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PROJECTIONS AND REFLECTIONS
OF GENERIC SURFACES IN R?

J. W. BRUCE

In this article we describe a technique for investigating the differential
geometry of generic surfaces in Euclidean space R3. More precisely we are
concerned with the study of differential geometric properties of embedded
surfaces which hold for a residual set of such embeddings. For a general
reference on generic geometry the reader is recommended Wall’s excellent
survey article [10]. Indeed this technique is related to Theorem D of Wall’s
paper.

The method differs from the, by now, standard approaches described in [10],
where each different geometrical study requires a different transversality
theorem. Here we prove one transversality result, which hopefully covers every
case for which the standard methods work. The price one pays for this is that
each new situation requires some special computations. In a sense this makes
our approach rather inelegant, but it does seem quite a useful method for
investigating new geometric phenomena. (We have used it for considering the
geometry of wavefront evolution and generic isotopies of curves, where the
standard methods do not appear to work.) We hope its lack of sophistication is
another attraction, with the methods employed easier to understand for the

_non expert than the standard ones.

In section 1 we describe the method and prove the transversality theorem.
We illustrate its use in section 2 by considering the contact of surfaces with
spheres, obtaining a result here which one cannot obtain using the standard
methods. In section 3 we show how the technique can be used to obtain a
classification of the local normal forms of projections of generic surfaces onto
planes. The resulting list was first obtained by Gaffney and Ruas (unpublished)
and later by Arnold [1] using entirely different methods. Our derivation is
along the lines of Gaffney and Ruas original method. It has the attraction
however of being, at least initially, elementary. Using our technique and
explicit changes of co-ordinates we can produce local forms up to some order.
We then need to use some deep results of du Plessis to deduce that these are in
fact smooth normal forms. (For the fascinating relationship of these projection
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with classical differential geometry and a wealth of interesting results the
reader is referred to Gaffney’s article in [5], and a forthcoming paper by
Gaffney and Ruas. We must stress that our purpose here is merely to give a
fairly rapid derivation of a list of normal forms.)

Finally in section 4 we study the infinitesimal reflective symmetry of surface
by considering a natural family of fold maps on R? (those obtained from the
fold (x,y,z) — (x,y%,z) by varying the reflecting plane y=0) and their
restriction to surfaces in R3. In this section again we content ourselves with
obtaining a list of local normal forms. Pictures of the normal formas and a
discussion of the associated geometry will follow in a later paper. A more
extensive list of normal forms, containing ours, has been obtained by Mond in
his Liverpool Ph. D. thesis, in connection with the problem of projecting
surfaces in R* into R3.

The author would like to thank Andrew du Plessis for his invaluable help in
computing degrees of determinacy of the normal forms appearing in section 3.
I would also like to thank Terry Gaffney for many stimulating discussions. I
would also like to thank the referee for many valuable comments.

1. Monge-Taylor Expansions.

In the study of the generic geometry of smooth submanifolds of Euclidean
space the most difficult and most interesting ingredient is usually the local
geometry. The geometry of a submanifold at some point will be determined,
generically, by the infinitesimal information concerning the embedding of the
manifold stored at that point. Moreover one will only need to consider the
infinitesimal information up to some fixed order. (All of this will be made more
precise later on.)

How then can be store this information? Let M =R* be a compact surface.
At each point p € M we can choose mutually perpendicular co-ordinate axes
(x, y, z) with the z-axis in the normal direction at p. Locally M can be written as
the graph of a function z =f(x, y), i.e. in Monge form. Infinitesimal information
can then be deduced from the Taylor expansion of f (the Monge-Taylor
expansion of M at p). Of course there is a problem here: the choice of co-
ordinates is not unique. Moreover usually it is not possible to choose a set of
co-ordinates for each point p e M which vary smoothly with p. These
problems are easily circumvented, however. Our underlying idea is the
following.

In considering the geometry of M the conditions for the point p to have
some geometric property will impose conditions on the coefficients appearing
in the Monge-Taylor expansion. We have a 2-parameter family of such
expansions, so clearly we can expect any property involving <2 conditions to
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occur generically, while any property involving =3 conditions one would hope
would not so occur. The rest of this section is devoted to proving this assertion.

Give R3 an orientation and let M <R3 be a smooth compact surface, with
outward normal vector field n. Cover M with finitely may open sets U; each
possessing a smooth unit vector field v, On each U, there is a third unit vector
field w; with the property that v;(p), w;(p), n(p) form a positively oriented triple
at each p € U, (this determines w; uniquely).

