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EXCEPTIONAL SETS, SUBORDINATION,
AND FUNCTIONS OF
UNIFORMLY BOUNDED CHARACTERISTIC

SHINJI YAMASHITA

1. Introduction.
Let f be a function meromorphic in D={|z|<1}, O<r<l1, z=x+1iy,

SE=1V(A+1f1), and let

r

T(r, f) = n“lJ t~1de H fH(z)?dxdy .
0 |z <t

Set
T(f) =T, f[) = lin}T(r,f).

For w € D, set
fu = foo., 0,2 = (z+w)/(1+Wwz), zeD.

Then f is said to be of uniformly bounded characteristic in D, f € UBC, in
notation, if || f| <oo, where

Ifllr = sup T(£.) -

Obviously, UBC =BC, where BC is the family of f with T(f)< oco.

A subset E of C* = {|z| < 00} is said to be of positive elliptic capacity, cap* E
>0, in notation, if E contains a closed subset of C* of positive elliptic capacity
in the sense of M. Tsuji [11, p. 90]. It is easy to observe that cap* E >0 if and
only if E—{oo} contains a bounded closed set of positive (logarithmic)
capacity; see [11, p. 55] for the definition of capacity.

.Let f be meromorphic in D, let n(a, f) for a € C*, be the number of the roots
of the equation f(z)=a in D, where the roots are counted according to their
multiplicities. Our first result is

THEOREM 1. Let f be a function meromorphic in D, and let k20 be an integer.

If
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(1.1) cap*{a e C* ; n(a, f)<k} > 0,
then fe UBC.

A weaker and familiar conclusion is that f e BC.

Let H?, O<p<oo, denote the Hardy classes in D [2], and let their
intersection be

H= () H".

0<p<oo
Let N be the family of functions meromorphic and normal in D in the sense of
O. Lehto and K. I. Virtanen [8].

THEOREM 2. There exists fe (HNN)—UBC.

Since H = BC, it follows that the inclusion formula UBC<=BC N N, observed
in [13], is strict.

For the proof of Theorem 2, use is made of Theorem 3 described below.

Let B be the family of functions f holomorphic and bounded, |f|<1, in D.
Let U be the family of f € B such that

lim |f(re")| = 1

r=1-0

for almost every t, 0=<t<2n. For f meromorphic in D, and for h € B, the
composed function foh is considered as being “roughly” subordinate to fin the
sense that the condition h(0)=0 is not necessarily assumed.

THeoREM 3. The following two propositions are true for f meromomorphic in D.
(I) For fe UBC and h € B,

(1.2) Ifehllr = 1flr,

so that foh € UBC.
(I) If h e U and foh € UBC, then

(L.3) I fohl 7
so that f € UBC.

(AP

2. Proof of Theorem 1.
The chordal distance of z and w in C* is

X(zw) = lz=wl/[A+]zP)(1+w]'?,

with the usual device for z=00 or w=o00. For a closed set EcC* with cap*E
>0, there exists the elliptic conductor potential of E,
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P(w) = ——J log X(w,a)du(a), weC*,
E

where u is the elliptic equilibrium distribution of E with the support on E
and u(E)=1. Then

2.1 0 < P(w) £ —log(cap*E) = V(E), weC*;

see [11, Theorem II1.46, p. 90]. A few modifications of the proof of [11,
Theorem IIL.7, p. 56] yield that if e E is a closed set and cap* e=0, then u(e)
=0. In particular, p({a})=0 for each point a € E.

For g meromorphic in D and for 0<r<1 we set

r

N(r,a,g) =j t™'n(t,a,g)dt, aeC*,
4]

where n(r,a,g) is the number of the roots of g(z)=a on |z| £r, the orders of
their multiplicites being again considered. We denote

N(l,a,g) = limN(r,a,g) .
r—+1

For later uses we set

2

log (1+|g(re")?)dt, O<r<l,
o

I(r,g) = (4nm)~! J

and further we remark that

2.2) T, f) = j N(r,a,g)do(a), O<r=1,
Ct

where
da(a) = n~ (1 +|a]®) " ?|a|d|ald arga .
LEmMA 2.1. Suppose that g is meromorphic in D and g(0)=0. Let E be a closed

set on C* cap* E>0, and let u be the elliptic equilibrium distribution of E. Then,
for each r, 0<r<1, we have

2.3) j N(r,a,g)du(a)—T(r,g)| = V(E).
E

Proor. Since g(0)=0 it follows that
(2.4) T(r,g) = I(r,g)+ N(r,00,8), 0<r<l1;

see [9, p. 180, the formula at the bottom].
Let a € C*—{0,00}. Add then the quantity
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—(4m)~! jz log [(1+g(re™*)(1 +lal*)]de
to both sides of the Jensen formula [9, (2'), p. 164], applied to g—a:
loglal = (2m)~! J:u log|g(re")—aldt+ N(r,00,8)—N(r,a,g) .

