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ON THE GENERALIZED HARDY’S INEQUALITY
OF MCGEHEE, PIGNO AND SMITH AND
THE PROBLEM OF INTERPOLATION
BETWEEN BMO AND A BESOV SPACE

JAAK PEETRE and ERIK SVENSSON*

0. Introduction.
Littlewood conjectured (1948) that
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where O<n,; <...<ny. The truth of this conjecture was established only
recently (1981) apparently quite independently on the one hand by Konjagin
[19] and on the other hand by McGehee, Pigno and Smith [20], [21]. Indeed,
the last mentioned authors, whose proof is remarkably simple, prove the
stronger estimate
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which incidentally also entails Hardy’s well-known inequality (1927), the
special case n,=k.

In section 1 of the present paper we present a possibly even simpler
arrangement of the details of the proof of this generalized Hardy’s inequality.
(The proof has also been simplified by Rudin [37] and others; see in particular
Fournier [12].) As in [20], [21] the idea is roughly speaking the following. It is
clear that by duality (*) is essentially equivalent to the following interpolation
problem for Fourier coefficients: Given a sequence {a,} of complex numbers such
that a,=O0(1/k) to find a function F in L =L>(T) (T denotes the unit circle)
such that F(n)=a, An approximative solution of this problem is gotten by

setting F = Z e-e(h,+h,-+.+...yj (e>0),
j
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where f;=3, a,¢™, {4,} being a suitable partition of the positive integers,
and hj=2P_|Jj}|+|fj|A(O), P_ being the orthogonal projection in L= L2(T)
onto the subspace H2 (=the orthogonal complement of the usual Hardy
space H?). Taking ¢ sufficiently small one can reiterate this construction and
the existence of an exact solution readily follows.

In the remainder of the paper we turn to a somewhat different topic. It is
well-known (essentially Grisvard’s thesis [13], see e.g. [2], [23]) that for Besov
spaces (in fact, in any number of variables, both in the periodic case (T") and
the non-periodic case (R")) one has the following interpolation theorem:

(Bygre, B3Py, = B for s=(1—0)so+0s, ,

P
1 1-0 0

= +—, ,P1 € (0,00], 0 €(0,1).
» e Py Po, Py ] 0, 1)

Here (section 2 for n=1 and section 4 for n general) we shall show that in the
extremal case s, =0, p, =00 one can do considerably better: the space B%™ can
be replaced by BMO, at least if s, +£0. (If p, 21 we get by duality a similar
result with H!)) It is remarkable that the proof utilizes the same construction
(the special case n,=k) as for the generalized Hardy’s inequality alluded to.
The special case s, =p, =1, n=1 of this result was previously obtained by
Peller [28] (research announcement in [27]), as a byproduct of his work on
Hankel operators of trace class. Here we shall go the other way round. Indeed,
we shall show (section 3) that our interpolation theorem for BMO entails
Peller’s main result for Hankel operators, at least in the “intermediate” case
1 <p<oo. Finally, let us mention that in Grisvard’s case [13] our result
extends to Besov-Lorentz spaces as well.

Some of the results of this paper were announced by one of the authors at
the meeting of the Swedish Mathematical Society in Umed (January 82), and
later on at the Conference on Approximation Theory in Edmonton (June
1982) [25].
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1. The generalized Hardy’s inequality.

Now we carry out the details of the construction already described in the
introductory section 0.

The main step is embodied in the following general

LeMMA. Let {4;}%2, be any partition of the set Z , of positive integers where
the A; are disjoint intervals taken in increasing order (i.e. 4;., is to the right of
4)). Then, given any increasing sequence of integers 0<n, < ..., any sequence of

complex numbers ay, a,,. .. and any number ¢> 0, one can find a function F € L*®
= L*(T) such that

1° IFlle < 1/e

and

2° F(n)—al < 1/2e Y bby+bysi+...)
v2j

whenever k € A;, where we have put b,= (¥ ¢ 4 |a,/*)"'.