If V, denotes the vector space of polynomials in x and y of degree <k and
=2 we have smooth maps 6;: U; — V¥, defined as follows. At each point p € U,
let the three co-ordinate axes x,y,z be chosen to coincide with the oriented
lines determined by v;(p), w;(p), n(p) respectively. Writing M near p as z
=f,(x,y) we can associate to p the Taylor expansion of f, truncated to degree
k, which we write j"f‘D € V. The non-uniqueness of the polynomial j“fp is clearly
due to our initial choice of vector field v;, indeed j*f, obviously also depends on
the subscript i, we obtain different polynomials for points p in distinct U;’s.
However the different choices of x and y axes at such a point p are related by a
change of co-ordinates via an element of the special orthogonal group SO (2).
Now this group SO (2) acts on the space of polynomials ¥, via its variables.
Suppose that X <V} is an SO (2) invariant submanifold. Clearly the condition
that 6;: U; — V, is transverse to X at p is independent of the particular U,
chosen; indeed it is independent of the covering chosen for M.

THeOREM 1. Let X <V, be an SO (2) invariant submanifold. For a dense set of
embeddings of M in R® the mappings 0,: U; — V, are transverse to X.

Proor. Consider the space of all polynomial mappings R*> — R3 of degree
d, P,. The identity mapping I is in P, and given an open bounded region
containing M we may choose a neighbourhood U of I consisting of mappings
which embed this region, and hence M. Since the U; are embedded by
-mappings in U the vector fields v; are mapped to non zero vector fields which
can be normalized and used, together with the new outward normal vector
field, to determine new sets of co-ordinate axes. Thus we have a smooth family
of maps

0:U,xU—>V,

parametrized by the polynomial maps y € U, defined by taking the truncated
Monge-Taylor expansion of (M) at the points p € Y (U,) with respect to the
given co-ordinate axes. We claim that if d > k then the maps J; are submersions.
First consider points of the form (p,0) € U, x U. At p write M locally as above
z=f(x,y). The deformation of M induced by the polynomial mappings
D,(x,y,2)=(x,y,z+5¢(x,y)), where s is small and 2<degp<k clearly,
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differentiating with respect to s, gives the tangent vector ¢(x,y) at the point
j"fp € V, and the result follows. (Using the compactness of M it is now clear
that by possibly shrinking the U,, while still retaining a covering of M, and
shrinking U the assertion then follows.) The general case, where we consider
points of the form (p, ) with y non zero follows in the same way. Indeed if for
our deformation we chose @ oy exactly the same argument gives the result.
(Unfortunately @ oy need not give a path in P?; instead we consider j¢(®,ot),
one easily checks this gives the same vector ¢(x,y) as before.)

Now given any submanifold X as above by Thom’s basic transversality
lemma ([8, p. 53]) for almost all P in U (in the sense of Lebesgue measure)
P(M) has the required property of yielding maps transverse to X.

We shall in practice always use the theorem above in the case when codim X
>2, so that the maps 6; miss X. (This then only uses, as its crucial technical
ingredient, the trivial version of Sard’s theorem). In fact the sets X arising in
practice are algebraic, so that we need to stratify X into smooth manifolds X,.
Note that if X is closed and made up of smooth manifolds of codimension >2
the set of embeddings of M yielding mappings 6;: U; — V, transverse to X is
clearly open. (This needs the compactness of M.) More generally the same is
true, with no codimension restriction on the X,, if X is a closed set with its
constituent manifolds yielding a Whitney (A) regular stratification. (See [10].
Such technicalities are rarely needed in this paper.) One rather technical point
we shall need however: often the subset X =V, are most easily obtained in
some product space ¥, x RN via projection onto V,. So although the subsets of
¥, x RN will be algebraic we can only deduce that the resulting sets in V, are
semi-algebraic. The dimension of a semi-algebraic set can only drop under
such a projection so in general we shall be interested in showing that certain
“bad” sets in ¥, x RY have codimension > N + 2. We also note that we can take
the closure of a semi-algebraic set without affecting its dimension. Thus the
generic embeddings of M, consisting of those whose maps 6; miss some subset
X of codimension > 2, will always be open as well as dense. (For a discussion
of semi-algebraic sets and proofs of the assertions made above see [7, part 1].)

2. Generic Umbilics.

In this section we prove one of the results stated by Porteous in [9]
concerning generic umbilics on surfaces in R3. The method used is applicable in
many situations where we wish to study the geometry of various subsets of the
surface itself, a weak point of the traditional approach.

The one preliminary result we shall need computes the image of the
derivative of the Monge-Taylor expansion.
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PRroOPOSITION 2. Let 0;: U; — V* be as in Theorem 1 and let p € U, with M
written locally as z=f(x, y) with respect to the distinguished co-ordinate axes at
p. The image of d0,(p) is spanned by

jk( _fxx(O’ O)X —fxy(O, O)Y +fx(xa y) —f;‘(xa Y)f(X, y)fxx(oa 0)
—'fy(xa ,V)f(X, y)./xy (0’ 0))

and
jk( _fxy(oa O)x _fyy(o» O)y +fy(x9 y) —fx(x’ y)fx(x’ y)f(x’ y’fxy((), 0)

_fy(x7 ,V)f(x, y’fyy(oa 0)) N
of 0%

(We are using the standard notation here: fx=a, Jo=

Proor. As one might guess from the appearance of the statement, this is the
result of a straightforward but rather brutal computation which we omit.

