MATH. SCAND. 54 (1984). 279-294

ONE-DIMENSIONAL K-TYPES
IN FINITE DIMENSIONAL REPRESENTATIONS OF
SEMISIMPLE LIE GROUPS:
A GENERALIZATION OF HELGASON'S THEOREM

HENRIK SCHLICHTKRULL*

1. Introduction.

Let G be a semisimple connected noncompact real Lie group, and let K be a
maximal compact subgroup. Let (m, V) be a finite dimensional irreducible
representation of G. A renowned theorem due to S. Helgason gives the
condition in terms of the highest weight of n under which = is class one. This
means that V contains a nonzero vector fixed by n(K), or in other words that n
contains the trivial K-type in its decomposition into irreducible repre-
sentations of K. In this paper we generalize this theorem to give a complete
description in terms of the highest weight of n of all one-dimensional K-types
contained in 7.

Let g=t@®p be a Cartan decomposition of the Lie algebra g of G, let a be a
maximal abelian subspace of p and let j be a Cartan subalgebra of g containing
a. Then j=t* @a where t* =jNI. Assume that G is contained in the complex
simply connected Lie group with Lie algebra gc =g+ ig. Since we are dealing
only with finite dimensional representations of G this assumption causes no
loss of generality. Choose compatible orderings of a and j, and let A€ jE be a
complex linear form on j.

The precise content of Helgason’s theorem is as follows (cf. [2, III § 3]): If the
restriction of A to t* is zero and if for all positive roots z of a in g the number
(4, 2)/(2,2) is a nonnegative integer, then A is the highest weight of a finite
dimensional class one representation of G, and all finite dimensional class one
representations of G occur in this way.

If K is semisimple then the trivial representation is its only one-dimensional
representation, and therefore no more can be said about one-dimensional K-
types in m. However, if K is not semisimple, or equivalently if G/K is Hermitian
symmetric, then there are other one-dimensional K-types than the trivial. It is
for such groups G our generalization of Helgason’s theorem applies.
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Let t, =[1,1] be the semisimple part of f. The condition on the highest weight
4 of & for one-dimensional K-types to occur is very similar to that of
Helgason’s theorem: the restriction of A to t* Nf, has to be zero, and
furthermore A has to satisfy a certain integrality condition (see Theorem 7.2).
The method of our investigation is by reduction to the rank-one case in the
manner of S. G. Gindikin and F. 1. Karpelevi¢ ([1]).

The paper is organized as follows: First the restricted root theorem of C. C.
Moore is stated. In Section 3 we study the structure of K and determine the
complete set of one-dimensional K-types. In the next section the centralizer of
a in K and its intersection with the semisimple part of K are considered. In
Section 5 the rank-one subgroups of G are studied, and in the succeeding
section we look upon SU (n,1) (n21), which are the only rank-one groups in
which K is not semisimple. Finally in Section 7 the main theorem is stated and
proved.

The problem of generalizing Helgason’s theorem in this direction emerged in
[8]. Though we will not go into that here we point out, that Theorem 7.2 in
combination with the results of [8] can be applied to the construction of
interesting unitary representations, in particular of some exceptional groups.

2. Root structure.

Let G be a connected real simple noncompact Lie group, and let g be its Lie
algebra. Assume that G< G, where Gc is a simply connected complex Lie
group with Lie algebra gc. Let g=f@®p be a Cartan decompositon, and let K
be the corresponding maximal compact subgroup of G. Let f,=[f,f] and
assume that f, 1, that is G/K is Hermitian symmetric (cf. [3, Ch. VIII]).

Let t be.a Cartan subalgebra of t, then t is also a Cartan subalgebra of g. Let
Acit* consist of the roots of t in g, and let g, = gc for y € 4 denote the y root
space. Let 4, respectively 4, be the set of compact, respectively noncompact
roots, i.e. those roots y for which g, <, respectively g,=pc. Then 4=4,U 4,.

Let 3 be the center of f, then dim 3=1. As is well-known, we can choose an
element Z; € z such that y(Z,)= i for all y € 4,. Choose an ordering of 4
such that

47 ={yed| yZ)=i},

where 4, =4*N4,. Let At =4"N4..

