ONE-DIMENSIONAL K-TYPES
IN FINITE DIMENSIONAL REPRESENTATIONS OF
SEMISIMPLE LIE GROUPS:
A GENERALIZATION OF HELGASON'S THEOREM

HENRIK SCHLICHTKRULL*

1. Introduction.

Let G be a semisimple connected noncompact real Lie group, and let K be a maximal compact subgroup. Let (π, V) be a finite dimensional irreducible representation of G. A renowned theorem due to S. Helgason gives the condition in terms of the highest weight of π under which π is class one. This means that V contains a nonzero vector fixed by $\pi(K)$, or in other words that π contains the trivial K-type in its decomposition into irreducible representations of K. In this paper we generalize this theorem to give a complete description in terms of the highest weight of π of all one-dimensional K-types contained in π.

Let $g = \mathfrak{t} \oplus \mathfrak{p}$ be a Cartan decomposition of the Lie algebra g of G, let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} and let j be a Cartan subalgebra of g containing \mathfrak{a}. Then $j = \mathfrak{t}^+ \oplus \mathfrak{a}$ where $\mathfrak{t}^+ = j \cap \mathfrak{t}$. Assume that G is contained in the complex simply connected Lie group with Lie algebra $g_{\mathbb{C}} = g + ig$. Since we are dealing only with finite dimensional representations of G this assumption causes no loss of generality. Choose compatible orderings of \mathfrak{a} and j, and let $\lambda \in j^\mathbb{C}$ be a complex linear form on j.

The precise content of Helgason’s theorem is as follows (cf. [2, III § 3]): If the restriction of λ to \mathfrak{t}^+ is zero and if for all positive roots α of \mathfrak{a} in g the number $(\lambda, \alpha)/(\alpha, \alpha)$ is a nonnegative integer, then λ is the highest weight of a finite dimensional class one representation of G, and all finite dimensional class one representations of G occur in this way.

If K is semisimple then the trivial representation is its only one-dimensional representation, and therefore no more can be said about one-dimensional K-types in π. However, if K is not semisimple, or equivalently if G/K is Hermitian symmetric, then there are other one-dimensional K-types than the trivial. It is for such groups G our generalization of Helgason’s theorem applies.

Received March 10, 1983.

* Partially supported by the Danish Natural Science Research Council.
Let \(t_1 = [t, t] \) be the semisimple part of \(t \). The condition on the highest weight \(\lambda \) of \(\pi \) for one-dimensional \(K \)-types to occur is very similar to that of Helgason's theorem: the restriction of \(\lambda \) to \(t^+ \cap t_1 \) has to be zero, and furthermore \(\lambda \) has to satisfy a certain integrality condition (see Theorem 7.2). The method of our investigation is by reduction to the rank-one case in the manner of S. G. Gindikin and F. I. Karpelevič ([1]).

The paper is organized as follows: First the restricted root theorem of C. C. Moore is stated. In Section 3 we study the structure of \(K \) and determine the complete set of one-dimensional \(K \)-types. In the next section the centralizer of \(a \) in \(K \) and its intersection with the semisimple part of \(K \) are considered. In Section 5 the rank-one subgroups of \(G \) are studied, and in the succeeding section we look upon \(SU(n, 1) \) \((n \geq 1)\), which are the only rank-one groups in which \(K \) is not semisimple. Finally in Section 7 the main theorem is stated and proved.

The problem of generalizing Helgason's theorem in this direction emerged in [8]. Though we will not go into that here we point out, that Theorem 7.2 in combination with the results of [8] can be applied to the construction of interesting unitary representations, in particular of some exceptional groups.

2. Root structure.

Let \(G \) be a connected real simple noncompact Lie group, and let \(g \) be its Lie algebra. Assume that \(G \subset G_C \), where \(G_C \) is a simply connected complex Lie group with Lie algebra \(g_C \). Let \(g = t \oplus p \) be a Cartan decomposition, and let \(K \) be the corresponding maximal compact subgroup of \(G \). Let \(t_1 = [t, t] \) and assume that \(t_1 \neq t \), that is \(G/K \) is Hermitian symmetric (cf. [3, Ch. VIII]).

Let \(t \) be a Cartan subalgebra of \(t \), then \(t \) is also a Cartan subalgebra of \(g \). Let \(\Delta \subset t^* \) consist of the roots of \(t \) in \(g \), and let \(g_\gamma \subset g_C \) for \(\gamma \in \Delta \) denote the \(\gamma \) root space. Let \(\Delta_c \), respectively \(\Delta_n \) be the set of compact, respectively noncompact roots, i.e. those roots \(\gamma \) for which \(g_\gamma \subset t_C \), respectively \(g_\gamma \subset p_C \). Then \(\Delta = \Delta_c \cup \Delta_n \).

Let \(z \) be the center of \(t \), then \(\dim z = 1 \). As is well-known, we can choose an element \(Z_0 \in z \) such that \(\gamma(Z_0) = \pm i \) for all \(\gamma \in \Delta_n \). Choose an ordering of \(\Delta \) such that

\[
\Delta_n^+ = \{ \gamma \in \Delta \mid \gamma(Z_0) = i \},
\]

where \(\Delta_n^+ = \Delta^+ \cap \Delta_n \). Let \(\Delta_c^+ = \Delta^+ \cap \Delta_c \).

For \(\varphi \in t_C \) let \(H_\varphi \in t_C \) be defined by \(\varphi(H) = (H_\varphi, H) \) for all \(H \in t \), where \((\cdot, \cdot) \) denotes the Killing form. Let \(\{ \gamma_1, \ldots, \gamma_r \} \subset \Delta_n \) be a maximal strongly orthogonal subset, such that \(\gamma_j \) is the highest element of \(\Delta_n \) strongly orthogonal to \(\{ \gamma_{j+1}, \ldots, \gamma_r \} \), for \(j = r, \ldots, 1 \) (cf. [3, p. 386]). Let
\[t^- = \sum_{j=1}^{r} RiH_{\gamma_j} \]

and

\[t^+ = \{ H \in t \mid \gamma_j(H) = 0, j=1, \ldots, r \} \]

then \(t = t^+ \oplus t^- \). Identify \(\gamma_j \) with its restriction to \(t^- \) (\(j = 1, \ldots, r \)).

