let K be a maximal compact subgroup. Let (π, V) be a finite dimensional irreducible representation of G. A renowned theorem due to S. Helgason gives the condition in terms of the highest weight of π under which π is class one. This means that V contains a nonzero vector fixed by $\pi(K)$, or in other words that π contains the trivial K-type in its decomposition into irreducible representations of K. In this paper we generalize this theorem to give a complete description in terms of the highest weight of π of all one-dimensional K-types contained in π .

Let $g = f \oplus p$ be a Cartan decomposition of the Lie algebra g of G, let a be a maximal abelian subspace of p and let j be a Cartan subalgebra of g containing g. Then $g = f \oplus g$ where $g = g \oplus g$. Assume that G is contained in the complex simply connected Lie group with Lie algebra $g = g \oplus g$. Since we are dealing only with finite dimensional representations of G this assumption causes no loss of generality. Choose compatible orderings of $g \oplus g$ and $g \oplus g$ be a complex linear form on $g \oplus g$.

The precise content of Helgason's theorem is as follows (cf. [2, III § 3]): If the restriction of λ to t^+ is zero and if for all positive roots α of α in α the number $(\lambda, \alpha)/(\alpha, \alpha)$ is a nonnegative integer, then λ is the highest weight of a finite dimensional class one representation of α , and all finite dimensional class one representations of α occur in this way.

If K is semisimple then the trivial representation is its only one-dimensional representation, and therefore no more can be said about one-dimensional K-types in π . However, if K is not semisimple, or equivalently if G/K is Hermitian symmetric, then there are other one-dimensional K-types than the trivial. It is for such groups G our generalization of Helgason's theorem applies.

Received March 10, 1983.

^{*} Partially supported by the Danish Natural Science Research Council.

Let $\mathfrak{t}_1 = [\mathfrak{t}, \mathfrak{t}]$ be the semisimple part of \mathfrak{t} . The condition on the highest weight λ of π for one-dimensional K-types to occur is very similar to that of Helgason's theorem: the restriction of λ to $\mathfrak{t}^+ \cap \mathfrak{t}_1$ has to be zero, and furthermore λ has to satisfy a certain integrality condition (see Theorem 7.2). The method of our investigation is by reduction to the rank-one case in the manner of S. G. Gindikin and F. I. Karpelevič ([1]).

The paper is organized as follows: First the restricted root theorem of C. C. Moore is stated. In Section 3 we study the structure of K and determine the complete set of one-dimensional K-types. In the next section the centralizer of K and its intersection with the semisimple part of K are considered. In Section 5 the rank-one subgroups of K are studied, and in the succeeding section we look upon K is not semisimple. Finally in Section 7 the main theorem is stated and proved.

The problem of generalizing Helgason's theorem in this direction emerged in [8]. Though we will not go into that here we point out, that Theorem 7.2 in combination with the results of [8] can be applied to the construction of interesting unitary representations, in particular of some exceptional groups.

2. Root structure.

Let G be a connected real simple noncompact Lie group, and let g be its Lie algebra. Assume that $G \subset G_C$, where G_C is a simply connected complex Lie group with Lie algebra g_C . Let $g = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decompositon, and let K be the corresponding maximal compact subgroup of G. Let $\mathfrak{k}_1 = [\mathfrak{k}, \mathfrak{k}]$ and assume that $\mathfrak{k}_1 = \mathfrak{k}_1$, that is G/K is Hermitian symmetric (cf. [3, Ch. VIII]).

Let t be a Cartan subalgebra of \mathfrak{f} , then t is also a Cartan subalgebra of \mathfrak{g} . Let $\Delta \subset it^*$ consist of the roots of t in \mathfrak{g} , and let $\mathfrak{g}_{\gamma} \subset \mathfrak{g}_{\mathbb{C}}$ for $\gamma \in \Delta$ denote the γ root space. Let Δ_c , respectively Δ_n be the set of compact, respectively noncompact roots, i.e. those roots γ for which $\mathfrak{g}_{\gamma} \subset \mathfrak{f}_{\mathbb{C}}$, respectively $\mathfrak{g}_{\gamma} \subset \mathfrak{p}_{\mathbb{C}}$. Then $\Delta = \Delta_c \cup \Delta_n$.

Let 3 be the center of f, then dim g=1. As is well-known, we can choose an element $Z_0 \in z$ such that $\gamma(Z_0) = \pm i$ for all $\gamma \in \Delta_n$. Choose an ordering of Δ such that

$$\varDelta_n^+ \ = \ \big\{ \gamma \in \varDelta \ \big| \ \ \gamma(Z_0) = i \big\} \ ,$$

where $\Delta_n^+ = \Delta^+ \cap \Delta_n$. Let $\Delta_c^+ = \Delta^+ \cap \Delta_c$.

For $\varphi \in \mathfrak{t}_{C}^{*}$ let $H_{\varphi} \in \mathfrak{t}_{C}$ be defined by $\varphi(H) = (H_{\varphi}, H)$ for all $H \in \mathfrak{t}$, where (\cdot, \cdot) denotes the Killing form. Let $\{\gamma_{1}, \ldots, \gamma_{r}\} \subset \Delta_{n}$ be a maximal strongly orthogonal subset, such that γ_{j} is the highest element of Δ_{n} strongly orthogonal to $\{\gamma_{j+1}, \ldots, \gamma_{r}\}$, for $j = r, \ldots, 1$ (cf. [3, p. 386]). Let

$$t^- = \sum_{j=1}^r RiH_{\gamma_j}$$

and

$$t^+ = \{ H \in t \mid \gamma_i(H) = 0, j = 1, ..., r \},$$

then $t = t^+ \oplus t^-$. Identify γ_j with its restriction to t^- (j = 1, ..., r).