For ¢ € tg let H, € t. be defined by o (H)= (H,, H) for all H € t, where (-, )
denotes the Killing form. Let {y,,...,7,}=4, be a maximal strongly
orthogonal subset, such that y; is the highest element of 4, strongly orthogonal
t0 {Yjs1oe - for j=r,... 1 (cf. [3, p. 386]). Let
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r
tm =3 RiH,
i=1
and

tt = {Het]| y;(N=0, j=1,...,r},

then t=t* ®t~. Identify y; with its restriction to t~ (j=1,...,r).

Theorem 2.1. (C. C. Moore). The set of nonzero restrictions of the elements of
A" to t~ is one of the following two sets:

Case I {y,3(y;y0 | 1<isr, 12k<j<r)
Case II:  {3y,7,3(;£70 | 1<isr, 1<k<j<r}.

Furthermore the nonzero restrictions of compact roots have the form iy, or
$(y;—v)), and the restrictions of noncompact roots have the form %y, v; or
30+

The roots y4,. . .,7y, do all belong to the set of longest roots in A. In Case 11,
only one root length occurs in 4.

Unless when t* =0, y,,...,y, are the only restricted roots of multiplicity one.

Proor. This can be verified case by case from the diagrams [3, pp. 532-34],
or it can be proved by combinatorial arguments, cf. [6].

REMARK 2.2. In [4] it is shown that Case I is necessary and sufficient for G/K
to be a tube domain. Here is the classification of the possible algebras g (cf.

3h:
Case I: su(nn) (n22), so0(n?2) (n=5), so*(4n) (n=3),
sp(mR) (n21) and  eq_,5
Case II: su(p,q) (g>p=1), so0*(4n+2) (n=2) and ey

Among these, t* =0 only happens for sp (n,R) (n=1).

For each yed, choose X,eg,\{0} subject to X,=X_, and
y([X,, X _,])=2, where the bar denotes conjugation with respect to the real
form g of g.. Let

a= Y RX,+X_,),
j=1
then a is a maximal abelian subspace of p. Let ¢ be the automorphism of g¢
given by
¢ = Adexps Y (X, —X_,).
4 =1 J 7
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Then ¢ maps it~ bijectively to a and fixes t* (cf. [4]).

Let j=t* +a and let c,: t& — i& denote the adjoint of ¢™': jc — tc. Then
¢, 4 consists of the roots of the Cartan subalgebra j of g. Let X denote the set of
nonzero restrictions of ¢, 4 to a, and let £* consists of the nonzero restrictions
of ¢, 4" to a. Let a;=c,y;, then exchanging the y's in Case I and II above with
o’s, we get the two possible forms of 2.

3. The structure of K.
Let K, denote the analytic subgroup of K with Lie algebra f,.

LEMMA 3.1. Let ® denote the set of simple roots for A*, and let s, € R for each

¢ € &. Then
2iH
exp s "’) =e
((p§¢ “(o, ®)

if and only if s, € 2nZ for all ¢ € ®.

Proor. Let U be the analytic subgroup of G with Lie algebra u={f+ip.
Then U is compact and simply connected, and t is a Cartan subalgebra of u.
The lemma then follows from [9, Theorem 4.6.7].

CoRroLLARY 3.2. K, is simply connected.

Proor. It is easily seen that & N 4, consists of the simple roots for 4. From

Lemma 3.1
2iH
exp( s “’) =e
(pE¢Zﬂ R ¢ ((0, ¢)

if and only if s, € 2nZ for all ¢ € #N 4,, and so K, is simply connected, again
by [9, Theorem 4.6.7].