Theorem 2.1. (C. C. Moore). The set of nonzero restrictions of the elements of \(\Delta^+ \) to \(t^- \) is one of the following two sets:

- Case I: \(\{ \gamma_i, \frac{1}{2}(\gamma_j \pm \gamma_k) \mid 1 \leq i \leq r, 1 \leq k < j \leq r \} \)
- Case II: \(\{ \frac{1}{2}\gamma_i, \frac{1}{2}(\gamma_j \pm \gamma_k) \mid 1 \leq i \leq r, 1 \leq k < j \leq r \} \).

Furthermore the nonzero restrictions of compact roots have the form \(\frac{1}{2}\gamma_i \) or \(\frac{1}{2}(\gamma_j - \gamma_k) \), and the restrictions of noncompact roots have the form \(\frac{1}{2}\gamma_i \), \(\gamma_i \) or \(\frac{1}{2}(\gamma_j + \gamma_k) \).

The roots \(\gamma_1, \ldots, \gamma_r \) do all belong to the set of longest roots in \(\Delta \). In Case II, only one root length occurs in \(\Delta \).

Unless when \(t^+ = 0 \), \(\gamma_1, \ldots, \gamma_r \) are the only restricted roots of multiplicity one.

Proof. This can be verified case by case from the diagrams [3, pp. 532–34], or it can be proved by combinatorial arguments, cf. [6].

Remark 2.2. In [4] it is shown that Case I is necessary and sufficient for \(G/K \) to be a tube domain. Here is the classification of the possible algebras \(g \) (cf. [3]):

- Case I: \(\text{su} (n, n) \) (\(n \geq 2 \)), \(\text{so} (n, 2) \) (\(n \geq 5 \)), \(\text{so}^* (4n) \) (\(n \geq 3 \)), \(\text{sp} (n, R) \) (\(n \geq 1 \)) and \(\varepsilon_{7(-25)} \).
- Case II: \(\text{su} (p, q) \) (\(q > p \geq 1 \)), \(\text{so}^* (4n+2) \) (\(n \geq 2 \)) and \(\varepsilon_{6(-14)} \).

Among these, \(t^+ = 0 \) only happens for \(\text{sp} (n, R) \) (\(n \geq 1 \)).

For each \(\gamma \in \Delta_n \), choose \(X_\gamma \in g_\gamma \setminus \{0\} \) subject to \(\bar{X}_\gamma = X_{-\gamma} \) and \(\gamma([X_\gamma, X_{-\gamma}]) = 2 \), where the bar denotes conjugation with respect to the real form \(g \) of \(g_\mathbb{C} \). Let

\[a = \sum_{j=1}^{r} R(X_{\gamma_j} + X_{-\gamma_j}) \]

then \(a \) is a maximal abelian subspace of \(p \). Let \(c \) be the automorphism of \(g_\mathbb{C} \) given by

\[c = \text{Ad} \exp \frac{\pi}{4} \sum_{j=1}^{r} (X_{\gamma_j} - X_{-\gamma_j}) \].
Then c maps it bijectively to a and fixes t^+ (cf. [4]).

Let $j = t^+ + a$ and let $c_\ast : t^+_C \to j_C$ denote the adjoint of $c^{-1} : j_C \to t_C$. Then $c_\ast \Delta$ consists of the roots of the Cartan subalgebra j of g. Let Σ denote the set of nonzero restrictions of $c_\ast \Delta$ to a, and let Σ^+ consists of the nonzero restrictions of $c_\ast \Delta^+$ to a. Let $\alpha_j = c_\ast \gamma_j$, then exchanging the γ's in Case I and II above with α's, we get the two possible forms of Σ^+.

3. The structure of K.

Let K_1 denote the analytic subgroup of K with Lie algebra t_1.

Lemma 3.1. Let Φ denote the set of simple roots for Δ^+, and let $s_\varphi \in \mathbb{R}$ for each $\varphi \in \Phi$. Then

$$\exp \left(\sum_{\varphi \in \Phi} s_\varphi \frac{2iH_\varphi}{(\varphi, \varphi)} \right) = e$$

if and only if $s_\varphi \in 2\pi \mathbb{Z}$ for all $\varphi \in \Phi$.

Proof. Let U be the analytic subgroup of G_C with Lie algebra $u = t + i u$. Then U is compact and simply connected, and t is a Cartan subalgebra of u. The lemma then follows from [9, Theorem 4.6.7].

Corollary 3.2. K_1 is simply connected.

Proof. It is easily seen that $\Phi \cap \Delta_c$ consists of the simple roots for Δ_c^+. From Lemma 3.1

$$\exp \left(\sum_{\varphi \in \Phi \cap \Delta_c} s_\varphi \frac{2iH_\varphi}{(\varphi, \varphi)} \right) = e$$

if and only if $s_\varphi \in 2\pi \mathbb{Z}$ for all $\varphi \in \Phi \cap \Delta_c$, and so K_1 is simply connected, again by [9, Theorem 4.6.7].

Let a denote the length of the longest roots in Δ. The short roots, if there are any, then have length $a/\sqrt{2}$.