We shall assume that the reader is familiar with the results concerning the
distance squared functions given in [10]. (These can also be obtained using our
methods.) We also assume, in this section, that the reader knows a little about
stratifications, in particular about the use of transversals when working with a
stratification invariant under a group action. (See [16] and [7, part I]).

We now set about proving the required result concerning the umbilics. We
will not give full details since the result has been in print for some time, if not
formally proved. Indeed the method is perhaps of greater interest than the
result itself.

Write M in Monge form at p, z=f(x, y) with

f(x7y) = fz(X,Y)+f3(X,}’)+g(an) ’

where f; is a homogeneous polynomial of degree j and g vanishes at 0 to order
3. The distance squared function F, from a € R* will have a singular point at p
if and only if a is on the normal to M at p. Thus if a= (0,0, g) the function

F(x,y) = (x5, f(x,y)—all* = ¢*+x2+y*—20/,(x,y)—20f3(x,y)+ G(x,y)

where G vanishes at 0 to order 3. Thus F, has a corank 2 singularity at p if and
only if f5(x, y)= (2¢) ! (x* + y?), so F,(x, y) = @*> — 20 + G. This singularity is of
type D, if in addition the cubic form f; has 3 distinct (real or complex) roots.
We have an elliptic umbilic (denoted D, ) if f; has 3 real roots and a hyperbolic
umbilic (denoted by DJ) if f; has 1 real root. We want to describe the rib set
(that is the set of points on the surface where the distance squared function has
an A, singularity) near the umbilics.
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ProrosiTioN 3. For an open dense set of the space of smooth embeddings the
rib lines through the umbilic p have local models xy(x —y)=0 (for D; ) and x =0
(for D). (Here by local model we mean that there is a local diffeomorphism R2,
0'— M, p which takes the given lines to the ribs.)

ProoF. In the space V3 we want to consider the way the D, and the A, sets
fit together. As previously described there is an action of SO (2) on V, via the
corresponding linear action on the variables. There is also an action by the
group of positive reals under multiplication which comes from dilatations of
the ambient space R? (that is t.(x,y,z)= (tx,ty,tz)). Clearly this action will
leave all of the relevant subsets of V; invariant. The effect on elements of V5 is
clearly that given by t(f,, f3)= (tf,, t*f;). We consider the case of the elliptic
umbilic first. Using the group actions above we need only consider points of V,
of the form (o(x?+ y?), x(x +ay)(x + By)) with af(a—B)a +0. A transversal to
the orbit of this point is given by

(a(x?+y*)+ Ax* +2Bxy + Cy%, x(x + (x + a)y)(x + (B+b)y)) = (F,, Fy)

If the point given by (F,, F;) is to be of type A4, then for some ¢ we must
have (x2+ y?)—2¢F, a repeated square + L2, with L a factor of F. In the case
when L corresponds to the first factor of F, we want

x2(1=20(A +0a))+xy(—4¢B)+ y*(1 —20(C +a))

to be a multiple of x?, so clearly B=0 (and ¢ = (2(C +4))~"). Similarly for the
other two factors one obtains the conditions

B(1-(x+a)*)—(a+a)(A-C) = 0
B(1 —(/f+b)2)—(/f+b)(A—C) =0.

Thus the A; set consists of 3 smooth manifolds intersecting in the D, set (which
is given by B=0, A=C). We now seek conditions under which these
components of the A; set intersect pair-wise transversally. These are easily
found to be ((x+a)(f+b)+1)(a+a)(f+b)+0 which in invariant form means
that the roots of the cubic F; are not orthogonal. The umbilics in V; with
orthogonal roots have co-dimension =3 and so can generically be avoided.
For the remainder, we know that the Monge-Taylor map vill be transverse to
the D, stratum generically, and a transversal will meet the 4, stratum in three
smooth curves through the umbilic which have distinct tangent at the umbilic,
whence the result. The hyperbolic umbilic is of course much the same but
considerably easier. On easily checks that the closure of the A5 set is smooth
and contains D, as a codimension 1 submanifold. Transversality to the D,
stratum now ensures the normal form above.
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We now follow [9] and obtain a picture of the set of umbilics in V.