On integrating both sides of the resulting equality:

2n

log X(0,a)—I(r,g) = 2m)~* j log X (g(re"),a)dt + N(r,00,8)—N(r,a,g)

0

with respect to du(a) on E, and on observing (2.4), we obtain, after the obvious
arrangement, that

2n

j N(r,a,g)du(a)—T(r,g) = P(O)—(Zn)'lj P(g(re")dr .
E

0

Combining this with (2.1) we have (2.3).

REMARK. A few verbal changes yield the same lemma for g defined in |zl<R
< o

A meromorphic function g in D is normal, g € N, if and only if ¢(g) < oo,
where

c(g) = sup (1-|z")g*(2) .
zeD
If g assumes three distinct points of C* only a finite number of times in D, then

it follows from [8, p. 54 and Theorem 3] that g € N, or, c(g) <oo. This is the
case if there exists an integer k=0 such that

cap*{ae C*; n(a,g) <k} > 0.

With this in mind we propose

LEmMA 2.2. Suppose that g is meromorphic in D and g(0)=0. Suppose that the
set

{ae C*; n(a,g)Sk}

contains a closed set EcC* with cap* E >0, where k=0 is an integer. Let u be
the elliptic equilibrium distribution of E. Then,

2.5 j N(l,a,g)du(a) = k[A(g)+V(E)],
E

where
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A(g) = log[(e+1)(c(g)+2)/2] .
~ Proor. We may suppose that g is nonconstant. First of all, N(1,a,g)=0 for
a € C* with n(a,g)=0. We show that, for a € E— {0} with n(a,g)>0,
(2:6) N(l,a,8) = k[A(g)—log X(0,a)] .

Then (2.5) is obtained by integration on E — {0}, together with P(0)< V(E). For
the proof of (2.6), we choose z,+0 with g(z,) =a such that the disk |z| < |z,| =71,
contains no root of the equation g(z)=a. For each r, ry <r <1, we then obtain

r

N(r,a,g) = j t™'n(t,a,g)dt < klog(r/ro),

To

whence
2.7 N(l,a,8) = —klogr, .
Since c(g) < oo, and since
X(0,a) = X(g(0),8(z0)) = [c(g)/2]log[(1+71)/(1—ro)]
it follows that
ro > (e =1/(ef+1), B = 2X(0,a)/[c(g)+2].
Since
e#+1 <e+1 and ef—1> 8,
it follows that 1/r,<(e+1)/8. We now- obtain (2.6) by (2.7).

ProoOF oF THEOREM 1. For w € D let

28) 0u(@) = (z=fW)/(1+f(Wz), zeC*,
be the rotation of C*. Fix w € D arbitrarily and let
g = Quofy = Quofop, .

Since f takes three distinct points of C* only a finite number of times in D,
it follows that c(f)<oo. Furthermore, since

A=lzP)(@) @ = 1-lo, (2, zeD,

it follows that c(g)=c(f).
Let E be a closed set with cap* E >0 contained in the set

{aeC*; n(a f)Sk}.

Since for each a € C*,
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naf) = k < n(Q,(a),g) < k,

it follows that the image set E,,=Q,(E) is contained in the set
{beC*; n(bg=k}.
Apparently, E,, is closed and cap* E, =cap* E, whence V(E,)=V(E).
We now apply Lemma 2.2 to g and E,, to obtain the estimate
L N(1,a,g)du(a) = k[A(g)+ V(E)] .

Since T(r, f,)=T(r,g) for 0<r<1, it follows from Lemma 2.1, applied to g and
E,, that

T(r, f,) < kA(@)+ (k+ 1V (E) .
Letting r — 1, observing that

A(g) = log[(e+D(c(f)+2)/2]

is independent of w € D, and letting w run over D, we finally conclude that
[ fllr<oo.