Lemma 3.3 Let $t_\gamma \in \mathbb{R}$ for each $\gamma \in \Delta_n^+$ and let

$$x = \exp \left(\sum_{\gamma \in \Delta_n^+} t_\gamma \frac{2iH_\gamma}{(\gamma, \gamma)} \right).$$

Then $x \in K_1$ if and only if
\[\sum_{\gamma \in D^*_n} \frac{t_\gamma}{(\gamma, \gamma)} \in \frac{2\pi}{a^2} \mathbb{Z}. \]

Proof. Assume that \(x \in K_1 \). Since \(x \) centralizes \(t \cap t_1 \), which is a Cartan subalgebra of \(t_1 \), \(x = \exp Y \) for some \(Y \in t \cap t_1 \). Then

\[\exp \left(\sum_{\gamma \in \Phi} t_\gamma \frac{2iH_{\gamma}}{(\gamma, \gamma)} - Y \right) = e \]

and it follows from Lemma 3.1 that

\[\sum_{\gamma \in D^*_n} t_\gamma \frac{2iH_{\gamma}}{(\gamma, \gamma)} = \sum_{\varphi \in \Phi} s_{\psi} \frac{2iH_\varphi}{(\varphi, \varphi)} \]

for some \(s_\varphi \in 2\pi \mathbb{Z} \) (\(\varphi \in \Phi \)). Taking inner product with \(\frac{1}{2} Z_0 \) it follows that

\[\sum_{\gamma \in D^*_n} t_\gamma \frac{2iH_{\gamma}}{(\gamma, \gamma)} = \frac{s_\psi}{(\psi, \psi)} \in \frac{2\pi}{a^2} \mathbb{Z} \]

where \(\psi \) is the unique simple noncompact root.

Assume conversely that

\[t = \sum_{\gamma \in D^*_n} t_\gamma \frac{2iH_{\gamma}}{(\gamma, \gamma)} \]

Then

\[\sum_{\gamma \in D^*_n} t_\gamma \frac{2iH_{\gamma}}{(\gamma_1, \gamma_1)} - ta^2 \frac{2iH_{\gamma_1}}{(\gamma_1, \gamma_1)} \in t_1 \]

since it is orthogonal to \(Z_0 \). However

\[\exp \left(ta^2 \frac{2iH_{\gamma_1}}{(\gamma_1, \gamma_1)} \right) = e \]

by Lemma 3.1, and hence \(x \in K_1 \).

Let \(N = \sum_{\gamma \in D^*_n} a^2/(\gamma, \gamma) \), then \(N \) is the number of longest roots in \(D^*_n \) plus twice the number of short roots, if there are any. Define \(Z \in t \) by

\[Z = \frac{1}{N} \sum_{\gamma \in D^*_n} \frac{2iH_{\gamma}}{(\gamma, \gamma)}. \]

Proposition 3.4. Let \(t \in \mathbb{R} \)

(i) \(Z \in z \setminus \{0\} \),

(ii) \(\exp tZ \in K_1 \) if and only if \(t \in 2\pi \mathbb{Z} \).
PROOF. (i) From (3.1) it follows that

$$ (Z, Z_0) = -\frac{2}{a^2}. $$

Therefore $Z \neq 0$. Let $\varphi \in A^+_c$ and $\gamma \in A^+_n$. If $(\varphi, \gamma) = 0$ then γ contributes nothing to $\varphi(Z)$. If $(\varphi, \gamma) \neq 0$ then also the reflected root $\sigma_{\varphi, \gamma}$ is positive and noncompact since $\sigma_{\varphi, \gamma}(Z_0) = i$. From $(\varphi, \gamma + \sigma_{\varphi, \gamma}) = 0$ it then follows that $\varphi(Z) = 0$ for all $\varphi \in A^+_c$, and hence $Z \in z$.

(ii) follows immediately from Lemma 3.3.

Let $l \in \mathbb{Z}$, and define $\chi_l: K \to \mathbb{C}$ by $\chi_l(k) = 1$ for $k \in K_1$ and $\chi_l(\exp iZ) = e^{ilt}$ for $t \in \mathbb{R}$. From Proposition 3.4 we get that χ_l is a well defined one dimensional representation of K, and that all one dimensional representations of K have this form.

REMARK 3.5. In Case I, we can give a simpler formula for Z as follows

$$ Z = \frac{1}{r} \sum_{j=1}^r \frac{2iH_{jj}}{(\gamma_j, \gamma_j)}. $$

In fact, let Z' denote the right hand side of (3.3). Then $Z' \in z$ by Theorem 2.1, and $(Z, Z_0) = (Z', Z_0)$ from (3.2), so (3.3) follows. In particular we have $z \subset t^-$ in Case I (cf. also [4, Proposition 3.12]).

4. The structure of M.

Let M denote the centralizer of a in K, and let m be its Lie algebra. Then t^+ is a Cartan subalgebra of m. For any Lie group F, let F_0 denote its identity component. It is well-known (cf. [2, p. 75]) that

$$ (4.1) \quad M = M_0 \cdot (\exp \mathfrak{a} \cap K) $$

and also that if $H_\alpha \in \mathfrak{a}$ for $\alpha \in \mathfrak{a}^*$ is defined by $(H_\alpha, H) = \alpha(H)$ for all $H \in \mathfrak{a}$, then (cf. [2, p. 77])

$$ (4.2) \quad \{ H \in \mathfrak{a} \mid \exp iH \in K \} = \left\{ \sum_{\alpha \in \Sigma} s_\alpha \frac{H_\alpha}{(\alpha, \alpha)} \mid s_\alpha \in 2\pi \mathbb{Z} \text{ for all } \alpha \in \Sigma^+ \right\}. $$

From the description of Σ^+ by Theorem 2.1 it follows that (4.2) can be restated as follows:

$$ (4.3) \quad \{ H \in \mathfrak{a} \mid \exp iH \in K \} = \left\{ \sum_{j=1}^r s_j \frac{H_{jj}}{(\alpha_j, \alpha_j)} \mid s_j \in 2\pi \mathbb{Z} \text{ for } j = 1, \ldots, r \right\}. $$
Lemma 4.1.

\[\exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)} = \exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)} \]

for \(j = 1, \ldots, r. \)

Proof. There is a homomorphism \(\mathfrak{sl}(2, \mathbb{C}) \to \mathfrak{g}_C \) for which

\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix} \rightarrow \frac{2H_{\gamma_j}}{(\alpha_j, \alpha_j)} \quad \text{and} \quad
\begin{pmatrix}
i & 0 \\
0 & -i \\
\end{pmatrix} \rightarrow \frac{2iH_{\gamma_j}}{(\gamma_j, \gamma_j)}.
\]

The lemma then follows, since in \(SL(2, \mathbb{C}) \)

\[
\exp \pi \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \exp \pi \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

Lemma 4.2. In Case II, \(M \) is connected.