THEOREM 2.1. (C. C. Moore). The set of nonzero restrictions of the elements of Δ^+ to τ^- is one of the following two sets:

Case I: $\{\gamma_i, \frac{1}{2}(\gamma_i \pm \gamma_k) \mid 1 \le i \le r, 1 \le k < j \le r\}$

Case II: $\{\frac{1}{2}\gamma_i, \gamma_i, \frac{1}{2}(\gamma_i \pm \gamma_k) \mid 1 \le i \le r, 1 \le k < j \le r\}$.

Furthermore the nonzero restrictions of compact roots have the form $\frac{1}{2}\gamma_i$ or $\frac{1}{2}(\gamma_j - \gamma_k)$, and the restrictions of noncompact roots have the form $\frac{1}{2}\gamma_i$, γ_i or $\frac{1}{2}(\gamma_i + \gamma_k)$.

The roots $\gamma_1, \ldots, \gamma_r$ do all belong to the set of longest roots in Δ . In Case II, only one root length occurs in Δ .

Unless when $t^+ = 0, \gamma_1, \dots, \gamma_r$ are the only restricted roots of multiplicity one.

PROOF. This can be verified case by case from the diagrams [3, pp. 532-34], or it can be proved by combinatorial arguments, cf. [6].

REMARK 2.2. In [4] it is shown that Case I is necessary and sufficient for G/K to be a tube domain. Here is the classification of the possible algebras g (cf. [3]):

Case I: $\mathfrak{su}(n, n) \ (n \ge 2)$, $\mathfrak{so}(n, 2) \ (n \ge 5)$, $\mathfrak{so}^* (4n) \ (n \ge 3)$, $\mathfrak{sp}(n, \mathbb{R}) \ (n \ge 1)$ and $e_{7(-25)}$

Case II: $\mathfrak{su}(p,q) (q > p \ge 1)$, $\mathfrak{so}^* (4n+2) (n \ge 2)$ and $\mathfrak{e}_{6(-14)}$.

Among these, $t^+ = 0$ only happens for $\mathfrak{sp}(n, \mathbb{R})$ $(n \ge 1)$.

For each $\gamma \in \Delta_n$ choose $X_{\gamma} \in \mathfrak{g}_{\gamma} \setminus \{0\}$ subject to $\bar{X}_{\gamma} = X_{-\gamma}$, and $\gamma([X_{\gamma}, X_{-\gamma}]) = 2$, where the bar denotes conjugation with respect to the real form \mathfrak{g} of $\mathfrak{g}_{\mathbb{C}}$. Let

$$\alpha = \sum_{j=1}^{r} R(X_{\gamma_j} + X_{-\gamma_j}),$$

then $\mathfrak a$ is a maximal abelian subspace of $\mathfrak p$. Let c be the automorphism of $\mathfrak g_{\mathsf C}$ given by

$$c = \operatorname{Ad} \exp \frac{\pi}{4} \sum_{i=1}^{r} (X_{\gamma_i} - X_{-\gamma_i}).$$

Then c maps it^- bijectively to a and fixes t^+ (cf. [4]).

Let $j=t^++\alpha$ and let c_* : $t_c^*\to j_c^*$ denote the adjoint of c^{-1} : $j_c\to t_c$. Then $c_*\Delta$ consists of the roots of the Cartan subalgebra j of g. Let Σ denote the set of nonzero restrictions of $c_*\Delta$ to α , and let Σ^+ consists of the nonzero restrictions of $c_*\Delta^+$ to α . Let $\alpha_j=c_*\gamma_j$, then exchanging the γ 's in Case I and II above with α 's, we get the two possible forms of Σ^+ .

3. The structure of K.

Let K_1 denote the analytic subgroup of K with Lie algebra f_1 .

Lemma 3.1. Let Φ denote the set of simple roots for Δ^+ , and let $s_{\varphi} \in \mathbb{R}$ for each $\varphi \in \Phi$. Then

$$\exp\left(\sum_{\varphi\in\Phi} s_{\varphi} \frac{2iH_{\varphi}}{(\varphi,\varphi)}\right) = e$$

if and only if $s_{\varphi} \in 2\pi \mathbb{Z}$ for all $\varphi \in \Phi$.

PROOF. Let U be the analytic subgroup of G_{C} with Lie algebra u = t + ip. Then U is compact and simply connected, and t is a Cartan subalgebra of u. The lemma then follows from [9, Theorem 4.6.7].

COROLLARY 3.2. K_1 is simply connected.

PROOF. It is easily seen that $\Phi \cap \Delta_c$ consists of the simple roots for Δ_c^+ . From Lemma 3.1

$$\exp\left(\sum_{\varphi\in\Phi\cap\Delta_{\epsilon}} s_{\varphi} \frac{2iH_{\varphi}}{(\varphi,\varphi)}\right) = e$$

if and only if $s_{\varphi} \in 2\pi \mathbb{Z}$ for all $\varphi \in \Phi \cap \Delta_c$, and so K_1 is simply connected, again by [9, Theorem 4.6.7].

Let a denote the length of the longest roots in Δ . The short roots, if there are any, then have length $a/\sqrt{2}$.

LEMMA 3.3 Let $t_{\gamma} \in \mathbf{R}$ for each $\gamma \in \Delta_n^+$ and let

$$x = \exp\left(\sum_{\gamma \in A_n^+} t_{\gamma} \frac{2iH_{\gamma}}{(\gamma, \gamma)}\right).$$

Then $x \in K_1$ if and only if

$$\sum_{\gamma \in A_n^+} \frac{t_{\gamma}}{(\gamma, \gamma)} \in \frac{2\pi}{a^2} \mathbf{Z} .$$

PROOF. Assume that $x \in K_1$. Since x centralizes $t \cap t_1$, which is a Cartan subalgebra of t_1 , $x = \exp Y$ for some $Y \in t \cap t_1$. Then

$$\exp\left(\sum_{\gamma\in A_{\#}} t_{\gamma} \frac{2iH_{\gamma}}{(\gamma,\gamma)} - Y\right) = e$$

and it follows from Lemma 3.1 that

$$\sum_{\gamma \in \Lambda_{\sigma}^{+}} t_{\gamma} \frac{2iH_{\gamma}}{(\gamma, \gamma)} - Y = \sum_{\varphi \in \Phi} s_{\varphi} \frac{2iH_{\varphi}}{(\varphi, \varphi)}$$

for some $s_{\varphi} \in 2\pi \mathbb{Z}$ $(\varphi \in \Phi)$. Taking inner product with $\frac{1}{2}Z_0$ it follows that

$$\sum_{\gamma \in \Delta_{-}^{+}} \frac{t_{\gamma}}{(\gamma, \gamma)} = \frac{s_{\psi}}{(\psi, \psi)} \in \frac{2\pi}{a^{2}} Z$$

where ψ is the unique simple noncompact root.