Let a denote the length of the longest roots in 4. The short roots, if there are
any, then have length a/l/i

LemMA 3.3 Let t, € R for each y € A, and let

X = exp( Yot 21H’>.

yeds 1Y)

Then x € K, if and only if
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t, 2n
€3
yed, .y a

Proor. Assume that x € K. Since x centralizes tN{,, which is a Cartan
subalgebra of f,, x=exp Y for some Ye tNf,. Then

exp<z ¢ 2H, Y):e

J Ty

and it follows from Lemma 3.1 that

s o H_y_ 5 2H,
yeA; /('Y,)’) peP q’((P’(P)

for some s, € 2nZ (¢ € ®). Taking inner product with Z, it follows that

t S 2n
i v € _ZZ
a

yEZA,f ()’ay) - (‘/’"l/)

where  is the unique simple noncompact root.
Assume conversely that

b 2n
az

yed,} ()’a)’)

Then
2iH 2iH
t ! g2 — U et
VGZA: y(,y’,y) (Y1’YI) !

since it is orthogonal to Z,. However

2iH
ex taz——y‘> =e
p( (1710

by Lemma 3.1, and hence x € K.

Let N=%, 4 a*/(y, y), then N is the number of longest roots in 4, plus
twice the number of short roots, if there are any. Define Z € t by

1 2iH,
N yed,! (’)’a)’) ’

3.1) Z =

ProrosiTION 3.4. Let t € R

() Z e z\ {0},
(ii) exptZ € K, if and only if t € 2nZ.
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Proor. (i) From (3.1) it follows that

2

a2

(3.2) (Z,Zy) = —

Therefore Z+0. Let ¢ € A} andy € 4,7. If (¢,7)=0 then y contributes nothing
to @(2Z). If (¢,y)#0 then also the reflected root ¢,y is positive and noncompact
since g,y(Zy)=i. From (p,y+0,y)=0 it then follows that ¢(Z)=0 for all
@ e A}, and hence Z € =

(ii) follows immediately from Lemma 3.3.

Let | € Z, and define y,;: K — C by y,(k)=1 for k € K, and y,(exptZ)=e™
for t € R. From Proposition 3.4 we get that y, is a well defined one dimensional
representation of K, and that all one dimensional representations of K have
this form.

REMARK 3.5. In Case I, we can give a simpler formula for Z as follows

1 r
(3.3) -
ri=i (y,, v,

In fact, let Z’ denote the right hand side of (3.3). Then Z’ € = by Theorem 2.1,
and (Z,Z,)=(Z', Z,) from (3.2), so (3.3) follows. In particular we have z<t~ in
Case I (cf. also [4, Proposition 3.12]).

4. The structure of M.

Let M dehote the centralizer of a in K, and let m be its Lie algebra. Then t*
is a Cartan subalgebra of m. For any Lie group F, let F, denote its identity
component. It is well-known (cf. [2, p. 75]) that

4.1 M = M, (expiaN K)

and also that if H, € a for « € a* is defined by (H,, H)=a(H) for all H € q, then
(cf. [2, p. 77D

{Hea| expiH € K}

= { Y s, H,
xel’t (o, )
From the description of Z* by Theorem 2.1 it follows that (4.2) can be restated
as follows:

4.2)

s, €2nZ for all a € 2*}.

{Heal expiH € K}

r H1
- {,Z Yy

J’l

4.3)
s; € 2nZ for j=1,.. .,r} .
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LEmMmMA 4.1.
2niH, 2miH,
exp —= = exp ——=4
(ojp ) 075

for j=1,...,r.

Proor. There is a homomorphism sl (2,C) — g¢ for which

(0 1) 2H, and (i 0) 2iH,
el —_ i
10 (ajy 05) 0 —i (j7))

The lemma then follows, since in SL (2,C)
< n'Ol)—- < n(i O)_(—l 0)
P 1 0) TP Mo —i )T\ 0 —1)-

Lemma 4.2. In Case 11, M is connected.

Proor. By (4.3) and Lemma 4.1, it suffices to prove that for j=1,...,r:

2niH
exp&eMo.

05y

Let ¢ € 4% be a root whose restriction to t~ is ¥y, Then obviously H,
—2H,et*. From Lemma 3.1 we have

exp (21: 21H"’) = e
: (¢, 9)

and therefore

yri
exp (y,.,I:,Y)J = exp 'a—’ﬁ' (H,—2H,) e M, .

