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ON LAVINE'S FORMULA FOR TIME-DELAY

ARNE JENSEN
Abstract.

Lavine’s formula gives a connection between time-delay and potential in
scattering theory. A time-dependent proof is given for potentials V=V, +V,,
Vi()=0(x"179, x-VV (x)=0(x| ' 79, V,(x)=0(lx|">7%), as |x| - x.

1. Introduction.

The present note is devoted to an essentially time-dependent proof of -
Lavine’s formula for time-delay. It can be viewed as a continuation of [1]. To
state the results, let Hy=—4 and H=H,+V denote the free and full
Hamiltonian, respectively, in # = L?(R"), with V(x)=0(|x|"#), f>1, as |x|
— 0. For such short range potentials existence and completeness of the wave
operators W is well known. Let S= W% W_ denote the scattering operator,
and S={S(4)} its decomposition into scattering matrices in the spectral
representation for H,,. The Eisenbud-Wigner time-delay operator is defined in
this spectral representation by

T = {—iS(A*(d/d)S(A)} ,

see [1]. Let D= (2i)"'(x-V +V-x) denote the generator of dilations. Lavine’s
expression for time-delay is the right hand side of the following formula, which
is the main result obtained here:

x

(1.1)  (fiTHog) = f (e "HW_f, (H—i/2[H,D])e *"W_g) ds

-

for a dense set of vectors f, g € #. Formally H—i/2[H,D]=V+4x-VV,so (1.1)
establishes a connection between the potential and time-delay.
Here (1.1) is proved for potentials satisfying V="V, +V,, V, € C'(R",
Vil +1x-VVi(x)] < e+ e>0,
and

Va(x) = O(IxI727)
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as |x| — ~o; V, can have some local singularities. The proof given here follows
essentially the formal proof given in [5], see also [3]. In this proof technical
results on [H, D] and [¢~ ¥, D] first given by Mourre [4] play an important
role. The proof given here also shows that the alternative definition of time-
delay [5] can be made rigorous, and agrees with the usual one.

The result in Lemma 2.7 might be of independent interest. Here it is shown
that the four operators W, @ (H,), W% ¢ (H), map the domain of D into itself. ¢
is a smooth function with compact support in (0, )\ o,(H). op(H) denotes
the point spectrum of H.

In [2] Lavine proved that the right hand side of (1.1) equals an expression
involving sojourn times. The result was proved in L2(R!) for V=V,, V,
satisfying the condition given above. The connection with T was not given in
[2]. Combining (1.1) with the results in [1] a connection with sojourn times
has been established.

Recently Martin [3] has given an extensive review of time-delay and related
topics. See also [3] for applications of (1.1).

This note is a revision of a preliminary version, in which stronger conditions
were imposed on V. Partly based on this preliminary version Narnhofer [6]
has recently discussed (1.1) and related results, using a somewhat different
approach, for essentially the same class of potentials as defined above.

II. The results.

Let »# =L?(R") denote configuration space and .# the Fourier transform.
2(T) denotes the domain of an operator T. Z(%,%) denotes the bounded
operators from 2 to %. Let .#'(R") denote the tempered distributions. The
weighted Sobolev space H™*= H™*(R") is given by

H™ = {fe L' RY| || lms=I(1+x2(1=A™f ] 2<%} .

The free Hamiltonian is H,= — 4 with 2 (Hy)=H*°. Let L%(S"" ') denote the
square integrable functions on the unit sphere $"~!“in R". The spectral
representation for H, is given by

F: # — #, = L*((0,00); L*(S™ "))
defined by

(FND(w) = 27124 D F ) (A w)

A>0, w € S""!. See [1] for further details.
The following short range assumption is imposed on the potential.

AssumpTION 2.1. Let V be multiplication by a real-valued function V(x). Let
V(x)=V,(x)+ V,(x), where V, is continuously differentiable with
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WV, () +x-VV,(x)] < c(1+]xph '
for some £¢>0, ¢>0, and V, satisfies
VZ : HZ‘O — HO-/’

is compact for some fi>2.

H=H,+ Vis the operator sum. Let ¢,(H) denote the point spectrum for H,
and E the spectral measure for H. E, denotes the spectral measure for H,,.
Under the above assumption existence and completeness of the wave operators

W, =s— lim gitHp—itHy

=+~
is well known, see e.g. [8]. The scattering operator S=WXW_ is
decomposable in #, viz.
(FS/) (A = S(AENA,  Ae (0,70)\0o,(H).
Usually this is written S={S(A)}. S(4) is the scattering matrix. If V=V,, or
V=V,, the Eisenbud-Wigner time-delay operator was defined in [1] by
T = [—iS(A*(d/dAS (A} .

The generalization to V=V, + V, follows from the proof of Theorem 3.6 in [1].
Theorem 3.8 in [1] remains valid for this larger class of potentials.