Proof. By (4.3) and Lemma 4.1, it suffices to prove that for \(j = 1, \ldots, r \):

\[\exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)} \in M_0. \]

Let \(\varphi \in \Delta^+ \) be a root whose restriction to \(t^- \) is \(\frac{1}{2}\gamma_j \). Then obviously \(H_{\gamma_j} - 2H_{\varphi} \in t^+ \). From Lemma 3.1 we have

\[\exp \left(2\pi \frac{2iH_{\varphi}}{(\varphi, \varphi)} \right) = e \]

and therefore

\[\exp \frac{2\pi i H_{\gamma_j}}{(\gamma_j, \gamma_j)} = \exp \frac{2\pi i}{a^2} (H_{\gamma_j} - 2H_{\varphi}) \in M_0. \]

Let \(W \) be the Weyl group of \(\Delta \), and let \(\theta = \sigma_{\gamma_1} \cdots \sigma_{\gamma_r} \in W \). Then \(\theta(S + T) = S - T \) for \(S \in t^+ \) and \(T \in t^- \). Let \(\Xi \subset \Delta^+ \) denote the set of roots whose restriction to \(t^- \) is \(\frac{1}{2}\gamma_j \) for some \(j \), and let \(\Xi_n = \Xi \cap \Delta_n \) and \(\Xi_c = \Xi \cap \Delta_c \). Note that \(\theta(\Xi_n) = -\Xi_n \), since if \(\xi \in \Xi_n \) with \(\xi|_{t^-} = \frac{1}{2}\gamma_j \), then \(\theta \xi = \xi - \gamma_j \in -\Xi_n \).

Let \(R \) denote the number of elements of \(\Xi_n \) (or \(\Xi_c \)). Define \(X \in t \) by \(X(0) = 0 \) in Case I and in Case II:

(4.4) \[X = \frac{1}{R} \left[\sum_{\xi \in \Xi_n} \frac{2iH_{\xi}}{(\xi, \xi)} - \sum_{\xi \in \Xi_c} \frac{2iH_{\xi}}{(\xi, \xi)} \right]. \]
Lemma 4.3. In Case II, the following holds:

(i) \(Z + \theta Z = \frac{R}{N} X \).

(ii) \(X \in t^+, X \perp t^+ \cap t_1 \).

(iii) \(X \neq 0 \).

(iv) \(Z - X \in t_1 \).

(v) \(\text{For } t \in \mathbb{R}: \exp t X \in K_1 \text{ if and only if } t \in 2\pi \mathbb{Z} \).

Proof. (i) is clear from (4.4) since \(\theta(\Xi_n) = -\Xi_c \).

(ii) follows from (i). From (4.4) it follows that

(4.5) \((X, Z_0) = -\frac{2}{a^2} \)

and from this (iii) is obvious.

(iv) follows from (4.5) and (3.2).

(v) is obvious from (iv) and Proposition 3.4 (ii).

Note that it follows that \(z \notin t^- \) in Case II (cf. also [4, Section 4]).

Lemma 4.4. In Case II, \(M \cap K_1 \) is connected.

Proof. Since \(M \) is connected and \(m = (m \cap t_1) \oplus \mathbb{R} X \) by the preceding lemmas, it suffices to prove that \(\exp \mathbb{R} X \cap K_1 \subset (M \cap K_1)_0 \). By Lemma 4.3 (v) it then suffices to prove that \(\exp 2\pi X \in (M \cap K_1)_0 \).

Choose \(\xi \in \Xi_n \) then \(0 \xi \in A_c \). Therefore \((H_{\xi} + \theta H_{\xi}, Z_0) = i \), and from (4.5) it follows that

\(X - \frac{2i}{a^2} (H_{\xi} + \theta H_{\xi}) \in t^+ \cap t_1 \).

However, by Lemma 3.1

\[\exp \left[\frac{2i}{a^2} (H_{\xi} + \theta H_{\xi}) \right] = e \]

and hence \(\exp 2\pi X \in \exp t^+ \cap t_1 \).

We can now state an analogue of (4.1) and (4.3).
PROPOSITION 4.5. (i) \(M \cap K_1 = (M \cap K_1)_0 \exp i a \cap K_1. \)

(ii) \[\{ H \in a \left| \exp iH \in K_1 \} \]
\[= \left\{ \sum_{j=1}^{r} s_j \frac{H_{s_j}}{(s_j, s_j)} : s_j \in 2\pi \mathbb{Z} \text{ for } j = 1, \ldots, r \text{ and } \sum_{j=1}^{r} s_j \in 4\pi \mathbb{Z} \right\} \].

PROOF. (i) In Case I, \(M_0 \subset K_1 \) and hence \((M \cap K_1)_0 = M_0. \) Therefore (i) follows from (4.1). In Case II (i) is obvious from Lemma 4.4.

(ii) follows from (4.3), Lemma 4.1, and Lemma 3.3.