Proor. Put f}=2keA, ae™ (j=1,2,...). Then obviously fj(nk)=ak for
k € A;but the function 352, f; is in general not in L* so we have to modify it a
little. Define therefore

J

F — Z e"s("f“‘“”“')f‘
J

with h;=2P_|f]+| fjl'(O). Here, as in section 0, P _ is the orthogonal projection
of L?=L*(T) onto the span H2 of the {¢"*},, (that is, H> is the orthogonal
complement of the usual Hardy space H?). Since |fj| is real valued, in our case

this gives Re h;=|f;|. Moreover holds nhjnlglfz | f;ll2. Clearly

|F| < Z e—s(lf,|+|f,+||+m)'fj| ae.
j

Upon comparing suitable Riemann sums of the convergent integral [§"e ™ “*dx
we see that F € L™ with ||F|, <1/e. Indeed, consider the finite sums

N

S = .zl e—e(c,+cl¢|+..,+c1v)cj (Clg()) R
j=

Clearly the jth term has the majorant

¢, te,et. teN
e dx

cjtr1t ... ten

so we find Séjf,'*"'””e'”"dxg 1/e. (For this simple argument see a recent
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paper by Jones [17].) On the other hand (by the construction of the h;) we have
the identity

F(nk)—ak = Z [(e_s(h'+h'”+“')—l)fv]A("k)

vzj

if k € 4;. (The essential thing here is that the factor in front of f, in the formula
for F is a function whose Fourier transform is supported by the set Z_;
therefore the terms with v<j drop out in the above sum. A more general
theorem holds true cf. Remark 5, infra.) Using the elementary inequality
[e™*—=1]£]z] (Rez=0) along with Schwarz’s inequality it follows that

Fm)—al < V2¢ X 1AL 0L+ 0 fila+ ...

v21

This obviously proves 2°.

We now specialize the sequence {a,} imposing the condition |a,|< M/k
(k=1,2,...) and further take the 4; to be dyadic intervals: 4;=[2'"",2))
(j=1,2,...). Then as is readily seen, b,=0(2"'?) so with ¢ sufficiently small
the lemma gives us an F € L™ such that

M
Wmu—w|§n7~ (k=1,2,...)

where 7 is any fixed number with 0 <5 < 1. If we now reiterate this construction
in a well-known fashion (in step 2 we apply it with g, replaced by a,—F (n,)
and so forth) we end up with the following

THEOREM. If a, = O(1/k) then for some F € L™ holds Finy=a, (k=1,2,...).

It is clear that this implies the inequality (*) of section 0.
Several comments are now in order.

ReMARk 1. There is nothing peculiar about the function e % Instead we
could have used any function ¢(z) holomorphic in the halfplane x=Rez20
such that

1° |@(z)|S¥(x) where ¥(x) is a decreasing function such that [ y(x)dx
<00,
2 o2l = C

and

2 90 =1.
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(From 2° and 3° it follows, for instance, that |¢(z)— 1| < C|z|; cf. the previous
inequality le™*—1|<|z|.) E.g. one can take ¢(z)= (1 +2z)~2 and more generally
¢(2)=(1+42)"" n>1. Notice that e™*=lim,_, _ (1+2z/n)™".

REMARK 2. More generally the following result (cf. Remark 1, infra) holds
true.

THEOREM. Let G be a locally compact Abelian group with dual I'. Let S< I be
such that S+S<S, and let f € L*(G) be such that supp f<S. Let E be the closed
convex hull in C of {0} and the range of f, and suppose that ¢ is a function which
is analytic on an open set containing E and in addition satisfies |¢'(z)| £ C on E.
Then @of—@(0) € L*(G), @of—@(0)|,<C||f|,, and supp (¢of—@(0) =S.

Proor. Let {V;} be neighborhoods of the origin in G such that || f(: —x)
=f)l<1/jif x € V}, and define a sequence of functions {f;} by putting 0;
=1/|Vjlxv, and f;=¢;* f. Then f; € A(G)NL*(G) (since L*(G)*L*(G)=A(G)),
I f=fillz = O, supp f;=S and for each f; there is a compact convex set F;cE
containing 0 and the range of f;. Now if p is a polynomial it is obvious that pof;
—p(0) € A(G) and that supp (pof;—p(0))=S (since S+S<S). By Runge’s
theorem we can for each set F; find a sequence of complex polynomials {p;,}
such that p’,(z) - ¢'(z) (n — ~0) uniformly on F;. By the mean value theorem
we have

1Pjn(2) = pju(W)] = ?;LE) 1Pjn(Ollz —w|

if z,w e F; and
lp(z)—p W) = Clz—w|
if z,w € E. It follows that p,of;—p;,(0) and @of;—(0) are in L*(G). Since