Let W be the Weyl group of 4, and let =0, ... g, € W. Then 6(S+T)
=S—TforSett, Tet .Let ZEcA* denote the set of roots whose restriction
to t™ is 3y; for some j, and let £,=2N4, and £,=ZN4,. Note that (5, =
—Z, since if £ € £, with &|-=1y;, then 0=¢—y; e —E,.

Let R denote the number of elements of £, (or Z). Define X € t by X =0
in Case I and in Case II:

1 2iH 2iH
44 X =z V™ )|
(@.4) R[éév-gn (&8 EZ (c,al
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LeEmMA 4.3. In Case 11, the following holds:
R

i) Z+0Z = —X.

(1 + N

(i) Xet*, XLt* Nt

(iii) X 0.

(ivi Z-X et

(v} ForteR:exptX e K, if and only if t € 2nZ.

—

Proor. (i) is clear from (4.4) since 0(Z,)= —=..
(ii) follows from (i). From (4.4) it follows that

2
(4.5) (X.Zo) =

and from this (iii) is obvious.

(iv) follows from (4.5) and (3.2).

(v) is obvious from (iv) and Proposition 3.4 (ii).

Note that it follows that z¢t™ in Case II (cf. also [4, Section 4]).

LemMA 4.4. In Case 11, M N K, is connected.

Proor. Since M is connected and m=(mN¥{)®RX by the preceding
lemmas, it suffices to prove that expRX N K, c (M NK,),. By Lemma 4.3 (v) it
then suffices to prove that exp2nX € (M N K,),.

Choose ¢ € Z,, then 0¢ € 4. Therefore (H:+0H, Z,)=i, and from (4.5) it
follows that

2i +
X—F(H¢+()H§) et* Nt .
However, by Lemma 3.1
2i
exp [2na—2(H§+0H<)1 =e

and hence exp2nX € expt* Nt,.

We can now state an analogue of (4.1) and (4.3).
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ProposiTioN 4.5. (i) MNK; =(MNK,),(expiaNK,).
(i1) {Hea| expiH € K}

S; A,
-5 oy
Proor. (i) In Case I, My K, and hence (M NK,),=M,. Therefore (i)

follows from (4.1). In Case II (i) is obvious from Lemma 4.4.
(i1) follows from (4.3), Lemma 4.1, and Lemma 3.3.

s; € 2nZ for j=1,...,r and Y sje47rZ}.

i=1

Later on, we need the following lemma:

LEMMA 4.6. (1) If y € AT\ E, then y(X)=0.
(i) IfyeZ, then y(X)= —a*(X, X)i/4,
(iii) If y € E, then y(X)=a*(X, X)i/4.

Proor. Assume Case II. Let b e R be given by Z=»bZ,,.

() Lety e 4"\ E. If y is compact, then 8y is also compact by Theorem 2. 1
and hence (y + 6y)(Z2)=0. If y is noncompact, then @y is also noncompact but
negative, and hence (y +6y)(Z)=ib—ib=0. Then y(X)=0 by Lemma 4.3 (i).

(i)-(iii) If y € £,, then Oy € —Z_ and hence y(Z + 02Z)=ib. Therefore y(X)
=ibN/R, and since 0 X = X, we then have —@y(X)= —ibN/R. But then by (4.4)

1 2i¢(X) 2i¢(X) 4bN
X, X _
( "= [ﬁez &9 zg_ (S C\] Ra?

s0o bN/R = —a?(X, X)/A.

5. The rank-one reduction.

Let x € ¥\ 22" and let g* be the subalgebra of g generated by the root
spaces g, and g_,. Let G* be the corresponding analytic subgroup of G. Then
G* is a simple Lie group of real rank one, and g*=¥®p* is a Cartan
decomposition, where *=fNg* and p*=pNg* Therefore K*=KNG* is a
maximal compact subgroup of G*. (For these well-known facts, see [3, pp. 407—
409].) Let m(a) denote the multiplicity of .

Lemma 5.1. In Case I, G*/K* is Hermitian symmetric if and only if m(a)=1,
and then g*=su(1,1). In Case II, G*/K* is Hermitian symmetric if and only if

a=4a; for some j € {1,...,r}, and then g*=su(n,1), where n=1+3m().