Recall that the umbilics arc those points with Monge normal form f, +/,+ g
with f, =a(x? + y?) for some a. The cubic form f; lies in the vector space of such
forms V. Using the action of the positive reals we may consider the unit sphere
S*< V and the induced action of SO (2) on this sphere. Now V can also be
thought of as the product C x C via the map (v, w) — Re (vz® + wz2z), where z
is the complex variable z=x+iy, Re denotes real part and the bar complex
comjugation. The action of SO (2) corresponds to that of the circle group
¢’ (v,w)= (e’ we'). According to [11] we can obtain a picture of the
relevant sets in S by working with the solid torus |v|=1. (We actually lose
the SO (2) orbit of x(x%+ y?) which corresponds to a transverse hyperbolic
umbilic and hence is of no interest anyway.) In turn it is then enough to
consider the picture in the plane v=1, since that in the solid torus can obtained
from this via the SO (2) action.

PROPOSITION 4. Let p e M be an umbilic with the cubic part of its Monge
normal form at p, fy=Re (2> +wz?Z) and a € R? its unique centre of curvature.

(a) The umbilic is not of type D, if and only if w=2¢"+¢ 2 for some 0.

(b) The family of distance squared functions fails to versally unfold the D,
singularity at (p,a) € M x R if and only if |w| =3 (and w#2¢" +¢ 2 of course).
This is precisely the condition that the Monge-Taylor map is not transverse to
the D, set in V.

(¢) The cubic form f3 has orthogonal roots if and only if |w|=1.

Proot. These condition are easily found: (a) by forming the resultant of f;
and df4/dx, (b) by writing down the condition that (x + y?), df3/dx, df3/dy are
linearly dependent quadratic forms, and (c) by substituting z = re®, s¢”* V2 jn
f3. One easily checks that the Monge-Taylor map fails to be transverse to the
D, set if and only if |w|=3 using Proposition 2.

Consequently we obtain Porteous’ picture in Diagram 1.

In regions 1 and 2 we have an elliptic umbilic, in 3 and 4 a hyperbolic
umbilic. Using the group action it is clear that the regions 2 are all connected
(see the pictures of the umbilic bracelet in [11]). Geometrically one way of
distinguishing umbilics in regions 1 and 2 is a follows. An A5 point on M is
said to be of type A5 if the distance squared function is right equivalent to
+x2+y® and of type A5 if it is equivalent to — x2 + y*. Using a broken linc for
ribs of type A5, a solid line for those of type 47 the configuration of the rib
lines near an umbilic are as pictured in Diagram 2.
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Diagram 1.

Regions 3,4 Region 1 Region 2

Diagram 2.

One final result.

ProprosiTION 5. For a generic surface M the rib lines self intersect
transversally at non umbilics.

Proor. We use the same notation as above. Consider the set of expansions
f2+/3 in V; corresponding to points of M whose spheres of curvature both
have A, contact with M.

Using the action of SO (2) we can reduce f, to $(ax®+by?), a+b and the
condition for an A, ; is

ea=1,f,(1,)0 =0 or ob=1, f,(0,1)=0.
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So we have a self intersection of ribs if f3(1,0)=£3(0,1)=0 in this case. (In
invariant terms if f3=0 has two orthogonal roots.) Working in a transversal
(3(a+ A)x*+ (b+ B)y?), f3+ F5), where F5 is a general cubic the set of forms
yiclding A 5 points is given by (f3+ F3)(1,00=0 or (f;3+ F;)(0,1)=0. These
arc transversally intersecting hyperplanes. Since the Monge-Taylor map
generically will be transverse to the double rib stratum, corresponding to the
intersection of these two hyperplanes, generically the rib lines self intersect
transversally at non umbilics.

This result was first obtained in [2]. The method given here is considerably
simpler, and circumvents the problems involved in proving the required multi-
transversality results, say for hypersurfaces in R*, discussed in [2]. The Monge-
Taylor method reduces these questions of self intersections of geometric
subjects of the manifold to local problems again. Indeed it seems well suited to
describing features on the surface itself. The usual techniques only describe the
geometry of sets (say the focal set) in some auxiliary space.

In this section we classify all orthogonal projections of generic surfaces onto
planes which, as remarked in the introduction, was first done by Gaffney and
Ruas and later by Arnold.

Given a linear surjection I1: R* — R? its restriction to any surface M cR3,
up to changes of co-ordinates on M and R?, clearly only depends on the kernel
of J1. As usual we write our surface M =R? locally, at 0 say, as z=f(x, y). Any
orthogonal projection IT whose kernel vector has first component zero clearly
gives a local diffeomorphism M,0 — R2,0. Consequently we can conveniently
replace the natural two parameter family of orthogonal projections by the two
parameter family of linear surjections IT,,,: R® — R? given by I, ,(x,)
= (ux—y,vx—2z). The restriction of these surjections to M yields a two
parameter family of map germs M,0 — R2,0, also denoted by IT with
M, ) (x,y)= (ux = y,vx = f (x, y)).