Assume conversely that

$$t = \sum_{\gamma \in A^{+}} \frac{t_{\gamma}}{(\gamma, \gamma)} \in \frac{2\pi}{a^{2}} \mathbf{Z} .$$

Then

$$\sum_{\gamma \in A^+} t_{\gamma} \frac{2iH_{\gamma}}{(\gamma, \gamma)} - ta^2 \frac{2iH_{\gamma_1}}{(\gamma_1, \gamma_1)} \in \mathfrak{f}_1$$

since it is orthogonal to Z_0 . However

$$\exp\left(ta^2\frac{2iH_{\gamma_1}}{(\gamma_1,\gamma_1)}\right) = e$$

by Lemma 3.1, and hence $x \in K_1$.

Let $N = \sum_{\gamma \in \Delta_n^+} a^2/(\gamma, \gamma)$, then N is the number of longest roots in Δ_n^+ plus twice the number of short roots, if there are any. Define $Z \in t$ by

(3.1)
$$Z = \frac{1}{N} \sum_{\gamma \in A_n^+} \frac{2iH_{\gamma}}{(\gamma, \gamma)}.$$

Proposition 3.4. Let $t \in \mathbb{R}$

- (i) $Z \in z \setminus \{0\}$,
- (ii) $\exp tZ \in K_1$ if and only if $t \in 2\pi Z$.

PROOF. (i) From (3.1) it follows that

$$(3.2) (Z, Z_0) = -\frac{2}{a^2}.$$

Therefore $Z \neq 0$. Let $\varphi \in \Delta_c^+$ and $\gamma \in \Delta_n^+$. If $(\varphi, \gamma) = 0$ then γ contributes nothing to $\varphi(Z)$. If $(\varphi, \gamma) \neq 0$ then also the reflected root $\sigma_{\varphi} \gamma$ is positive and noncompact since $\sigma_{\varphi} \gamma(Z_0) = i$. From $(\varphi, \gamma + \sigma_{\varphi} \gamma) = 0$ it then follows that $\varphi(Z) = 0$ for all $\varphi \in \Delta_c^+$, and hence $Z \in z$.

(ii) follows immediately from Lemma 3.3.

Let $l \in \mathbb{Z}$, and define $\chi_l : K \to \mathbb{C}$ by $\chi_l(k) = 1$ for $k \in K_1$ and $\chi_l(\exp tZ) = e^{ilt}$ for $t \in \mathbb{R}$. From Proposition 3.4 we get that χ_l is a well defined one dimensional representation of K, and that all one dimensional representations of K have this form.

REMARK 3.5. In Case I, we can give a simpler formula for Z as follows

(3.3)
$$Z = \frac{1}{r} \sum_{i=1}^{r} \frac{2iH_{\gamma_i}}{(\gamma_i, \gamma_i)}.$$

In fact, let Z' denote the right hand side of (3.3). Then $Z' \in z$ by Theorem 2.1, and $(Z, Z_0) = (Z', Z_0)$ from (3.2), so (3.3) follows. In particular we have $z \subset t^-$ in Case I (cf. also [4, Proposition 3.12]).

4. The structure of M.

Let M denote the centralizer of \mathfrak{a} in K, and let \mathfrak{m} be its Lie algebra. Then \mathfrak{t}^+ is a Cartan subalgebra of \mathfrak{m} . For any Lie group F, let F_0 denote its identity component. It is well-known (cf. [2, p. 75]) that

$$(4.1) M = M_0 \cdot (\exp i\mathfrak{a} \cap K)$$

and also that if $H_{\alpha} \in \mathfrak{a}$ for $\alpha \in \mathfrak{a}^*$ is defined by $(H_{\alpha}, H) = \alpha(H)$ for all $H \in \mathfrak{a}$, then (cf. [2, p. 77])

(4.2)
$$\left\{ H \in \mathfrak{a} \mid \exp iH \in K \right\}$$

$$= \left\{ \sum_{\alpha \in \Sigma^{+}} s_{\alpha} \frac{H_{\alpha}}{(\alpha, \alpha)} \mid s_{\alpha} \in 2\pi \mathbb{Z} \text{ for all } \alpha \in \Sigma^{+} \right\}.$$

From the description of Σ^+ by Theorem 2.1 it follows that (4.2) can be restated as follows:

(4.3)
$$\{H \in \mathfrak{a} \mid \exp iH \in K\}$$

$$= \left\{ \sum_{j=1}^{r} s_{j} \frac{H_{\alpha_{j}}}{(\alpha_{j}, \alpha_{j})} \middle| s_{j} \in 2\pi \mathbb{Z} \text{ for } j = 1, \dots, r \right\}.$$

LEMMA 4.1.

$$\exp \frac{2\pi i H_{\alpha_j}}{(\alpha_j, \alpha_j)} = \exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)}$$

for j = 1, ..., r.

PROOF. There is a homomorphism $\mathfrak{sl}(2, \mathbb{C}) \to \mathfrak{g}_{\mathbb{C}}$ for which

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \frac{2H_{\alpha_j}}{(\alpha_j, \alpha_j)} \quad \text{and} \quad \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \rightarrow \frac{2iH_{\gamma_j}}{(\gamma_j, \gamma_j)}.$$

The lemma then follows, since in SL (2, C)

$$\exp \pi i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \exp \pi \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

LEMMA 4.2. In Case II. M is connected.