Let D=(2i)"! (x-V+V-x) denote the generator of dilations. Note that
ilH,,D]=2H,. [V,D] can be defined on 2(D)N%(H,) as a quadratic form.
Assumption 2.1 implies that [V, D] extends to a bounded operator, denoted
[V,D]%, from H*° to H™*° [H,D]" is defined similarly, and one has

H—i/2[H,D}* = V—i/2[V,D]*

as bounded operators from H*° to H™%°, Sometimes it is convenient to use
the notation

V= v—ip2[v.D]".

The main result of this note is the following theorem.

THeOREM 2.2. Let V satisfy Assumption 2.1. Let [a,b] < (0,70)\ 6,(H) be a
finite interval, and let f,g € Ey([a,b])#. Then one has

)

(2.2) (j;THOg>=f Ce SHW_f (H—i/2[H,D]%e *HW_g>ds .

e 9

The proof is based on the following Lemmas.
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Lemma 2.3. Let [a,b] = (0,20)\ 6,(H) be a finite interval. There exists ¢ >0,
depending only on a and b, such that

f _ Ke™""E([a,b))f, Ve ""E(a, DI dt < <l f1 gl

fbr all f,g € #. The same result is true with V replaced by V.

ProOOF. Assumption 2.1 implies Ve #(H* ~%,H*% and Ve #(H*> ~°,H %9
for some &> 1/2. The result now follows from well known local smoothness
results due to Kato and Lavine, see e.g. [9].

LemMa 2.4. (i) [D, e~ "] extends to a bounded operator from H*° to H™2:°,
which satisfies

LD, e~ *H1% g0, g-20) < c(1+t])
for all t € R.

(i) Let ¢ € CT(R"). Then [D,p(H)] extends to a bounded operator from
H %% to H"O

Proor. See [7; Lemma 7.4]. These results extend slightly results due to
Mourre [4]. Note that the extension is needed here.

Lemma 2.5. Let ¢ € C§((0,0)\ 6,(H)). Then one has for all t € R
(2.3) HD+i) e o HYD+i) " g < L+ 7" .

Proor. The following commutator is computed on 2(D)N2P(H) as a
quadratic form:

[D,e‘“"] — e—ixH(eitHDe—itH_D)

t
- e—izH J eisHi[H, D]e-ists
0

t

= e "H +e " f e*H(i[V,D]1-2V)e " ds .
0

This result now extends as an equality between bounded operators from H%°

to H™2° Let ¢ € CF((0,00)\ 6,(H)) be given, and let x € C3((0,00)\ 7,(H))

be identically one on the support of ¢. Let y(A)=A"'y(A). Then y € CZ, ¢(H)

=Hy (H)p(H), and
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; 1 ;
e”o(H) = 5, y(He™""2tHo(H)

= %W(H)[D, e""‘H]<P(H)+%'//(H) J Ve~ M dsp (H) .
0

Lemma 2.3 implies

<c

1¢(H) f eisHe—isH dS(p(H)‘
0

for all t € R. The result now follows using-Lemma 2.4 (ii).

REMARK 2.6. (2.3) and related results were proved in [1] for V=0. The idea
used in handling [D,e” "] above is due to Mourre [4].

Lemma 2.7. Let ¢ € C3((0,00)\ 6 ,(H)). The cperators [D,W_¢p(H,)],
[D,W, p(H)], [D,W*@(H)], and [D, W*@(H)], defined as quadratic forms on
D (D)x D(D), extend to bounded operators on . In particular, all four
operators W ,@(H,), W% o(H) leave 2 (D) invariant.

Proor. Consider first [D, W,p(Hy)]. Given ¢ € C3((0,00)\ g ,(H)) let
Y € CP((0,0)\ g ,(H)) be identically one on the support of ¢. The following
computation is justified using the mollified generator of dilation, D(A)=
iAD(D+iA)~!, see [4, 7]. This step is omitted here and in the sequel. One
finds as bounded operators from H*° to H™2'°:

(D, y (H)e"! o (H)e "oy (H,)]
2.4) = Y(H)[D, e p(H)e™ "]y (Ho) +
+[D, y (H)]e"" o (H)e™ oy (Ho) +
+y(H)e" o (H)e ™ *Ho[ D,y (H,)] -

The last two terms above are bounded operators on 3 (Lemma 2.4 (ii)),
uniformly bounded in .
In the following computation one uses

[-iHy,D]° = —2H,
[—iH,D]* = —2H,—i[V,D]* = —2H+2V—i[V,D]*

valid as bounded operators from H>° to H™*°.

Math. Scand. 54 — 17
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Y (H[D, e o(H)e oYy (H,)

= w(H)e"'"{ f ' e “H[ —iH, D]e*" dso (H)+[D, o (H)] -

o

—@(H) J e sHo[ _iH, D]e“"°ds}e""H°l//(Ho)
0

2.5) = W(H)e"”{f e”H(—2H +2V—i[V, D])e"" dso(H) +

0
+[D, o(H)] + 2t(p(H)H0}e_i'H°lll(H0)

= —2tp(H)e" Ve oy (H) +
+Y (H)e""[D, o (H)]e™ "o (Ho) +

T
+y (H)e""2 J e "HVeH dsp(H)e™ *Hoy (Hy) .
]
The last two terms define bounded operators on s#, with norm uniformly
bounded in t. The first term is treated as follows. Let f,g € 2(D) be given.
Using the local H- and H,-smoothness properties of V (cf. the proof of Lemma
2.3) one can find a sequence t, — 00 as n — 00, such that

lim ¢, f, o(H)e™H Ve~ "Hoy (Hy)gy = 0.