Our aim is to classify, up to right left equivalence (local changes of co-
ordinates on M at 0 and R? at 0) the types of germ which appear in this two
parameter family for a generic surface. The classification is done initially, in
Part A, using k-jets of the form IT, ,, at 0. The conditions for this projection to
have a k-jet of a given type will be algebraic in the u,v co-ordinates and
Monge-Taylor coefficients of M at 0, lying in V,. If these conditions determine
a (semi-algebraic) set of codimension >4, then projecting to V¥, one obtains a
set of codimension >2. By Theorem 1.1 this can be generically avoided. Any
jet involving greater than 4 conditions will be marked with a sharp %, and

(u,v)
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these, together with any higher jet with such a truncation, can consequently be
discarded.

On the other hand certain jets, marked with a star =, will be normal forms.
That is, any projection having this jet is smoothly equivalent to the germ
determined by the jet itself.

The proof that these jets are indeed normal forms is the only difficult step in
the classification, done in Part B, and depends entirely on work of A. du
Plessis. Again there is clearly no need to consider higher jets whose truncation
is a normal form. Thus as we increase the order of the jets, from k to k+ 1 say,
we need only consider (k+ 1)-jets whose truncation to degree k is one of
the unmarked k-jets.

Now to work. First note that setting —) =ux—y our projection becomes
(x,¥) = (=Y, vx—f(x,ux +y')) which dropping primes is clearly equivalent to
(x,y) = (y,ox—f(x,ux +y)). We write f(x,y)=/f,(x,y)+f3(x,y)+ . . ., where f;
is homogeneous degree j. More explicitly we shall set f,(x, y)=%(xx? +1y?),
fi=apx*+ ... +asy?, fa=box*+ ... +byy* etc.

Part A.

1. The 1-jet. Clearly if v+0 we can reduce to (y,x) (*). Remains to consider
the case v=0, with 1-jet (y,0).

2. The 2-jet. The 2-jet is (y,1(x +tu?)x?+ 2tuxy +1y?)). By a change of co-
ordinates in the target we can always lose powers of y in the second term, and
from now on we shall do so without comment. This leaves three possibilities

(a) 2-jet is equivalent to (~) (y,0) iff Tu=x+tu?=0 so either u=x%=0 or »
=1=0. This latter is non generic, the former is next considered in 3.L
From now on that part of the analysis below, which further investigates
a given unmarked jet, will be indicated by a go to statement.

(b) 2-jet~ (y,xy) iff % +1u*=0, Tu+0; go to 3.IL

(©) 2-jet~(y,x2) iff % +1ul 0 (%)

3. The 3-jet. We have two separate cases depending on the 2-jet.

3.1. 2-jet is (y,0) means the 3 -jet is (v, f3(x,y)) since u=0, that is (y,aox>
+a;x%y +a,xy?).

(a) If ag=a,=a,=0, 3-jet~ (y,0) ().

(b) If ag=a, =0, a, 0, 3-jet ~ (y, xy?) (%).

(©) If ap=0, a, 0, 3-jet~ (y, x%y); go to 4.II.
(d) If ag+0, 3aya,=a?, 3-jet~ (y,x%); go to 4.1
() If ag#0, 3aga, +a?, 3-jet~ (y, x>+ xy?) (%).
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3L 2-jet~ (y, xy), so the 3-jet is (y, 2tuxy + f3(x, ux + y)) with % +tu* =0, tu
#+0. But by changes of co-ordinates of the form x’'=x + p(x, y), where degree p
>2 we can reduce d-jet (y, xy+g(x,y)) where degree g=3 to (y,xy) or (y,xy
+ x%) for some 3 <d <k. (We say this is a change of co-ordinates of type a.) So

(@) f3(1,u)=0, 3-jet~ (y,xy); go to 4.IIL
(b) f3(L,u)%0, 3-jet~ (y,xy+x7) (%).

4. The 4-jet. We have

41 3-jet~(y,x%) so 4d-jet is (y,aox*+a,;x2y+ (a/3a0)xy?)+fu(x, y)
~ (y,a9x> +f4(x— (ay/3ao)y, y)). A change of co-ordinates of type a above
eliminates x*, x3y, x2y? terms.

(@) If 3f,/0x(—a,3a)=0, 4-jet ~ (y,x) (%).

(b) 0fa/0x(—ay,3a0)+0, d-jet~ (y,x*+xy%) (#).

411 3-jet~ (y,x%y) so 4-jet is (y,a;x*y+a,xy*+f4(x,y) (a;+0) which
~ (y,a;x2y + f4(x — (ay/2a,)y, ). A change of co-ordinates of type a now gets
rid of x*y, x2y? xy® terms. This leaves (y,a;x2y + box*).

(@) If by =0, 4-jet ~ (y, x2y) (%).

(b) If by*0, 4-jet ~ (y, x>y +x*); go to S.IL

4.1I1. 3-jet~ (y,xy) so 4-jet is (y,2tuxy+f3(x,ux+y)+fo(x,ux+y)), with
f(Lu)=0.