3. Proof of Theorem 3.

For f meromorphic in D, M. Heins’ theorems [5, Theorems 11.1 and 11.2,
p. 440] in the specified case read:

feBC and he B = foh € BC;
he U and fohe BC = fe BC.

For the proof of Theorem 3 we rapidly review the proofs of them in terms of
T(r, f).

Let B, be the family of f e B with f(0)=0. We shall later use (III) and the
“if” part of (V) in

LemMA 3.1. For f nonconstant and meromorphic in D, the following three
propositions hold.
(III) For each h € B, and each r, 0<r<1,

T(r, foh) < T(r, f).
(IV) Let h € By. Then
T(r, foh) = T(r, f)

holds for an r, 0<r<\, if and only if h is a rotation, h(z) =cz, |cl;l.
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(V) Let h e'BO. Then
T(foh) = T(f) < 00
holds if and only if T(foh)<oo and h e U.

Lehto [6, p. 9] essentially proved that
N(r,a, foh) £ N(r,a, f)

for 0<r<1, a e C* and h € B,; the role of ¢, there, is played by our h. The
proof of (III) is then obvious in view of (2.2).

Supposing for the moment that (V) is true, we prove (IV). We must prove the
non-obvious part, the “only if” part.

For g meromorphic in D, the identity holds:

T(r,g) = n~! JI g*(2)*log|r/z|dxdy

Izl <r

for 0<r=<1 [13, (2.9)]. For O0<r<1, let
gn(2) = g(rz2), zeD.

Then,

T(r,g) = T(g)
because

(8)'(2) = rg*(rz), zeD.
For 0<r<1 and for our h € B, we set
hy = r'h, .

Schwarz’s‘ lemma teaches then that h, € B,. Furthermore,

(fohlyy = finoho -
Therefore, if T(r, foh)=T{(r, f) for an r, 0<r<1, then

T(fyyoho) = T(r, foh) = T(r,f) = T(f,) .

By (V), hy € U, and hence |h(z)|=|z| on |z| =r. The Schwarz lemma asserts then
that h is a rotation.
For the proof of (V) we shall make use of

LEMMA 3.2. Let h € B, and b € D—{0}. Then
3.1)- ' N(1,b,h) < log|l/b) .
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If the equality in (3.1) holds for a certain b € D—1{0}, then h € U. Conversely, if
h € U, then there exists a set A<D of capacity zero such that the equality in
(3.1) holds for each b € D— A.

Note that
N(1,b,h) = Z log|1/b,| ,

where b, (n=1) are the roots of the equation h(z)=b in D, multiple roots
appearing as their multiplicities.

The proof of Lemma 3.2 is familiar, see, for example, [7, p. 110], or, [4, p.
446ff.], under far general settings.

To prove (V) we first assume that T(foh)=T(f)<~ for an h € B,. By (2.2),
then,

N(l,q,f) < ~ foreach aue C*-E,

where E is a certain set with g(E)=0. Let {z,} be all the roots of f(z)=a in D,
a € C*—E. Then, it follows from (2.2), together with

(3.2) N(l,a, foh) = ¥ N(1,z,,h) < ¥ log|l/z,] = N(l,a,f),
that the equality
N(1,z,,h) = logll/z,

holds for all z, for at least one a. Therefore, h € U by Lemma 3.2
Suppose now that T(foh)<nv and h € U. It follows from Lemma 2.1 that
the equality in (3.2) holds:

N(1,a, foh) = N(1,q, f)

for all u e C*—E,, where E,>f(A4) and o(E,)=0. The integration of both
sides yields that T(f)=T(foh).
For the proof of Theorem 3 we further needs

LemmMma 3.3, If f e BC, then T(f,) is a C™ function of real variables u and v
with w=u+iv € D.