PROOF. By (4.3) and Lemma 4.1, it suffices to prove that for $j=1,\ldots,r$:

$$\exp\frac{2\pi i H_{\gamma_j}}{(\gamma_j,\gamma_j)} \in M_0.$$

Let $\varphi \in \Delta^+$ be a root whose restriction to \mathfrak{t}^- is $\frac{1}{2}\gamma_j$. Then obviously $H_{\gamma_j} - 2H_{\varphi} \in \mathfrak{t}^+$. From Lemma 3.1 we have

$$\exp\left(2\pi\frac{2iH_{\varphi}}{(\varphi,\varphi)}\right) = e$$

and therefore

$$\exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)} = \exp \frac{2\pi i}{a^2} (H_{\gamma_j} - 2H_{\varphi}) \in M_0.$$

Let W be the Weyl group of Δ , and let $\theta = \sigma_{\gamma_1} \cdot \ldots \cdot \sigma_{\gamma_r} \in W$. Then $\theta(S+T) = S - T$ for $S \in \mathfrak{t}^+$, $T \in \mathfrak{t}^-$. Let $\Xi \subset \Delta^+$ denote the set of roots whose restriction to \mathfrak{t}^- is $\frac{1}{2}\gamma_j$ for some j, and let $\Xi_n = \Xi \cap \Delta_n$ and $\Xi_c = \Xi \cap \Delta_c$. Note that $\theta(\Xi_n) = -\Xi_c$, since if $\xi \in \Xi_n$ with $\xi|_{\mathfrak{t}^-} = \frac{1}{2}\gamma_j$, then $\theta \xi = \xi - \gamma_j \in -\Xi_c$.

Let R denote the number of elements of Ξ_n (or Ξ_c). Define $X \in t$ by X = 0 in Case I and in Case II:

(4.4)
$$X = \frac{1}{R} \left[\sum_{\xi \in \Xi} \frac{2iH_{\xi}}{(\xi, \xi)} - \sum_{\xi \in \Xi} \frac{2iH_{\xi}}{(\xi, \xi)} \right].$$

LEMMA 4.3. In Case II, the following holds:

(i)
$$Z + \theta Z = \frac{R}{N} X$$
.

- (ii) $X \in \mathfrak{t}^+, X \perp \mathfrak{t}^+ \cap \mathfrak{t}_1$
- (iii) $X \neq 0$.
- (iv) $Z X \in \mathfrak{t}_1$.
- (v) For $t \in \mathbb{R}$: $\exp tX \in K_1$ if and only if $t \in 2\pi \mathbb{Z}$.

PROOF. (i) is clear from (4.4) since $\theta(\Xi_n) = -\Xi_c$.

(ii) follows from (i). From (4.4) it follows that

$$(4.5) (X, Z_0) = -\frac{2}{a^2}$$

and from this (iii) is obvious.

- (iv) follows from (4.5) and (3.2).
- (v) is obvious from (iv) and Proposition 3.4 (ii).

Note that it follows that $z \not\in t^-$ in Case II (cf. also [4, Section 4]).

LEMMA 4.4. In Case II, $M \cap K_1$ is connected.

PROOF. Since M is connected and $\mathfrak{m} = (\mathfrak{m} \cap \mathfrak{k}_1) \oplus RX$ by the preceding lemmas, it suffices to prove that $\exp RX \cap K_1 \subset (M \cap K_1)_0$. By Lemma 4.3 (v) it then suffices to prove that $\exp 2\pi X \in (M \cap K_1)_0$.

Choose $\xi \in \Xi_n$, then $\theta \xi \in \Delta_c$. Therefore $(H_{\xi} + \theta H_{\xi}, Z_0) = i$, and from (4.5) it follows that

$$X - \frac{2i}{a^2} (H_{\xi} + \theta H_{\xi}) \in \mathfrak{t}^+ \cap \mathfrak{t}_1.$$

However, by Lemma 3.1

$$\exp\left[2\pi\frac{2i}{a^2}\left(H_{\xi}+\theta H_{\xi}\right)\right]=e$$

and hence $\exp 2\pi X \in \exp \mathfrak{t}^+ \cap \mathfrak{t}_1$.

We can now state an analogue of (4.1) and (4.3).

PROPOSITION 4.5. (i) $M \cap K_1 = (M \cap K_1)_0 (\exp i\mathfrak{a} \cap K_1)$.

(ii)
$$\{H \in \mathfrak{a} \mid \exp iH \in K_1\}$$

$$= \left\{ \sum_{j=1}^r s_j \frac{H_{\alpha_j}}{(\alpha_j, \alpha_j)} \middle| s_j \in 2\pi \mathbb{Z} \text{ for } j = 1, \dots, r \text{ and } \sum_{j=1}^r s_j \in 4\pi \mathbb{Z} \right\}.$$

PROOF. (i) In Case I, $M_0 \subset K_1$ and hence $(M \cap K_1)_0 = M_0$. Therefore (i) follows from (4.1). In Case II (i) is obvious from Lemma 4.4.

(ii) follows from (4.3), Lemma 4.1, and Lemma 3.3.

Later on, we need the following lemma:

LEMMA 4.6. (i) If $\gamma \in \Delta^+ \setminus \Xi$, then $\gamma(X) = 0$.

- (ii) If $\gamma \in \Xi_n$, then $\gamma(X) = -a^2(X, X)i/4$,
- (iii) If $\gamma \in \Xi_c$, then $\gamma(X) = a^2(X, X)i/4$.

PROOF. Assume Case II. Let $b \in \mathbb{R}$ be given by $Z = bZ_0$.