(a) If £,(1,u)=0, 4-jet ~ (y, xy); goto S.L

(b) If fu(L,u)#0, d-jet~ (y, xy+x*) (x)

5. The 5-jet. For the 5-jet we need only consider the cases when the 4-jet
~(y,xy) or (y,x*y+x*).
5.1 4-jet~ (y, xy).

@) If f5(1,u)=0, S-jet~ (y,xy) (%).
(b) If fs(1,u)*0, 5-jet~ (y, xy +x°); goto 6.

511 4-jet~ (y, x*y+x%) so 5-jet is (y,a;x%y +a,xy? +£,(x, y)+f5(x, y)) with
a; 0, which ~(y,a,x2y+f,(x— (ay/2a,)y, y)+f5(x — (az/2a,)y, ). Again it is
easy to reduce to the case (y,a;x%y+box* +cox’), with by +0.

@) If co=0, ~(y,x*y+x*) (%).

(b) If co#0, ~(y,x*y+x*+x%) ().

6. The 6-jet. For the 6-jet we now need only consider the case when the 5-jet
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~ (¥, xy +x*). One easily checks that the process which leads to this 5-jet does
not introduce any new powers of x. So the x® coefficient is fi(1, u).

(a) If fe(1,u)=0, 6-jet ~ (y,xy +x°).
(b) If fo(1,u) %0, 6-jet ~ (y,xy + x> + x5).

In fact these jets are actually equivalent, as the following sequence of explicit
(and self explanatory) transformations shows.

1 xy+x%) ~ (Y+x°,xy+ x> +x°) ~ (y—xy—x° xy+x°+x°)
~ (x(+x)1=x) " +x3+x%) ~ (1, x(1—=x) "1y + x5 +x°)
~ (1xy+ (x(14+x)715 + (x(1T+x71)%) ~ (y,xy+x>—4x°)

~ (y,xy+x°—x%).

(To get (y,xy+ x>+ x®) replace the first component of the second form by
y—x3) Go to 7.

7. The T-jet. For the 7-jet we need only consider the case when the 6-jet
~ (y,xy+x°). Again one easily gets rid of any homogeneous terms of degree 7
divisible by y, and the condition that the x” term is non zero can be written
down in terms of the co-efficients of the normal form (not quite so easily now
because of the (inverse) transformations involved in 6 to get rid of the x®
terms.) So we reduce to

(@) x7 coefficient=0, 7-jet ~ (y, xy + x*) (%).
(b) x7 coefficient %0, 7-jet ~ (y, xy +x° +x7) ().

Part B.

We now want to show that the k-jets marked (*) above are in fact normal
forms. For some of the germs it is fairly straightforward to show that they are
at least formal normal forms (!). That is by formal changes of co-ordinates one
can reduce any formal power series whose k-jet coincides with one of the above
to its k-jet.

ExaMmpLE. Consider (y,x*+xy?). Clearly it is enough to show that by
changes of co-ordinates (in source and target) one can reduce any k-jet
(y+p(x,y), x> + xy* +a(x, y)), where p and q are homogeneous of degree k 24 to
(v, x>+ xy?). Note that a change of co-ordinates y, =y+ p(x, y) immediately
reduces us to the case p=0 since inverting this equation we find y=y,
+py(x,y,) with degree p, 2 k.

Math. Scand. 54 — 18
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Now consider the changes of co-ordinates (x,y) — (x+r(x,y),y) in source,
where r is homogeneous of degree k—2, (u,v) — (u, v+ avu* ~3) in target, where
a is a constant.

Modulo terms of degree =k+ 1 this gives the jet

(x> £ x>+ Bx2 £ yHr+ax®yt 2 taxy* "' +q) .

Trying to solve (3x?+y*)r+ax3y* 3+axy* '4+¢4=0 leads to a matrix
equation A(r,a)=gq, with A clearly invertible, whence the result. One can now
appeal to a result of Mather ([4, (2.5)]) to deduce that this is in fact a smooth
normal form.

Unfortunately the rather simple minded approach used above runs into
problems with more complicated examples. Thankfully most of the examples
have been done in a paper by du Plessis [4] on determinacy. In that paper
examples (3.11) covers (y, xy+x>), (y,x>+xy?), (y,x>+xy®). Example (3.32)
covers (y,xy + x*). For (y, x%y + x* + x%) we note that this is equivalent at the 5-
jet level to (y, x2y + xy? + x*) (killing the xy? term in the latter produces an x3y
term, and killing this with another change of x co-ordinate produces an x°
term.) In the remarks following (4.6) in [4] du Plessis notes that this is 5-
determined.

Finally we have (y,xy+ x>+ x’) to consider.