Later on, we need the following lemma:

LEMMA 4.6. (i) If \(\gamma \in A^+ \setminus \Xi, \) then \(\gamma(X) = 0. \)

(ii) If \(\gamma \in \Xi_m, \) then \(\gamma(X) = -a^2(X, X)i/4, \)

(iii) If \(\gamma \in \Xi_c, \) then \(\gamma(X) = a^2(X, X)i/4. \)

PROOF. Assume Case II. Let \(b \in \mathbb{R} \) be given by \(Z = bZ_0. \)

(i) Let \(\gamma \in A^+ \setminus \Xi. \) If \(\gamma \) is compact, then \(\theta \gamma \) is also compact by Theorem 2.1, and hence \((\gamma + \theta \gamma)(Z) = 0. \) If \(\gamma \) is noncompact, then \(\theta \gamma \) is also noncompact but negative, and hence \((\gamma + \theta \gamma)(Z) = ib - ib = 0. \) Then \(\gamma(X) = 0 \) by Lemma 4.3 (i).

(ii)–(iii) If \(\gamma \in \Xi_m, \) then \(\theta \gamma \in -\Xi_c \) and hence \(\gamma(Z + \theta Z) = ib. \) Therefore \(\gamma(X) = ibN/R, \) and since \(\theta X = X, \) we then have \(-\theta \gamma(X) = -ibN/R. \) But then by (4.4)
\[
(X, X) = \frac{1}{R} \left[\sum_{\xi \in \Xi_a} \frac{2i \xi(X)}{(\xi, \xi)} - \sum_{\xi \in \Xi_c} \frac{2i \xi(X)}{(\xi, \xi)} \right] = -\frac{4bN}{Ra^2}
\]
so \(bN/R = -a^2(X, X)/4. \)

5. The rank-one reduction.

Let \(\alpha \in \Sigma^+ \setminus 2\Sigma^+ \) and let \(g^\alpha \) be the subalgebra of \(g \) generated by the root spaces \(g_{\alpha} \) and \(g_{-\alpha}. \) Let \(G^\alpha \) be the corresponding analytic subgroup of \(G. \) Then \(G^\alpha \) is a simple Lie group of real rank one, and \(g^\alpha = \mathfrak{l}^\alpha \oplus p^\alpha \) is a Cartan decomposition, where \(\mathfrak{l}^\alpha = \mathfrak{l} \cap g^\alpha \) and \(p^\alpha = p \cap g^\alpha. \) Therefore \(K^\alpha = K \cap G^\alpha \) is a maximal compact subgroup of \(G^\alpha. \) (For these well-known facts, see [3, pp. 407–409].) Let \(m(\alpha) \) denote the multiplicity of \(\alpha. \)

LEMMA 5.1. In Case I, \(G^\alpha/K^\alpha \) is Hermitian symmetric if and only if \(m(\alpha) = 1, \)
and then \(g^\alpha \cong su(1, 1). \) In Case II, \(G^\alpha/K^\alpha \) is Hermitian symmetric if and only if \(\alpha = \frac{1}{2} \alpha_j \) for some \(j \in \{1, \ldots, r\}, \) and then \(g^\alpha \cong su(n, 1), \) where \(n = 1 + \frac{1}{2}m(\alpha). \)

PROOF. According to classification the only rank one Hermitian symmetric
spaces are $SU(n, 1)/S(U(n) \times U(1)) \ (n \in \mathbb{N})$. If G^x/K^x is Hermitian symmetric, it follows therefore that $g^x \cong su(n, 1)$ for some $n \in \mathbb{N}$. In Case I, $2x$ is not a root, and hence $g^x \cong su(1, 1)$. Obviously this happens if and only if $m(x) = 1$. In Case II, if x is one of the roots $\frac{1}{2}(x_i \pm x_j)$, then $m(x) > 1$ and $2x \notin \Sigma$, so g^x cannot be isomorphic to $su(n, 1)$ for any $n \in \mathbb{N}$. On the other hand, if $x = \frac{1}{2}x_j$, then $m(2x) = 1$, and therefore $g^x \cong su(n, 1)$ with $n + \frac{1}{2}m(x)$ by the classification of real rank one algebras.

Let $l \in \mathbb{Z}$. We will determine the restriction of χ_l to K^x, and assume therefore that K^x is not semisimple.

In Case II, $g^x \cong su(1, 1)$ and in this identification
\[
\frac{2ic^{-1}H_x}{(x, x)} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
\]
By Remark 3.5
\[
\frac{1}{(Z, Z)} \left(\frac{2ic^{-1}H_x^i}{(x, x)}, Z \right) = \sum_{j=1}^{r} \frac{(x, x_j)}{(x, x)}
\]
and therefore
\[
\chi_l \left(\exp \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right) = \begin{cases} 1 & \text{if } x = \frac{1}{2}(x_i - x_j) \\ e^{ilt} & \text{if } x = x_i \\ e^{i2lt} & \text{if } x = \frac{1}{2}(x_i + x_j) \ (i \neq j) \end{cases}.
\]

In Case II we have $x = \frac{1}{2}x_j$ and $g^x \cong su(n, 1)$. Let $\Delta_{n}^+(x)$ denote the set of noncompact positive roots of $\mathfrak{t} \cap g^x$ in g^x. Note that the cardinality of $\Delta_{n}^+(x)$ is n, and put
\[
Z(x) = \frac{1}{n} \sum_{\gamma \in \Delta_{n}^+(x)} \frac{2iH_{\gamma \gamma}}{(\gamma, \gamma)}.
\]
Then, in the identification with $su(n, 1)$, $Z(x)$ is the diagonal matrix with i/n in the first n entries and $-i$ in the last entry. From (5.2) and (3.2) it follows that $Z - Z(x) \in \mathfrak{t}_1$. Therefore
\[
\chi_l(\exp t Z(x)) = e^{ilt}.
\]

6. A lemma concerning $SU(n, 1)$.

Let $G = KAN$ be the Iwasawa decomposition of G corresponding to Σ^+, and define maps $\kappa: G \to K$ and $H: G \to a$ by
\[
x \in \kappa(x) \exp H(x)N
\]
for \(x \in G \). Let \(g = \frac{1}{2} \sum x \in \Sigma^* m(x) x \) and let \(\hat{N} \) be the group opposite to \(N \), i.e.

\[
\hat{N} = \exp \left(\sum_{x \in \Sigma^*} g_x \right).
\]

Let \(d\hat{n} \) denote some Haar measure on \(\hat{N} \). Let \(n \in N \) and \(k \in]0, \infty[\). Let \(\mathbb{Z}_+ = N \cup \{0\} \).