Pjn(2) = ¢'(2) (n — 00) uniformly on F; it is also easy to see that

Pjnofi—Pjin(0) = @of;—@(0) (n— o0)

in L%(G). Therefore supp (¢o fj—(p(O))AcS since supp (pj,of;— pj,,(O))AcS for
each n. Now applying once more |¢(z) — ¢(w)| S Clz—w| if z,w € E we see that
@of—@(0) € L*(G) and that ¢of;—¢(0) > @of—¢(0) in L?*(G). Hence
supp (o f—@(0)) =S since supp (¢ofj—¢(0))ch for each j. Also |@of
~9O)],=Clfl,. '

REMARK 3. Literally the same proof works for any locally compact Abelian
group G with a totally ordered dual I. We now take {4} to be a partition of
Ir'*={¢ e I,¢>0}, each 4; being an interval, with 4;,, to the “right” of 4,.

Math. Scand. 54 — 15
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However, if G is not compact we must also allow doubly infinite sequences (i.e. j
" runs through all of Z, not just Z*). The “interpolation data” are a measurable
subset E of I'* and a measurable function a defined on E. We are primarily
interested in finding a function F in L*(G) such that F(&)=a(é) if ¢ € E. As
before we first construct an approximative solution. The (second) estimate of
the lemma now takes the form

IF@)=a@)] < V2¢ Y byby+b,e+...)
v2j
for £ € 4;NE, with b,= (L,j,—mla(f)l2 d¥)'2. Let §(¢) be the (Haar) measure of
the set (0,¢) N E. Then the relevant condition on a in the interpolation theorem

is |a(& = M/6(¢) for & € E. In particular we will thus end up with a “Hardy’s
inequality” of the form

Il =z C JF I7QI/6(0)de  (C>0)

valid for all EcT'* and for all f € L'(G) with supp f< E. As already told, the
previous proof goes over after merely formal changes; in particular, the
projection is given by the formula (P_g) (§)=g(¢) if £<0, 0 else, and thus

h; = 2P_|fjl+xI £ (0)

(=measure of the set {0}). One can also consider the case of partially ordered
duals. One instance of such a situation will be considered in section 4.

REMARK 4. At least in the compact case (i.e. both G and E (relatively)
compact) it is also easy to get a continuous interpolating function. For
simplicity let us consider just the case G=T. Then we just have to replace the
original interpolation function F (i.e., the one provided by the theorem) by
x *F where y is a suitable function in L* such that y=1 on E (take a kernel of
de la Vallée-Poussin type).

More generally, we can always get a continuous interpolating function,
provided we assume that a, =o0(1/k) not just O(1/k). Indeed (this argument we
owe to Janson [15]), let 1 =k <k, <k,<... be integers such that k|a,| <27/
for k2k; (j=1,2,...). Pick functions F;e L® such that ||Fj|,<C27’
(j=0,1,...) and

. a if k;<k<k;,,, (j=0,1,...)
Fitm) = {Ok elsej s

(where E={n,,n,,...}). By convoluting with suitable functions y; we get
continuous functions @; with ||®;||,,<3C277 such that

. a if k;<k<k;
®;(ny) = {Ok elsc) it
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It is clear that we can take the interpolating function F=Y &,.
With O(1/k) the above result is not true. Here is a counter-example in part
due to Janson [15]. Let f(x)=signx, —n<x<m, so that

2-
ik

— if k=+1,43,...
n
0 else .

flky =

Assume that there exists a continuous function F such that F(k)=f(k) for
k=0,1,2,.... Then f— F € H*, that is f € H® + C. But f'is real valued, whence
€ (H*+C)N (H* + C). By a theorem of Sarason’s [38] (cf. [39]), to the effect
that (H*+ C)N (H*+C)=VMONL* (this is the famous class QC of quasi-
continuous functions) it follows that fe VMO. But VMO does not contain
any functions with jumps. Contradiction.

Alternatively we could in this connection (this remark) have used the
theory of Hankel operators, viz. the theorems of Nehari and Hartmann (cf.
section 3, infra).

REMARK 5. It is likewise easy to extend the generalized Hardy’s inequality to
the classes H?, 0<p< 1. Indeed, let F € L™ be the function constructed in the
theorem (G =T) with a suitable sequence {q,}. Consider the function ¥ whose
Fourier coefficients are ¥(n)=F(n)/n* where a>0. Then ¥ belongs to the
Lipschitz class A, Invoke now the celebrated duality theorem of Duren—
Romberg-Shields [9] stating that (H?)=~A, a=1/p—1. Then we may
.conclude that Y |¢;|/knf<oo for any function g in HP (LP) of the form
g=Y c,e™* (that is, g(n)=0 if n+n,). Again the case n,=k is classical:
Y lcl/k*'P < oo in that situation.