ProOF. Suppose that f is nonconstant and let f=g/h, where g and h are

holomorphic and bounded function in D having no common zero in D [9, p.
189]. Then,

F = (1/2)log (Ig* +1h*)

is a finite-valued subharmonic function which is C* and bounded from above
in D. Consequently, the known result [13, Lemma 5.1] admits
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(3.3) (Fog,) = F oo,

where ~ denote the least harmonic majorants of the functions considered in D.
Our aim is now to show that

(3.4) T(f,) = F(w—F(w), webD,

from which Lemma 3.3 follows.
Suppose first that f(0) % ~, so that h(0)%0. Since a pole of f'is a zero of h
and vice versa, it follows from the Jensen formula [9, p. 164] that

2

(3.5) loglh(0) = 2m)~! J ~log|h(re"‘)| dt—N(r,o0, f)

0

for 0<r<1. On the other hand, for 0<r<1,

T(r, f) = 1(r, /)= (1/2)log (1 +|f (O)?)+ N(r,oc, f) ,
[9, p. 180], which, together with (3.5), shows that

2

T(r,f) = (27r)“f F(re")dt—F(0) .

0

Letting r - 1 we have
(3.6) T(f) = F (0)-F(0).

Suppose next that f(0)=n0. Then g(0)+0=h(0). By the same reasoning,
applied to 1/f=h/g this time, and by the identity T(f)=T(1/f), we again
obtain (3.6).

Combining (3.3) and (3.6), we have (3.4).

REMARK. It follows from (3.4) that

TAT(f,) = =2f*w)*, weD.
This is reasonable because [13, (2.6)]

T(f,) ="' -U SHQ? log1/g _ (0 dE dn
D
is a Green potential in D.

Proor oF THEOREM 3. We may suppose that fis nonconstant. To begin with,
for each h e B and w € D,
(37) (.foh)w = ./;l(w)oh*’ Where h* = ‘p—-h(w)ohoq’w € BO .

Therefore, (1.2) follows from (III) of Lemma 3.1, because
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T((foh,) = T(fuw) = Iflr

for each w € D.

To prove (1.3) we observe the “if” part of (V) and (3.7) with h* € U. It then
follows that

T(fuwy) = T((foh),) S [ fohly <

for each w € D. Since D —h(D) is of capacity zero (see [3, Theorem, p. 111]),
h(D) is dense in D. Since T(f,) is continuous for { € D, it follows that | f| ;<
| fohlly which together with (1.2) in (I), proves (1.3).

4. Proof of Theorem 2.

Let us regard C* as the sphere of center Z = (0,0, 1/2) in the Euclidean space,
which touches the complex plane at the origin. We can then find a finite
number of distinct points

oy,...,%, on C*,

which we fix once and for all, such that, for each o« € C*, there exists at least
one a; which lies in the n/4 “neighborhood” of a. More precisely, the smaller,
nonnegative angle between the radial vectors Za and Za; is less than n/4.

For g nonconstant and meromorphic in D we let u, be a conformal
homeomorphism from D onto the universal covering surface of the subdomain
D-g '({a,,. . .,a,}) of D. Regarding u, as a holomorphic function with the
image in D we then consider the composed function ®,=gou,.

Theorem 2 is an immediate consequence on setting f=@, in

ProrosiTioN. If g€ H—N, then ¢, € (HNN)—UBC.
It is familiar that H — N is non-empty; see, for example, [1] and [12, p. 296].

Proor of ProrposiTioN. It follows from C. Pommerenke’s theorem [10,
Theorem 1] that @, € N. It is easy to observe that &, € H because g € H.
Therefore #, € HNN.

Since g~ '({a,,...,q,}) is a relatively closed subset of D whose capacity is
zero, it follows from O. Frostman’s result [3, p. 113] that u, € U.

Suppose that @, € UBC. Since u, € U, it follows from Theorem 3, (II), that

g € UBC, so that g € N by [13, Theorem 3.1]. This contradiction shows that
@, ¢ UBC.
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5. A remark on UBC functions.

A characterization of a function of UBC in terms of the Nevanlinna
characteristic [9, (6), p. 168] is appended.

Let f be meromorphic in D and let Ty(r, f) be the Nevanlinna character-
istic function of f, 0<r<1. Let

Ty(f) = im Ty(r, f) .
r-1
Then, f is a member of UBC if and only if
sug Tn(Q,0f,) < 00,

where Q,, is defined in (2.8). We let g=Q of,. Then T(g)=T(f,). On the other
hand, an obvious estimate yields that

[T(®—Tn(g) = (1/2)10g2
because g(0)=0, which completes the proof.

ADDED IN PROOF. In Section 4 we have only to choose three distinct point
ay, 8,03 on C* without any further condition. Then the resulting function @,
omitting a,,a,,a3 in D, must be normal in D without appealing to
Pommerenke’s theorem.
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