Lemma 6.1. Assume \(G = SU(n, 1) \), and let \(\beta \in \Sigma^+ \) be the root for which \(2\beta \notin \Sigma \). Put \(v = \frac{1}{2} k \beta \). Then the integral

\[
\int_{\hat{N}} e^{-v \cdot g, H(\hat{n})} \chi_l(\kappa(\hat{n})) d\hat{n}
\]

converges absolutely for all \(l \in \mathbb{Z} \), and it is nonzero if and only if \(|l| \notin k + n + 2\mathbb{Z}_+ \).

Proof. We have

\[
K = \left\{ \begin{pmatrix} U & 0 \\ 0 & \det U^{-1} \end{pmatrix} \left| U \in U(n) \right. \right\}
\]

and

\[
\chi_l \left(\begin{pmatrix} U & 0 \\ 0 & \det U^{-1} \end{pmatrix} \right) = (\det U)^l.
\]

We put \(H = E_{1, n+1} + E_{n+1, 1} \), where \(E_{ij} \) denotes the \(n+1 \) square matrix with 1 on the \(i,j \)'th entry and all other entries 0. With \(a = RH \) we get \(\beta(H) = 2 \) and \(\varrho(H) = n \).

The root spaces are given as follows

\[
\varrho_{\beta} = \text{Ri}(E_{1,1} - E_{1,n+1} + E_{n+1,1} - E_{n+1,n+1})
\]

\[
\varrho_{\frac{1}{2}\beta} = \left\{ \sum_{j=1}^{n} (z_j E_{1,j+1} - \bar{z}_j E_{j+1,1} + \bar{z}_j E_{j+1,n+1} + z_j E_{n+1,j+1}) \bigg| z_1, \ldots, z_{n-1} \in \mathbb{C} \right\}
\]

\[
\varrho_{-\frac{1}{2}\beta} = \left\{ \sum_{j=1}^{n} (z_j E_{1,j+1} - \bar{z}_j E_{j+1,1} - \bar{z}_j E_{j+1,n+1} - z_j E_{n+1,j+1}) \bigg| z_1, \ldots, z_{n-1} \in \mathbb{C} \right\}
\]

\[
\varrho_{-\beta} = \text{Ri}(E_{1,1} + E_{1,n+1} - E_{n+1,1} - E_{n+1,n+1}).
\]

From the first two of these equations it is easily seen that \(H(x) \) and \(\chi_l(\kappa(x)) \) for \(x \in SU(n, 1) \) can be computed as follows: Let \(\eta(x) \) denote the sum of the first and the last element in the last row of \(x \), then

\[
H(x) = \log|\eta(x)|H
\]
\[\chi_i(\kappa(x)) = \left(\frac{\eta(x)}{|\eta(x)|} \right)^{-1}. \]

From the expressions for \(q_{-1/\theta} \) and \(q_{-\theta} \), it then follows that the integral (6.1) except for a constant (nonzero) factor equals

\[(6.2) \quad \int_{\mathbb{C}^{n-1}} \int_{\mathbb{R}} \left[(1 + |z|^2)^2 + s^2 \right]^{-\frac{k+n}{2}} \left(\frac{1 + |z|^2 - is}{|1 + |z|^2 - is|} \right)^{-1} dsdz. \]

If \(n > 1 \) we use polar coordinates in \(\mathbb{C}^{n-1} \) and get

\[\int_0^\infty \int_{\mathbb{R}} \left[(1 + r^2)^2 + s^2 \right]^{-\frac{k+n}{2}} \left(\frac{1 + r^2 - is}{|1 + r^2 - is|} \right)^{-1} dsr^{2n-3} dr. \]

Let \(c_n = \int_0^\infty (1 + r^2)^{-k-n+1}r^{2n-3} dr \) if \(n > 1 \) and \(c_1 = 1 \) (note that this integral converges because \(k > 0 \)). Substitution of \(s = (1 + r^2)t^2 \) if \(n > 1 \) and \(s = t^2 \) if \(n = 1 \) gives the following integral instead of (6.2):

\[c_n \int_{-\pi/2}^{\pi/2} (\cos t)^{k+n-2}e^{it} dt. \]

This integral can in fact be computed in terms of the gamma function since \(k > n + 1 \), and the result is

\[c_n 2^{k+n-2} \Gamma\left(\frac{1}{2}(k+n+1)\right)\Gamma\left(\frac{1}{2}(k+n-l)\right) \]

(cf. [7, p. 158 (5)-(7)]). The lemma now follows since the denominator has poles precisely when \(|l| \in k+n+2\mathbb{Z} \).

7. The main theorem.

Let \(\lambda \in \mathcal{X} \), let \(m_0 = \lambda(iX) \) and

\[m_j = \frac{2(\lambda, x_j)}{(x_j, x_j)} \quad (j = 1, \ldots, r). \]

Note that in Case I, \(m_0 = 0 \).

Proposition 7.1. If \(\lambda|_{\Gamma \cap \Gamma_1} = 0 \), then \(\lambda \) is dominant integral (with respect to \(c_{\mathcal{X}}\Delta^+ \)) if and only if the following three conditions hold:

(i) \(m_0, m_1, \ldots, m_r \) are integers satisfying \(|m_0| \leq m_1 \leq \ldots \leq m_r \).