ProoF. According to classification the only rank one Hermitian symmetric
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spaces are SU (n,1)/S(U(n) x U(1)) (n € N). If G*/K* is Hermitian symmetric, it
follows therefore that g*=su (n, 1) for some n € N. In Case I, 2« is not a root,
and hence g*~su (1, 1). Obviously this happens if and only if m(«)=1. In Case
I1, if o is one of the roots $(x; +a;), then m(x)>1 and 2« ¢ Z, so g* cannot be
isomorphic to su (n, 1) for any n € N. On the other hand, if a =3a;, then m(2a)
=1, and therefore g* = su (n, 1) with n+ 1im(a) by the classification of real rank
one algebras.

Let [ € Z. We will determine the restriction of x, to K* and assume therefore
that K is not semisimple.
In Case II, g*=su(l1,1) and in this identification

2ic”'H, (i 0)
() \0 —i/’

By Remark 3.5

1 [(2ic™'Hy o ()
(Z,Z)( (0, ) ’Z) - j;, (0, )
1 if a=%(;—0))

i 0
(5.1) X,(expt(’ )) =l if q=q
0 —i o2l

lf Ot=2(0(,~+ocj) (l*]) .

and therefore

In Case II we have a=13o; and g*=su (n,1). Let 4, («) denote the set of
noncompact positive roots of tNg* in g% Note that the cardinality of 4,7 () is
n, and put

2iH,
yed (@) (‘)”V) '

Then, in the identification with su (n, 1), Z(a) is the diagonal matrix with i/n in
the first n entries and —i in the last entry. From (5.2) and (3.2) it follows that
Z—Z(a) € t,. Therefore

(5.2) Z(o) = %

(5.3) x(exptZ(w) = €.

6. A lemma concerning SU (n, 1).

Let G=KAN be the Iwasawa decomposition of G corresponding to Z*, and
define maps x: G — K and H: G — a by

x € x(x)exp H(x)N
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for x € G. Let g=%Y,.s+m(a)x and let N be the group opposite to N, ie.
Sz
reX*

Let di denote some Haar measure on N. Let n e N and k € ]0,00[. Let
Z,=NU{0}.

LemMMA 6.1. Assume G=SU (n, 1), and let § € Z* be the root for which 28 ¢ X.
Put v=3kp. Then the integral

(6.1) j e e Hy (3 (7)) dii

N
converges absolutely for all 1 € Z, and it is nonzero if and only if |l| ¢ k+n
+2Z,.

Proor. We have

U 0
K =
{(0 detU“’)

U 0 ,
X,<0 detU'1> = (detU) .

Ue U(n)}

and

We put H=E, ,.,+E,,, , where E;; denotes the n+1 square matrix with 1
on the i, jth entry and all other entries 0. With a=RH we get f{(H)=2 and ¢(H)
=n.

The root spaces are given as follows

9 = Ri(E, —Ey pi1+E i i —Epinse1)

n—1
G948 = {Z (szl,j+l—'Z_jEj+1,l+ZjEj+l,n+l+szn+l,j+l)l Zise o3 Lpy GC}

i=1

n—1
G-1p {Z (ZiE(,js1=ZiEjs 1,1 = ZiEjs1,ne1—ZiEn+1,j41) ' Zyye o 3Zp-1 € C}
ji=1

G- = Ri(El,l+El,n+l—En+l.l—En+l,n+l) .