Clearly this is equivalent to f=(y,xy+x>y+x°) as a 7-jet. The following
proof that this is 7-determined is due to Andrew du Plessis. With the notation
of [4] we have tf (0,)+wf(0p)=(Cp+{x,x2},Cy+{x,x%, x3})+ Cp(1, x +x3).
So the Cy-module D=({y,x3}.Cpn,1y,x*}.Cy)tf(Opn)+wf(0p. Now
f*mp.D={y,x>}.D (since D is a Cy-module) so f*m,.D=(]y* yx3,x%}.C,,
[y, yx*,x%}.Cy). Now (0,x®)=tf (3x*.0/0x)— (0, yx* +3yx®), so m}0,
ctf (my0y)+f*mp.D, it is also true that myOf<tf (my0y)+wf(mpp). The
7-determinacy of f now follows from these inclusions and (3.15) of [4].

In conclusion then we have

THEOREM 4. The following are normal forms for the projections of a generic
surface M in R? onto planes.

(x,9) = (5, %), (5, x3), (y, x> + xp?), (v, xy +x3), (y, x> +x)?) ,
(n, xy+x*), (y, x*y + x* + x°), (y, xy+ x> +x7) .

4. Generic Reflections.

One general method for studying the geometry of generic curves and
surfaces in Euclidean space is that outlined by Gaffney in [5]. Briefly, if one is
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interested in the contact of the submanifolds with spheres, planes, lines or some
other interesting family of submaniolds then one choose a family of
submersions R* » R* having these submanifolds as fibres and studics the
contact by considering the restriction of this family to the curve or surface.
Thus the family of projections discussed in section 4 can be viewed as a way of
studying the contact of generic surfaces in R* with lines.

Another method of producing families of mappings which hopefully are of
some geometric significance is by selecting a smooth mapping f: R" » X and if
E denotes the group of Euclidean motions of R" then considering the family
F:R"x<E - X defined by F(x,¢)=f(¢(x)), and its restriction to sub-
manifolds. If H is the isotropy subgroup {¢ € E: fop=/} then to avoid
redundancy in the parameter space E one might replace it with the coset space
E/H. The natural families of distance squared functions, height functions and
projections to planes can be obtained by this method.

In this section we are going to consider the family of mappings obtained in
this way from the fold map f:R® » R? given by (x,y,z) — (x,y%2). The
parameter space here is the Grassmannian of 2-planes in R*. The geometric
significance of this family is that it will relate to the infinitesimal reflective
symmetry of the surface in a plane; the more symmetric a surface is at some
point about a plane through that point, the more degenerate will be the
restriction of the fold map determined by this plane. Our aim is to obtain a list
of normal forms for the restriction of these fold maps to a generic surface. To
do this we first note that if the surface M is given locally at 0 € R? as the image
of a map g(x,y)=(g,(x,y),82(x, y),85(x,y), then fog(x,y)=(g,,83.83) is an
immersion with normal form (x, y) — (x, y,0) unless the normal at M contains
the reflecting plane {y=0}. Thus at each point wec need to consider the
reflections in the pencil of planes containing the normal. Writing the surface
locally as (x, y, f(x, y)) as usual, with j'f(0)=0, we need to consider the k-jets of
these reflections in terms of the k-jet of f. To simplify matters we fix the fold
map to be (x,y,z) — (x,y% z) and obtain conditions on the coefficients of the
k-jet of f at O for the restriction to have various smooth types. These conditions
give us semi-algebraic subsets W of V,. Now the orthogonal group 0(2) acts on
V, via its variables; the semi-algebraic subsets of V, obtained from the orbits
under this 0(2) action of points in the W’s will be the relevant sets for the whole
family. Since 0(2) is one dimensional this means that we can ignore sets W of
codimension >3 in V,. That is any normal form for a jet requiring more than 3
conditions on the k-jet of f at O can be discarded. As before our derivation of
the list is in two parts. Part A where the computations are done with jets, and
Part B where the relevant jets are shown to give normal forms. Again discarded
jets are labelled by (%) and jets yielding normal forms by (*). Again we write
PO =15(x, )+ f3(x, )+ .. . + fi(x, ) with f; homogeneous of degree j. We
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shall write f,=aox?+a;xy+ay? fi=bex>+...+by* etc. One initial
simplification: when considering the map (x,y) — (x,y? f(x,y))= (4, v,w) and
its k-jet note that by changes of co-ordinates of the form w’'=w — p(u, v), where
p is some polynomial we can ignore terms in f of the form x‘y?/ and do so from
now on.

Part A.

1. The 2-jet. Clearly if a, +0 we can reduce to (x, y?, xy) (*). It remains to
consider the case a, =0 with 2-jet (x, y2,0).

2. The 3-jet. The 2-jet~ (x, y2,0), so the 3-jet ~ (x, y2, b, x2y +b;y>).

(@) If b, =b;=0, 3-jet~ (x, y%,0); go to 3.L

(b) If b, +0, by =0, 3-jet~ (x, % x2); go to 3L
(¢) If b; =0, by %0, 3-jet ~ (x, y%,y?); go to 3.IIL
(d) If byby +0, 3-jet ~ (x, y2, x2y + %) ().