(ii) In Case I, if \(t^+ \neq 0 \), then \((-1)^{m_1} = \ldots = (-1)^{m_r} \).

(iii) In Case II, \((-1)^{m_0} = (-1)^{m_1} = \ldots = (-1)^{m_r} \).
Proof: If \(t^+ = 0 \) the statement is obvious. Assume \(t^+ \neq 0 \) and Case I, then \(t^+ \subset t_1 \). Let \(\beta \) be a root of \(j \) in \(\mathfrak{g}_C \) which is not supported on \(\alpha \) and has restriction \(\frac{1}{2}(\alpha_i \pm \alpha_j) \). Then necessarily \(\beta \) is a long root, and hence

\[
2(\lambda, \beta) = \frac{1}{2}(m_i \pm m_j).
\]

The statement then follows from (7.1) and Theorem 2.1.

Assume next Case II. From Lemma 4.6, if \(\beta \) is a root of \(j \) in \(\mathfrak{g}_C \) and if \(\beta|_{\alpha} = \frac{1}{2}(\alpha_i \pm \alpha_j) \), then (7.1) holds again. On the other hand if \(\beta|_{\alpha} = \frac{1}{2}\alpha_i \) then

\[
\frac{2(\lambda, \beta)}{(\beta, \beta)} = \frac{2(\lambda|_\alpha, \beta|_\alpha)}{(\beta, \beta)} + \frac{2\lambda(X)\beta(X)}{(X, X)(\beta, \beta)} = \begin{cases}
\frac{1}{2}(m_i + m_0) & \text{if } \beta \in E \, \Xi_n, \\
\frac{1}{2}(m_i - m_0) & \text{if } \beta \in E_c \, \Xi_c.
\end{cases}
\]

With that the proposition follows.

Assume now that \(\pi \) is a finite dimensional irreducible representation of \(G \) having \(\lambda \) as its highest weight. It is well known (cf. [9, Lemma 8.5.3]) that the space of \(N \)-fixed vectors for \(\pi \) is invariant under \(M \), and that this representation \(\delta \) of \(M \) is irreducible. Note that \(\lambda|_{t^+} \) is a highest weight of \(\delta \).

Theorem 7.2. The following three conditions are equivalent.

(i) \(\lambda|_{t^+ \cap t_1} = 0 \) and \((-1)^{m_1} = \ldots = (-1)^{m_r} \).

(ii) \(\delta|_{M \cap K_1} \) is trivial.

(iii) \(\pi \) has nonzero \(K_1 \)-fixed vectors.

If these conditions hold, then \(\pi \) contains precisely the following one dimensional \(K_1 \)-types, each contained once:

In Case I: \(\chi_l \) for \(l = -m_1, -m_1 + 2, \ldots, m_1 - 2, m_1 \).

In Case II: \(\chi_{m_0} \).

Proof. First the equivalence of (i) and (ii) is proved. Obviously \(\delta \) is trivial on \((M \cap K_1)_0 \) if and only if \(\lambda|_{t^+ \cap t_1} = 0 \). We have

\[
\delta\left(\exp \frac{2\pi i H_j}{(\alpha_j, \alpha_j)}\right) = \exp \left(\frac{2\pi i (\lambda, \alpha_j)}{(\alpha_j, \alpha_j)}\right) = (-1)^{m_i},
\]

and from Proposition 4.5 it follows therefore that (i) and (ii) are equivalent.

Let \(\nu = g + \lambda|_\alpha \in \mathfrak{a}^* \) and let \(V \) be the representation space of \(\delta \). Consider the principal series representation \(I_{\delta, \nu} \) of \(G \), the definition of which we recall:

Let \(C_G^p \) denote the space of \(V \)-valued \(C_\infty \)-functions \(f \) on \(G \) satisfying \(f(\text{gman}) \).
\[= a^{-\tau - \epsilon \delta(m^{-1})} f(g) \quad \text{for all } g \in G, \; m \in M, \; a \in A, \; \text{and } n \in N. \]

For the opposite minimal parabolic subgroup \(\bar{P} = MA \hat{N} \) we define similarly \(l_{\delta, \nu}^P \) as the representation of \(G \) on
\[C_{\delta, \nu}^P \ = \ \{ f \in C^\infty(G, V) \mid f(g \epsilon \alpha) = a^{-\nu + \epsilon \delta(m^{-1})} f(g), \; \forall g \in G, \; m \in M, \; a \in A, \; \alpha \in \hat{N} \} . \]

It is well known that \(\pi \) is equivalent to a subrepresentation of \(l_{\delta, \nu}^P \) (cf. [9, Lemma 8.5.7]), and also that this subrepresentation can be realized as follows:

For each \(f \in C_{\delta, \nu}^P \) and \(x \in G \) the integral
\[Af(x) = \int_N f(x \alpha \bar{n}) d\bar{n} \]
is absolutely convergent and defines a \(G \)-homomorphism \(A : C_{\delta, \nu}^P \rightarrow C_{\delta, \nu}^P \) (cf. [9, Section 8.10]), whose image is equivalent to \(\pi \) (cf. [5, p. 75]).

Let \(l \in \mathbb{Z} \). By Frobenius reciprocity \(\chi_l \) occurs in the \(K \)-decomposition of \(l_{\delta, \nu}^P \) if and only if \(\delta = \chi_l | M \). If \(\chi_l \) occurs in \(\pi \) it also occurs in \(C_{\delta, \nu}^P \) and therefore (iii) implies (ii), and also \(\chi_l \) has multiplicity at most one in \(\pi \).