- (i) Let $\gamma \in \Delta^+ \setminus \Xi$. If γ is compact, then $\theta \gamma$ is also compact by Theorem 2.1, and hence $(\gamma + \theta \gamma)(Z) = 0$. If γ is noncompact, then $\theta \gamma$ is also noncompact but negative, and hence $(\gamma + \theta \gamma)(Z) = ib ib = 0$. Then $\gamma(X) = 0$ by Lemma 4.3 (i).
- (ii)–(iii) If $\gamma \in \Xi_n$, then $\theta \gamma \in -\Xi_c$ and hence $\gamma(Z + \theta Z) = ib$. Therefore $\gamma(X) = ibN/R$, and since $\theta X = X$, we then have $-\theta \gamma(X) = -ibN/R$. But then by (4.4)

$$(X,X) = \frac{1}{R} \left[\sum_{\xi \in \Xi_{-}} \frac{2i\xi(X)}{(\xi,\xi)} - \sum_{\xi \in \Xi_{-}} \frac{2i\xi(X)}{(\xi,\xi)} \right] = -\frac{4bN}{Ra^{2}}$$

so $bN/R = -a^2(X, X)/4$.

5. The rank-one reduction.

Let $\alpha \in \Sigma^+ \setminus 2\Sigma^+$ and let \mathfrak{g}^{α} be the subalgebra of \mathfrak{g} generated by the root spaces \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. Let G^{α} be the corresponding analytic subgroup of G. Then G^{α} is a simple Lie group of real rank one, and $\mathfrak{g}^{\alpha} = \mathfrak{k}^{\alpha} \oplus \mathfrak{p}^{\alpha}$ is a Cartan decomposition, where $\mathfrak{k}^{\alpha} = \mathfrak{k} \cap \mathfrak{g}^{\alpha}$ and $\mathfrak{p}^{\alpha} = \mathfrak{p} \cap \mathfrak{g}^{\alpha}$. Therefore $K^{\alpha} = K \cap G^{\alpha}$ is a maximal compact subgroup of G^{α} . (For these well-known facts, see [3, pp. 407–409].) Let $m(\alpha)$ denote the multiplicity of α .

LEMMA 5.1. In Case I, G^{α}/K^{α} is Hermitian symmetric if and only if $m(\alpha) = 1$, and then $g^{\alpha} \cong \mathfrak{su}(1,1)$. In Case II, G^{α}/K^{α} is Hermitian symmetric if and only if $\alpha = \frac{1}{2}\alpha_{j}$ for some $j \in \{1, \ldots, r\}$, and then $g^{\alpha} \cong \mathfrak{su}(n,1)$, where $n = 1 + \frac{1}{2}m(\alpha)$.

PROOF. According to classification the only rank one Hermitian symmetric

spaces are SU $(n, 1)/S(U(n) \times U(1))$ $(n \in \mathbb{N})$. If G^{α}/K^{α} is Hermitian symmetric, it follows therefore that $g^{\alpha} \cong \mathfrak{su}$ (n, 1) for some $n \in \mathbb{N}$. In Case I, 2α is not a root, and hence $g^{\alpha} \cong \mathfrak{su}$ (1, 1). Obviously this happens if and only if $m(\alpha) = 1$. In Case II, if α is one of the roots $\frac{1}{2}(\alpha_i \pm \alpha_j)$, then $m(\alpha) > 1$ and $2\alpha \notin \Sigma$, so g^{α} cannot be isomorphic to \mathfrak{su} (n, 1) for any $n \in \mathbb{N}$. On the other hand, if $\alpha = \frac{1}{2}\alpha_j$, then $m(2\alpha) = 1$, and therefore $g^{\alpha} \cong \mathfrak{su}$ (n, 1) with $n + 1\frac{1}{2}m(\alpha)$ by the classification of real rank one algebras.

Let $l \in \mathbb{Z}$. We will determine the restriction of χ_l to K^{α} , and assume therefore that K^{α} is not semisimple.

In Case II, $g^{\alpha} \cong \mathfrak{su}(1,1)$ and in this identification

$$\frac{2ic^{-1}H_{\alpha}}{(\alpha,\alpha)}=\begin{pmatrix}i&0\\0&-i\end{pmatrix}.$$

By Remark 3.5

$$\frac{1}{(Z,Z)}\left(\frac{2ic^{-1}H_{\alpha'}}{(\alpha,\alpha)},Z\right) = \sum_{i=1}^{r} \frac{(\alpha,\alpha_i)}{(\alpha,\alpha)}$$

and therefore

(5.1)
$$\chi_{l}\left(\exp t\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}\right) = \begin{cases} 1 & \text{if } \alpha = \frac{1}{2}(\alpha_{i} - \alpha_{j}) \\ e^{ilt} & \text{if } \alpha = \alpha_{i} \\ e^{i2lt} & \text{if } \alpha = \frac{1}{2}(\alpha_{i} + \alpha_{j}) \ (i \neq j) \end{cases}.$$

In Case II we have $\alpha = \frac{1}{2}\alpha_j$ and $\mathfrak{g}^{\alpha} \cong \mathfrak{su}$ (n, 1). Let $\Delta_n^+(\alpha)$ denote the set of noncompact positive roots of $\mathfrak{t} \cap \mathfrak{g}^{\alpha}$ in \mathfrak{g}^{α} . Note that the cardinality of $\Delta_n^+(\alpha)$ is n, and put

(5.2)
$$Z(\alpha) = \frac{1}{n} \sum_{\gamma \in A_{\alpha}^{+}(\alpha)} \frac{2iH_{\gamma}}{(\gamma, \gamma)}.$$

Then, in the identification with \mathfrak{su} (n,1), $Z(\alpha)$ is the diagonal matrix with i/n in the first n entries and -i in the last entry. From (5.2) and (3.2) it follows that $Z-Z(\alpha) \in \mathfrak{k}_1$. Therefore

(5.3)
$$\chi_l(\exp tZ(\alpha)) = e^{ilt}.$$

6. A lemma concerning SU(n, 1).

Let G = KAN be the Iwasawa decomposition of G corresponding to Σ^+ , and define maps $\kappa: G \to K$ and $H: G \to \mathfrak{a}$ by

$$x \in \kappa(x) \exp H(x)N$$

for $x \in G$. Let $\varrho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m(\alpha) \alpha$ and let \bar{N} be the group opposite to N, i.e.

$$\bar{N} = \exp\left(\sum_{\alpha \in \Sigma^+} \mathfrak{g}_{-\alpha}\right).$$

Let $d\bar{n}$ denote some Haar measure on \bar{N} . Let $n \in \mathbb{N}$ and $k \in]0, \infty[$. Let $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$.