3. The 4-jet. We have three separate cases depending on the 3-jet.
3.1. The 3-jet ~ (x, y*,0), so the 4-jet is (x, y? c; x>y +c3xp%).

(@) If ¢;=c; =0, 3-jet~(x,y%,0) (%)

(b) If ¢, =0, c; %0, 3-jet~ (x, y2, xy%) (%)

(©) If ¢;#0, c;=0, 3-jet~ (x, %, x3y) (%)

(d) If ¢;c3%0, 3-jet ~ (x, 2%, x3y £ xy3) (»).

3L 3-jet~ (x,y% x2,y) so the 4-jet is (x,y? b, x2y+c,x>y+c;xy%). Now
consider the changes of co-ordinates (i) x' = x —ay?*, W =u+av* (a change of
co-ordinates of type a say), (ii) w' =w—buv*w (a change of co-ordinates of
type B). By choosing k=1, a=c;/2b,, and j=1, k=0, b=c,/b, we can
reduce to (x, y2, x2y) again. Go to 4.1

3101 3-jet~ (x,¥? y3) so the 4-jet is
(% Y2, b3y> + ¢, X%y +c3x)%) .
A change of co-ordinates of type B kills the xy® term.
(@) If ¢; =0 clearly the 4-jet~ (x, y2,y%); go to 4.1
(b) If ¢; %0 the 4-jet~ (x, %,y +x3y) (»).
4. The 5-jet. There are two cases.

4.1. The 4-jet ~ (x,y?, x?y) so the 5-jet ~ (x, ¥, b, x2y +c;x3y + ;x> +d, x*y
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+d3x?y* +dsy®) with b, 0. By changes of co-ordinates of type « and § we can
reduce to (x,y% byx?y + (ds +c3/4b,)y°).

(@) If 4b,ds+c3=0 the 5-jet~ (x, y%, x%y); go to 5.
(b) If 4b,ds+ 340 the 5-jet ~ (x, %, x2y + y°) (#).

411. The 4-jet ~ (x,y% ) so the 5-jet~ (x, y% byy> +c3xy® +d, x*y + d3x?y?
+dsy’) with b;+0. Changes of co-ordinates of type « and f§ reduce this to
(x, 2, b3y +d x*y).

(@) If d, =0 the 5-jet~ (x, %, y%) (%).
(b) If d; +0 the S-jet ~ (x, ¥, 1* +x*)) (»).

5. The 6-jet. The 5-jet ~ (x, y?, x2y) so the 6-jet ~
(6, 5 b x?y 4+ x3y +esxy® +d i xty +dyxPy? +dsy® +e Xy + ey x3y +esxy’)
with 4bds+c3 = 0.

Changes of co-ordinates of type a and B reduce to (x,y?, b;x?y)~ (x, 2, x2y).
Go to 6.

6. The 7-jet. Here the 6-jet (x,y?, x%y) and the 7-jet ~
(x, 5, b x?y+c; X3y +cyxyd +d x*y +d;x*y? +dsy® +e Xy
+ e3x3y3 +esxy5 +f1x6y +f3x4y3 +f5x2y5 +£257)

with 4b,ds+c3=0. By changes of co-ordinates of type B one reduces to
(x,y%,b,x*y + c3xy* +dsy> + esxy® + f,y7). Changes of co-ordinates of type o
now reduces this to (x, y% b, x*y+1,y7)

(@) If f;=0 the 7-jet~ (x, y%, x2y) (%)
(b) If £ 40 the 7-jet ~ (x, y%, x2y +y7) (%).

Part B.

Again we want to show that the k-jets marked () above are normal forms.
Again as in section 3 one can by elementary (but rather messy) manipulations
of co-ordinates prove that some of the above are formal normal forms (and
then appeal to Mather’s theorem). For example (x,y?, x*y + xy*) can be proved
to be 4-determined in this way. (Hint: one easily gets rid of homogeneous
terms of degree k=5 in the first two components of the k-jet. For the third
component one uses changes of co-ordinates of type « and f, together with a
change of co-ordinates x'=c—cx*~3, w' =u+cu* 3. Again there is a resulting
matrix equation which is solvable.) The determinacy of all of the other forms is
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actually covered by the paper of du Plessis [4] in his Example (3.12) (see (3.12),
(3.16), (3.20) and (3.29)).

In conclusion then we have

THEOREM 5. The following are normal forms for reflections of a generic surface
in R3 in a plane.

(x, y) — (x, ¥, 0), (x, _‘,2’ xy), (x, yz, xz)’i}’3), (x, yz, x3y + X}’s)(x, y2, y3 + xsy) ,

(%, 3%, x2y 2% (x, 05,2 £x*y), (x,y%, x2y £37) .
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