From the first two of these equations it is easily seen that H(x) and yx,(»(x)) for
x € SU (n,1) can be computed as follows: Let n(x) denote the sum of the first
and the last element in the last row of x, then

H(x) = log|n(x)|H

Math. Scand. 54 — 19
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_(nx !
""”"”’"(lmxn) ‘

From the expressions for g_,, and g_y, it then follows that the integral (6.1)
except for a constant (nonzero) factor equals

~

k+n .
(6.2) J [ [(1+1]z2? +52] : (bﬂ:fi)“dsd:.
et JR 1 +|z]2 —is|

If n>1 we use polar coordinates in C"~! and get

il k+n 2 . —1
J .‘R [(1+r2)z+sz]—7(l+r —1s> dsr®n 3 dr

o . 1412 —is|

Let ¢, =[5 (1+r)7* 7 "*1r2"=3dr if n>1 and ¢,=1 (note that this integral
converges because k>0). Substitution of s=(1+r?)tgt if n>1 and s=tgt if
n=1 gives the following integral instead of (6.2):

/2

c, (costk*tn2efl dt

J =712
This integral can in fact be computed in terms of the gamma function since
k>n+1, and the result is

. nl(k+n—1)
"2 (L (k+n+ D) G (k+n—1)

(cf. [7, p. 158 (5-(N]). The lemma now follows since the denominator has
poles precisely when |l €e k+n+2Z,.

7. The main theorem.
Let A€ j& let my=A(iX) and

_ 2(Aw)

a (aj0t5)

(G=1,...,r.

J
Note that in Case I, mq=0.
ProposiTION 7.1. If A+ g, =0, then A is dominant integral (with respect to
c,A4%) if and only if the following three conditions hold:
() mg,my,...,m, are integers satisfying |mp|<m; < ...<m,.
(i) In Case L, if t* %0, then (—1)Y™=...=(—1)"
(iii) In Case II, (=)™ =(—1"=...=(—-1)™
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Proor. If t* =0 the statement is obvious. Assume t* +0 and Case I, then t*
ct,. Let f be a root of j in gc which is not supported on a and has restriction
3(o; o). Then necessarily f§ is a long root, and hence

2(A, B)
(7.1 — =1im,;+m).
Bp A mE™
The statement then follows from (7.1)-and Theorem 2.1.
Assume next Case II. From Lemma 4.6, if § is a root of j in g¢ and if f3|,
=3(a; +a;), then (7.1) holds again. On the other hand if f|,=3o; then

gil;/ﬁ — 2(Al“’ ﬁla) 2A(X)ﬁ(x) _ {lz(m,"i‘m()) lf ﬁ € ('*._::"
%(mi—‘m()) if /‘ € ('*E‘. .

BB BB XXBH

With that the proposition follows.

Assume now that = is a finite dimensional irreducible representation of G
having 4 as its highest weight. It is well known (cf. [9, Lemma 8.5.3]) that the
space of N-fixed vectors for 7 is invariant under M, and that this representation
d of M is irreducible. Note that 4);+ is a highest weight of 0.

THEOREM 7.2. The following three conditions are equivalent.

(i) Apnr,=0and (=1y"=.. .=(-1)™

(”) (sIMﬂK, is trivial.
(il) 7= has nonzero K-fixed vectors.

If these conditions hold, then 1t contains precisely the following one dimensional
K-types, each contained once:

In Case I: y, for l=—m;, —m; +2,...,m; —2,m,.

In Case 11: y,,..

Proor. First the equivalence of (i) and (ii) is proved. Obviously d is trivial on
(M N K,), if and only if A~y =0. We have

2niH i(4o;
(7.2) (5<exp m “') = exp (2_7[1'1;@_) = (=1

(o, &) (o), ;)

and from Proposition 4.5 it follows therefore that (i) and (ii) are equivalent.
Let v=p+ 4, € a* and let V be the representation space of 4. Consider the

principal series representation I§ , of G, the definition of which we recall:
Let CF, denote the space of V valued C™-functions fon G satisfying f(gman)
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=a ""¢S(m ") f(g) for all ge G, me M, ae A, and ne N. I} is then the
representation by left translation on this space.

For the opposite minimal parabolic subgroup P=MAN we definc similarly
I? as the representation of G on

Ch. = 1feC™G, V)| f(gman)
=a" "t (m Yf(g), Yge G, meM,ae A ne N} .

It is well known that 7 is equivalent to a subrepresentation of 1Y = (cf. [9,
Lemma 8.5.7]), and also that this subrepresentation can be realized as follows:
For each fe C!, and x € G the integral

Af(x) = f(xiydn
AR

is absolutely convergent and defines a G-homomorphism A4: Ci' . Cf . (cf.
[9, Section 8.10]), whose image is equivalent to = (cf. [S, p. 75]).