Since the remaining terms in (2.4) and (2.5) are bounded operators on #,
uniformly bounded in ¢, one finds, using the intertwining relation and ¢(H,)

=y(Ho)o(Ho)y (Ho)
IKDf,W.o(Ho)g) —<{f, W,9(Ho)Dg)|

lim <f,[D, Y (H)e"Ho(H)e "Hoy (H,)1g)

n=o0

CilfI-ngl

with ¢>0 independent of f and g. This proves the result for W, @ (H,). A
similar proof holds for W_¢(H,). Since the wave operators are asymptotically
complete, W% ¢(H)=s—lim,_, , ., e"#oe~"H(H), and an analogous proof can
be given.

A

Proor oF THEOREM 2.2. It suffices to prove (2.2) for a dense subset of
Eqy([a, b])5#, since both sides in (2.2) define bounded quadratic forms on this
space. Let f,g € E,([a,b])5# with Ff, Fg smooth with compact support in
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(0,00)\ ¢,(H), and in particular f,g € 2(D). As noted above [1; Theorem 3.8]
remains valid under Assumption 2.1. Thus one has

(f, THog) = —3<f,5*[D,S1g>
= —3((5£,DSg>—<f,Dg)) .

A computation as quadratic form on 2(D)N 2(H,) yields
d  wH —itHop itHo, itH
_(et e it oDen‘ o it )

(2.6) dt

GHm i d . .
= —2e""Ve"’"+2E(te""Ve“"”) .

Write  W(t)=e"fe "Ho  Let u=o¢(H)i, v=@H)W, #&de2(D),
¢ € CF((0,00)\ 0 ,(H)). Integrating (2.6) gives

(W (t)*u, DW (t)*v> = (u, Dv)—2 f Cu, esH e~ isHyy ds +
0

+2tu, eveitHyy |

The local H-smoothness of V implies the existence of a sequence t, — 00 as
n — oo such that

(2.7) lim t,{u,e®Hye=ttyy = 0

n—oc

(see also Remark 2.8 (i)).
Lemma 2.3 now implies

lim (W(t,)*u, DW(t,)*v> = <u, Dv)—2 j Cuy e H e~ sHpy ds .
0

n-o00

To conclude that the left hand side equals (W*u, DW*v) it suffices to show
that |[DW(t)*v||<c for all teR. To prove this estimate let

¥ € C3((0,00)\ 0,(H)) be identically one on the support of ¢. Write
v=@(H)(D+i)" 'v,.

IDW (0)*v|| = || DeHoys(H)e™*Hp(H)(D +1) v, |
< D@ (H)(D+1i)~ v, ||+ [I[D, e*Hoyy (H)e "o (H)Y(D +1) " 'v, || .
As in (2.5) above one finds in #(#)
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(D, "oy (H)e ™ "H]p(H)
(2.8) = e"Ho{[ D,y (H)]+2tVy(H)—
—2y(H) J ; e~ Ve H ds}p (H)e "M .

Lemma 2.5 and Assumption 2.1 imply
Ve~ *Ho(HY(D+i)"'v,|| < c(1+]e)7".

The estimate |[DW(t)*v|| =<c now follows from Lemma 2.3.
Thus one has

(W*u, DW*p> = (u,Dv)—ZJ (u, @1 Ve~ My ds

0
for u=@(H)i, v=@(H)?, 4,0 € 2(D). Similarly, one finds

0
(W*u,DW*v) = <u,Dv>+2J (u, e e isHy ds

and thus e
(Whu,DW*v)—(W*u,DW*v)

= -2 J {u, eH Ve Hyy ds

- 00

Take now u=W_o@(Hy)f, v=W_p(H,)g, f,g € 2(D). Then W*u=q(H,)f,
W*u=S¢(H,)f, etc. and the equation (2.2) has been proved for the dense set

{oH)f | fe DD), ¢ e CX((a,b)} .
REMARK 2.8 (i) Note that (2.7) can be improved, since only a dense set of u,v
is considered. Lemma 2.5 and interpolation imply
(1 +x2)7%2e " Ho(HYD+i)"!|| € c(1+]t)7% 0=<6Z1.
Under assumption 2.1, V(x)=0(x|"* %) as |x| — oo, so one has
[Cu, e"H Ve~ itHyy|
S I+ Hy | (1 + X2 Ve~ Hp|
c(l+|ey~*-e

for u=@(H)i, v=@(H), 4,7 € 2(D).

IIA

(i)) The computation (2.8) gives a simpler proof of the fact that W* ()
leaves 9 (D) invariant, but the result in Lemma 2.7 is stronger. Note that onc
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has |DW())*@(H)(D+i)"'| <c for all teR, but only |Dy(H)W(t)e(H,)
(D+i)" Y| <c for all t € R, cf. (2.5).
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