Lemma 6.1. Assume G = SU(n, 1), and let $\beta \in \Sigma^+$ be the root for which $2\beta \notin \Sigma$. Put $v = \frac{1}{2}k\beta$. Then the integral

(6.1)
$$\int_{\bar{N}} e^{\langle -\nu - \varrho, H(\bar{n}) \rangle} \chi_l(\varkappa(\bar{n})) d\bar{n}$$

converges absolutely for all $l \in \mathbb{Z}$, and it is nonzero if and only if $|l| \notin k+n + 2\mathbb{Z}_+$.

PROOF. We have

$$K = \left\{ \begin{pmatrix} U & 0 \\ 0 & \det U^{-1} \end{pmatrix} \middle| U \in U(n) \right\}$$

and

$$\chi_l \begin{pmatrix} U & 0 \\ 0 & \det U^{-1} \end{pmatrix} = (\det U)^l.$$

We put $H = E_{1, n+1} + E_{n+1, 1}$, where E_{ij} denotes the n+1 square matrix with 1 on the i, jth entry and all other entries 0. With a = RH we get $\beta(H) = 2$ and $\varrho(H) = n$.

The root spaces are given as follows

$$\begin{split} \mathbf{g}_{\beta} &= \, \mathrm{R}i(E_{1,\,1} - E_{1,\,n+1} + E_{n+\,1,\,1} - E_{n+\,1,\,n+\,1}) \\ \mathbf{g}_{\frac{1}{2}\beta} &= \, \left\{ \sum_{j=1}^{n-1} \, \left(z_{j} E_{1,\,j+\,1} - \bar{z}_{j} E_{j+\,1,\,1} + \bar{z}_{j} E_{j+\,1,\,n+\,1} + z_{j} E_{n+\,1,\,j+\,1} \right) \, \middle| \ \, z_{1}, \ldots, Z_{n-\,1} \in \mathbf{C} \right\} \\ \mathbf{g}_{-\frac{1}{2}\beta} &= \, \left\{ \sum_{j=1}^{n-\,1} \, \left(z_{j} E_{1,\,j+\,1} - \bar{z}_{j} E_{j+\,1,\,1} - \bar{z}_{j} E_{j+\,1,\,n+\,1} - z_{j} E_{n+\,1,\,j+\,1} \right) \, \middle| \ \, z_{1}, \ldots, z_{n-\,1} \in \mathbf{C} \right\} \\ \mathbf{g}_{-\beta} &= \, \mathrm{R}i(E_{1,\,1} + E_{1,\,n+\,1} - E_{n+\,1,\,1} - E_{n+\,1,\,n+\,1}) \; . \end{split}$$

From the first two of these equations it is easily seen that H(x) and $\chi_l(\varkappa(x))$ for $x \in SU(n, 1)$ can be computed as follows: Let $\eta(x)$ denote the sum of the first and the last element in the last row of x, then

$$H(x) = \log |\eta(x)|H$$

$$\chi_l(\varkappa(x)) = \left(\frac{\eta(x)}{|\eta(x)|}\right)^{-1}$$
.

From the expressions for $g_{-\frac{1}{2}\beta}$ and $g_{-\beta}$, it then follows that the integral (6.1) except for a constant (nonzero) factor equals

(6.2)
$$\int_{\mathbb{C}^{n-1}} \int_{\mathbb{R}} \left[(1+|z|^2)^2 + s^2 \right]^{-\frac{k+n}{2}} \left(\frac{1+|z|^2 - is}{|1+|z|^2 - is|} \right)^{-1} ds dz .$$

If n > 1 we use polar coordinates in C^{n-1} and get

$$\int_0^\infty \int_{\mathbb{R}} \left[(1+r^2)^2 + s^2 \right]^{-\frac{k+n}{2}} \left(\frac{1+r^2 - is}{|1+r^2 - is|} \right)^{-1} ds r^{2n-3} dr .$$

Let $c_n = \int_0^\infty (1+r^2)^{-k-n+1} r^{2n-3} dr$ if n > 1 and $c_1 = 1$ (note that this integral converges because k > 0). Substitution of $s = (1+r^2)tgt$ if n > 1 and s = tgt if n = 1 gives the following integral instead of (6.2):

$$c_n \int_{-\pi/2}^{\pi/2} (\cos t)^{k+n-2} e^{itt} dt$$
.

This integral can in fact be computed in terms of the gamma function since k > n + 1, and the result is

$$c_n \frac{\pi \Gamma(k+n-1)}{2^{k+n-2} \Gamma(\frac{1}{2}(k+n+l)) \Gamma(\frac{1}{2}(k+n-l))}$$

(cf. [7, p. 158 (5)–(7)]). The lemma now follows since the denominator has poles precisely when $|l| \in k + n + 2\mathbb{Z}_+$.

7. The main theorem.

Let $\lambda \in j_{C}^{*}$, let $m_0 = \lambda(iX)$ and

$$m_j = \frac{2(\lambda, \alpha_j)}{(\alpha_i, \alpha_i)}$$
 $(j = 1, \ldots, r)$.

Note that in Case I, $m_0 = 0$.

PROPOSITION 7.1. If $\lambda|_{t^+ \cap t_1} = 0$, then λ is dominant integral (with respect to $c_* \Delta^+$) if and only if the following three conditions hold:

- (i) m_0, m_1, \ldots, m_r are integers satisfying $|m_0| \le m_1 \le \ldots \le m_r$.
- (ii) In Case I, if $t^+ \neq 0$, then $(-1)^{m_1} = \dots = (-1)^{m_r}$.
- (iii) In Case II, $(-1)^{m_0} = (-1)^{m_1} = \dots = (-1)^{m_r}$.