Let | € Z. By Frobenius reciprocity y, occurs in the K-decomposition of 17,
if and only if d =y, If x, occurs in 7 it also occurs in C}  and thercfore (iii)
implies (ii), and also yx, has multiplicity at most onc in 7.

Assume (ii). We will first detérmine the set of [ € Z such that o=y |y. In
Case I, mct; and hence é|p, =y,Iy, =1 for all € Z. By (4.3) and Lemma 4.1,
0=yl il and only if

1.3) S( 2niHy,) (c 2niH7’)
) exp-—-—“ ) =gplexp - -7
‘ P (Yjs)’i) X p (v,-.yi)

By (5.1) the right hand side of (7.3) is (—1)". Comparing with (7.2) we see that
d=yls if and only if | has the same parity as my,...,m,. In Case II, M is
connected, and since both ¢ and y, are trivial on M NK, it follows from
Lemma 4.3 that o=y, if and only if

dexptX) = ylexptX) forallteR.

However d(exptX)=e™" and y,(exptX)=¢" by Lemma 4.3 (iv). Therefore
0=ylum if and only if I=m,,.

Assume now that [ is such that 6=y, As mentioned y, then occurs in I} .
In fact, if we define for ge G

filg) = e~ el () "

then f, e C,ﬁ‘. and fi(k~'g)=yx,(k)f,(g) for k € K, g € G, so f, generates the K-
type x, in I} . Therefore n contains y, if and only if Af;+0.

From Iwasawa decomposition G = KAN it follows that Af,+0 if and only if
Af(e)%0, ie. if and only if
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(7.4) e WAty AN~ tdi % 0.
Jw

Note that if [=0, (7.4) is obvious. This implics that 7 contains the trivial K-type
%o If and only if § is trivial (this is the main step in the proof of Helgason’s
theorem, cf. [2, HII Corollary 3.87).

By the method of Gindikin and Karpelevi¢ (sec [9, Proof of Theorem
8.10.16]) the problem of proving (7.4) is reduced to the real rank-one case.
Thus (7.4) holds if and only if

(7.5) e trratmy, ) tdi £ 0
JN7

for all w e *\22*, where N*=G*NN.

When K* is semisimple (7.5) is clear, so we may assume that ¢*=su (n, 1) (cf.
Lemma S.1).

In Casc I, we have ¢*=su (1, 1) and g is determined by (5.1). If a=4(q;
—a;), then gl is trivial and (7.5) is obvious. If a=a;, then by Lemma 6.1 we
get that (7.5) holds precisely when

(7.6) 1] ¢ + 1+2Z, = m;+2N..
L)

(It is casily seen that the conclusion of Lemma 6.1 also holds for any group
covered by SU (n, 1), as long as yx, is well defined on this group.) Finally, if
a=}(a;+0;) we get that (7.5) holds when
7.7 121] ¢ t[”,o_:;’+ 142Z, = m+m;+2N..
By Proposition 7.1 (i), we see that (7.6) and (7.7) holds precisely when |l|Sm,,
and thus the theorem follows in Case I.

In Casc I we have o= jo; and y /- is determined by (5.3). From Lemma 6.1
we get that (7.5) holds when

| < 200, oc~) m;

- (al’ J .
However by our assumption that §=y|,, we have [=m,, and therefore (7.5)

holds by Proposition 7.1 (i).

ReMARK 7.3. From the proof of Lemma 6.1 it follows that the integral

c(v, ) =J‘ e~ oML Goa) = di
N
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for G=SU (n, 1) takes the following value

(7.8)

2~k ()l (k)
rGk+n+h)rik+n-n)-

Here dn is so normalized that ¢(g,0) equals one. From the proof of Theorem
7.2 it then follows that ¢(v, ) for arbitrary G can be given an explicit formula as
product of expressions like (7.8) and the usual factors in the product formula
for the c¢-function (cf. [1]).
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