Assume (ii). We will first determine the set of \(l \in \mathbb{Z} \) such that \(\delta = \chi_l | M \). In Case I, \(m \subset t_1 \) and hence \(\delta | M_o = \chi_l | M_o = 1 \) for all \(l \in \mathbb{Z} \). By (4.3) and Lemma 4.1, \(\delta = \chi_l | M \) if and only if
\[\delta \left(\exp \frac{2\pi i H_{\gamma_l}}{(\gamma_l, \gamma_l)} \right) = \chi_l \left(\exp \frac{2\pi i H_{\gamma_l}}{(\gamma_l, \gamma_l)} \right) . \]

By (5.1) the right hand side of (7.3) is \((-1)^l\). Comparing with (7.2) we see that \(\delta = \chi_l | M \) if and only if \(l \) has the same parity as \(m_1, \ldots, m_r \). In Case II, \(M \) is connected, and since both \(\delta \) and \(\chi_l \) are trivial on \(M \cap K_1 \) it follows from Lemma 4.3 that \(\delta = \chi_l | M \) if and only if
\[\delta(\exp t X) = \chi_l(\exp t X) \quad \text{for all } t \in \mathbb{R} . \]

However \(\delta(\exp t X) = e^{im \theta} \) and \(\chi_l(\exp t X) = e^{it \theta} \) by Lemma 4.3 (iv). Therefore \(\delta = \chi_l | M \) if and only if \(l = m_0 \).

Assume now that \(l \) is such that \(\delta = \chi_l | M \). As mentioned \(\chi_l \) then occurs in \(l_{\delta, \nu}^P \).

In fact, if we define for \(g \in G \)
\[f_l(g) = e^{-(\nu + \epsilon \delta(H_l(g)))} \chi_l(g)^{-1} , \]
then \(f_l \in C_{\delta, \nu}^P \) and \(f_l(k^{-1}g) = \chi_l(k) f_l(g) \) for \(k \in K, \; g \in G \), so \(f_l \) generates the \(K \)-type \(\chi_l \) in \(l_{\delta, \nu}^P \). Therefore \(\pi \) contains \(\chi_l \) if and only if \(Af_l \neq 0 \).

From Iwasawa decomposition \(G = KA \hat{N} \) it follows that \(Af_l \neq 0 \) if and only if \(Af_l(v) \neq 0 \), i.e. if and only if
\[(7.4) \quad \int_{\bar{N}} e^{-(v+\varphi(H(l)) \chi_l(\bar{\bar{n}}))^{-1} d\bar{n} \neq 0}.
\]

Note that if \(l = 0\), (7.4) is obvious. This implies that \(\pi\) contains the trivial \(K\)-type \(\chi_0\) if and only if \(\delta\) is trivial (this is the main step in the proof of Helgason’s theorem, cf. [2, III Corollary 3.8]).

By the method of Gindikin and Karpelević (see [9, Proof of Theorem 8.10.16]) the problem of proving (7.4) is reduced to the real rank-one case. Thus (7.4) holds if and only if

\[(7.5) \quad \int_{N'} e^{-(v+\varphi(H(l)) \chi_l(\bar{n})}^{-1} d\bar{n} \neq 0 \]

for all \(\bar{\bar{\alpha}} \in \Sigma^+ \setminus 2\Sigma^+\), where \(\bar{\bar{N}} = G^\alpha \cap N\).

When \(K^\alpha\) is semisimple (7.5) is clear, so we may assume that \(g^\alpha = so(n,1)\) (cf. Lemma 5.1).

In Case I, we have \(g^\alpha = su(n,1)\) and \(\chi_l|_{K^\alpha}\) is determined by (5.1). If \(\alpha = \frac{1}{2}(\alpha_i - \alpha_j)\), then \(\chi_l|_{K^\alpha}\) is trivial and (7.5) is obvious. If \(\alpha = \alpha_j\), then by Lemma 6.1 we get that (7.5) holds precisely when

\[(7.6) \quad \|l\| \not\equiv \frac{2(v,\alpha)}{\langle \alpha, \alpha \rangle} + 1 + 2\mathbb{Z}_+ = m_i + 2\mathbb{N}.
\]

(It is easily seen that the conclusion of Lemma 6.1 also holds for any group covered by \(SU(n,1)\), as long as \(\chi_l\) is well defined on this group.) Finally, if \(\alpha = \frac{1}{2}(\alpha_i + \alpha_j)\) we get that (7.5) holds when

\[(7.7) \quad \|2l\| \not\equiv \frac{2(v,\alpha)}{\langle \alpha, \alpha \rangle} + 1 + 2\mathbb{Z}_+ = m_i + m_j + 2\mathbb{N}.
\]

By Proposition 7.1 (i), we see that (7.6) and (7.7) holds precisely when \(\|l\| \leq m_1\), and thus the theorem follows in Case I.

In Case II we have \(\alpha = \frac{1}{2} \alpha_j\) and \(\chi_l|_{K^\alpha}\) is determined by (5.3). From Lemma 6.1 we get that (7.5) holds when

\[\|l\| \leq \frac{2(\beta_j,\alpha_j)}{\langle \alpha_j, \alpha_j \rangle} = m_j.
\]

However by our assumption that \(\delta = \chi|_M\) we have \(l = m_0\), and therefore (7.5) holds by Proposition 7.1 (i).

Remark 7.3. From the proof of Lemma 6.1 it follows that the integral

\[c(v, l) = \int_{\bar{N}} e^{-(v+\varphi(H(l)) \chi_l(\bar{n})^{-1} d\bar{n}}
\]
for $G = \text{SU}(n, 1)$ takes the following value

$$
(7.8) \quad \frac{2^{n-k} \Gamma(n) \Gamma(k)}{\Gamma(\frac{1}{2}(k+n+l)) \Gamma(\frac{1}{2}(k+n-l))}.
$$

Here \tilde{d}^i is so normalized that $c(g, 0)$ equals one. From the proof of Theorem 7.2 it then follows that $c(v, l)$ for arbitrary G can be given an explicit formula as product of expressions like (7.8) and the usual factors in the product formula for the c-function (cf. [1]).

Acknowledgements. The author is grateful to D. Vogan and H. P. Jakobsen for helpful discussions.

References