PROOF. If $t^+ = 0$ the statement is obvious. Assume $t^+ \neq 0$ and Case I, then $t^+ \subset t_1$. Let β be a root of j in $\mathfrak{g}_{\mathbb{C}}$ which is not supported on \mathfrak{q} and has restriction $\frac{1}{2}(\alpha_i \pm \alpha_j)$. Then necessarily β is a long root, and hence

(7.1)
$$\frac{2(\lambda,\beta)}{(\beta,\beta)} = \frac{1}{2}(\mathsf{m}_i \pm \mathsf{m}_j) .$$

The statement then follows from (7.1) and Theorem 2.1.

Assume next Case II. From Lemma 4.6, if β is a root of j in g_C and if $\beta|_{\mathfrak{a}} = \frac{1}{2}(\alpha_i \pm \alpha_j)$, then (7.1) holds again. On the other hand if $\beta|_{\mathfrak{a}} = \frac{1}{2}\alpha_i$ then

$$\frac{2(\lambda,\beta)}{(\beta,\beta)} = \frac{2(\lambda|_{\alpha},\beta|_{\alpha})}{(\beta,\beta)} + \frac{2\lambda(X)\beta(X)}{(X,X)(\beta,\beta)} = \begin{cases} \frac{1}{2}(m_i + m_0) & \text{if } \beta \in c_*\Xi_n \\ \frac{1}{2}(m_i - m_0) & \text{if } \beta \in c_*\Xi_n \end{cases}$$

With that the proposition follows.

Assume now that π is a finite dimensional irreducible representation of G having λ as its highest weight. It is well known (cf. [9, Lemma 8.5.3]) that the space of N-fixed vectors for π is invariant under M, and that this representation δ of M is irreducible. Note that $\lambda|_{t^+}$ is a highest weight of δ .

THEOREM 7.2. The following three conditions are equivalent.

- (i) $\lambda|_{t^+ \cap t} = 0$ and $(-1)^{m_1} = \dots = (-1)^{m_r}$.
- (ii) $\delta|_{M \cap K}$ is trivial.
- (iii) π has nonzero K_1 -fixed vectors.

If these conditions hold, then π contains precisely the following one dimensional K-types, each contained once:

In Case 1:
$$\chi_l$$
 for $l = -m_1, -m_1 + 2, ..., m_1 - 2, m_1$.
In Case II: χ_{m_0} .

PROOF. First the equivalence of (i) and (ii) is proved. Obviously δ is trivial on $(M \cap K_1)_0$ if and only if $\lambda|_{t^+ \cap t_1} = 0$. We have

(7.2)
$$\delta\left(\exp\frac{2\pi i H_{\alpha_j}}{(\alpha_j, \alpha_j)}\right) = \exp\left(\frac{2\pi i (\lambda, \alpha_j)}{(\alpha_j, \alpha_j)}\right) = (-1)^{m_j}$$

and from Proposition 4.5 it follows therefore that (i) and (ii) are equivalent. Let $v = \varrho + \lambda|_{\alpha} \in \alpha^*$ and let V be the representation space of δ . Consider the principal series representation $I_{\delta,v}^p$ of G, the definition of which we recall: Let $C_{\delta,v}^p$ denote the space of V valued C^{∞} -functions f on G satisfying f(gman) $=a^{-v-\varrho}\delta(m^{-1})f(g)$ for all $g \in G$, $m \in M$, $a \in A$, and $n \in N$. $I_{\delta,v}^P$ is then the representation by left translation on this space.

For the opposite minimal parabolic subgroup $\bar{P} = MA\bar{N}$ we define similarly $I_{b,v}^{\bar{P}}$ as the representation of G on

$$C_{\delta,v}^{\bar{P}} = \{ f \in C^{\infty}(G,V) \mid f(gma\bar{n})$$

$$= a^{-v+\varrho} \delta(m^{-1}) f(g), \ \forall g \in G, \ m \in M, \ a \in A, \ \bar{n} \in \bar{N} \}.$$

It is well known that π is equivalent to a subrepresentation of $I_{\delta,v}^P$ (cf. [9, Lemma 8.5.7]), and also that this subrepresentation can be realized as follows: For each $f \in C_{\delta,v}^P$ and $x \in G$ the integral

$$Af(x) = \int_{N} f(x\bar{n}) d\bar{n}$$

is absolutely convergent and defines a G-homomorphism $A: C_{\delta, v}^P \to C_{\delta, v}^P$ (cf. [9, Section 8.10]), whose image is equivalent to π (cf. [5, p. 75]).

Let $l \in \mathbb{Z}$. By Frobenius reciprocity χ_l occurs in the K-decomposition of $I_{\delta, v}^P$ if and only if $\delta = \chi_l|_M$. If χ_l occurs in π it also occurs in $C_{\delta, v}^P$, and therefore (iii) implies (ii), and also χ_l has multiplicity at most one in π .

Assume (ii). We will first determine the set of $l \in \mathbb{Z}$ such that $\delta = \chi_l|_M$. In Case I, $\mathfrak{m} \subset \mathfrak{t}_1$ and hence $\delta|_{M_0} = \chi_l|_{M_0} \equiv 1$ for all $l \in \mathbb{Z}$. By (4.3) and Lemma 4.1, $\delta = \chi_l|_M$ if and only if

(7.3)
$$\delta\left(\exp\frac{2\pi i H_{\gamma_i}}{(\gamma_i, \gamma_i)}\right) = \chi_l\left(\exp\frac{2\pi i H_{\gamma_i}}{(\gamma_i, \gamma_i)}\right).$$

By (5.1) the right hand side of (7.3) is $(-1)^l$. Comparing with (7.2) we see that $\delta = \chi_l|_M$ if and only if l has the same parity as m_1, \ldots, m_r . In Case II, M is connected, and since both δ and χ_l are trivial on $M \cap K_1$ it follows from Lemma 4.3 that $\delta = \chi_l|_M$ if and only if

$$\delta(\exp tX) = \chi_t(\exp tX)$$
 for all $t \in \mathbb{R}$.

However $\delta(\exp tX) = e^{im_0t}$ and $\chi_l(\exp tX) = e^{ilt}$ by Lemma 4.3 (iv). Therefore $\delta = \chi_{l|M}$ if and only if $l = m_0$.

Assume now that I is such that $\delta = \chi_I|_M$. As mentioned χ_I then occurs in $I_{\delta, v}^P$. In fact, if we define for $g \in G$

$$f_l(g) = e^{-(v+\varrho)(H(g))}\chi_l(\varkappa(g))^{-1},$$

then $f_l \in C_{\delta, y}^P$ and $f_l(k^{-1}g) = \chi_l(k) f_l(g)$ for $k \in K$, $g \in G$, so f_l generates the K-type χ_l in $I_{\delta, y}^P$. Therefore π contains χ_l if and only if $Af_l \neq 0$.

From Iwasawa decomposition $G = KA\bar{N}$ it follows that $Af_t \neq 0$ if and only if $Af_t(e) \neq 0$, i.e. if and only if

(7.4)
$$\int_{N} e^{-(v+\varrho)(H(n))} \chi_{t}(\varkappa(\bar{n}))^{-1} d\bar{n} \neq 0.$$

Note that if l = 0, (7.4) is obvious. This implies that π contains the trivial K-type χ_0 if and only if δ is trivial (this is the main step in the proof of Helgason's theorem, cf. [2, III Corollary 3.8]).

By the method of Gindikin and Karpelevič (see [9, Proof of Theorem 8.10.16]) the problem of proving (7.4) is reduced to the real rank-one case. Thus (7.4) holds if and only if

(7.5)
$$\int_{N'} e^{-(v+\varrho)(H(n))} \chi_l(\varkappa(\bar{n}))^{-1} d\bar{n} = 0$$

for all $\alpha \in \Sigma^+ \setminus 2\Sigma^+$, where $\bar{N}^{\alpha} = G^{\alpha} \cap \bar{N}$.

When K^{α} is semisimple (7.5) is clear, so we may assume that $g^{\alpha} = \mathfrak{su}(n, 1)$ (cf. Lemma 5.1).

In Case I, we have $g^{\alpha} \cong \mathfrak{su}(1,1)$ and $\chi_{l}|_{K^{\alpha}}$ is determined by (5.1). If $\alpha = \frac{1}{2}(\alpha_{i} - \alpha_{j})$, then $\chi_{l}|_{K^{\alpha}}$ is trivial and (7.5) is obvious. If $\alpha = \alpha_{j}$, then by Lemma 6.1 we get that (7.5) holds precisely when

(7.6)
$$|l| \notin \frac{2(v,\alpha)}{(\alpha,\alpha)} + 1 + 2Z_{+} = m_{j} + 2N.$$

(It is easily seen that the conclusion of Lemma 6.1 also holds for any group covered by SU (n, 1), as long as χ_l is well defined on this group.) Finally, if $\alpha = \frac{1}{2}(\alpha_l + \alpha_l)$ we get that (7.5) holds when

(7.7)
$$|2I| \notin \frac{2(v,\alpha)}{(\alpha,\alpha)} + 1 + 2Z_{+} = m_i + m_j + 2N.$$

By Proposition 7.1 (i), we see that (7.6) and (7.7) holds precisely when $|l| \le m_1$, and thus the theorem follows in Case I.

In Case II we have $\alpha = \frac{1}{2}\alpha_j$ and $\chi_t|_{K^*}$ is determined by (5.3). From Lemma 6.1 we get that (7.5) holds when

$$|I| \leq \frac{2(v,\alpha_j)}{(\alpha_j,\alpha_j)} = m_j.$$

However by our assumption that $\delta = \chi_{l|M}$ we have $l = m_0$, and therefore (7.5) holds by Proposition 7.1 (i).

REMARK 7.3. From the proof of Lemma 6.1 it follows that the integral

$$c(v,l) = \int_{\bar{N}} e^{-(v+\varrho)(H(\bar{n}))} \chi_l(\varkappa(\bar{n}))^{-1} d\bar{n}$$

for G = SU(n, 1) takes the following value

(7.8)
$$\frac{2^{n-k}\Gamma(n)\Gamma(k)}{\Gamma(\frac{1}{2}(k+n+l))\Gamma(\frac{1}{2}(k+n-l))}.$$

Here $d\bar{n}$ is so normalized that $c(\varrho, 0)$ equals one. From the proof of Theorem 7.2 it then follows that c(v, l) for arbitrary G can be given an explicit formula as product of expressions like (7.8) and the usual factors in the product formula for the c-function (cf. [1]).

ACKNOWLEDGEMENTS. The author is grateful to D. Vogan and H. P. Jakobsen for helpful discussions.

REFERENCES

- S. G. Gindikin and F. I. Karpelevič, Plancherel measure for Riemann symmetric spaces of nonpositive curvature, Soviet Math. 3 (1962), 962–965.
- S. Helgason, A Duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 1–154.
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces (Pure and Appl. Math. 80), Academic Press, New York, San Francisco, London, 1978.
- A. Korányi and J. A. Wolf, Realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265–288.
- D. Miličić, Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), 59-88.
- C. C. Moore, Compactifications of symmetric spaces II: The Cartan domains, Amer. J. Math. 86 (1964), 358–378.
- 7. N. Nielsen, Handbuch der Theorie der Gammafunktion, Teubner, Leipzig, 1906.
- 8. H. Schlichtkrull, A series of unitary irreducible representations induced from a symmetric subgroup of a semisimple Lie group, Invent. Math. 68 (1982), 497-516.
- N. Wallach, Harmonic analysis on homogeneous spaces (Pure and Appl. Math. 19), Marcel Dekker Inc., New York, 1973.

KOBENHAVNS UNIVERSITET
MATEMATISK INSTITUT
UNIVERSITETSPARKEN 5
DK-2100 KOBENHAVN O
DENMARK