2. Interpolation between BMO (A) and a (Bergman-)Besov space.

In this section we take for convenience G =R. The necessary changes for the
case G=T will be indicated at the end (see Remark 9). The extension to n
variables will be briefly treated in section 4.

First let us consider the relevant definitions (cf. [2], [23]). We consider
sequences {w;} .z of test functions on the real line R (i.e. each w; belongs to the
Schwartz class &) such that

supp@; < [274,27*1JU —[271,2771],
EloP@) = €, (=0,1,2,...).

Then a tempered distribution fon R (f'e &) is said to be in the Besov space
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B}, where s is arbitrary real (and finite) and p,q € (0, 00], if for each such
sequence holds

1/q
[JZZ (2"‘llw,-*f!|,,)"] < 00.

Indeed one can do with only one such sequence if one imposes a suitable
Tauberian condition; in particular, the latter will be fulfilled if the w; form a
“partition of unity”, i.e. 3 ;.7 w;=4. If we in this definition replace L” by the
Lorentz space L" we get the spaces B;! (“Besov-Lorentz space”). If fis in B}
and supp f [0, oo) we say that fis in the class A3 (“Bergman-Besov space”);
that is, A'=PB}, where P is the projection complementary to our previous
P_, thatis P=1—P_. The spaces 4;! are defined in a similar manner; cf. infra
Remark 10. In what follows we are mostly concerned with the case g=r.
Finally we also require the spaces BMOA and BMO; we can define them by
the formulae BMOA =PL>*® and BMO=L>+ PL*® (linear hull) respectively.

We can now announce the main results of this section (in its final form due
to Janson [15]; cf. infra Remark 8).

THEOREM A. Assume that p,,q;,r, € (0,00), s;+0 and let 1/p=0/p,, 1/q
=0/q,, s=0s, with 8 € (0,1). Then:

(BMOA, 43%),, = Ay .
THeorem B. Similar result with the space BMO, B,

In view of the above relation between the two types of spaces we need only
to prove Theorem A.

First we give, however, some comments on the theorems (Remark 1-6, infra).
For matter of convenience we take below p=r (and p,=r,).

ReEMARK 1. As already noted in the Introduction (section 0), in the special
case p; (=r,;)=s,=1 both theorems were obtained by Peller [27], [28] in a
quite different way, namely as a by-product of his work on Hankel operators
(“the trace ideal criterion”; see section 3).

REMARK 2. Certain limiting cases of our theorems are at least implicit in the
literature. Consider the case p=p, =00. For instance (alternatively one could
imbed the spaces A, in the scale of Besov spaces B and use the reiteration
theorem [2]) from Lemma 5 and Lemma 6 in Janson [14] follows that
(BMO, A)y,, = A4, (the usual Lipschitz space; A=A4,). Indeed, one has in this
special case also a corresponding result for the more general interpolation
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spaces (.,.),00; > @ @ concave function. (The spaces (.,.)p,, correspond to g(t)
=1°) In the light of this observation one gains a new insight into the proof of
the second half of p. 269 in [14]. Notice that in this limiting case one obtains a
necessary decomposition of the function using linear operators (indeed, the
simplest type of mollifiers will do), whereas our construction (infra), extracted
from the Lemma in section 1, is highly non-linear. Obvious question: Are the
pairs (BMO, B}}) “quasi-linearizable” (in the sense of [24]) or not? Obvious
guess: Not!

REMARK 3. Another extremal case is s=s,=0. Now by a theorem by
Fefferman and Stein [11] (BMO, L?'),,=L?, as above, with 1/p=0/p, (0<6
<1). Now B3*=L? so if Theorem B were true in this case we would get B%?
=L? if 2<p<oo, which is known to be false. This counter-example clearly
shows that the restriction s, #0 is in fact necessary.

REMARK 4. We consider here only real interpolation. In fact, there are
counter-examples showing that the corresponding result with complex
interpolation is not true; one such is due to Peller himself [30] (Sub-remark.
Rochberg [36], who essentially gets Peller’s main results for Hankel operators,
nevertheless uses complex interpolation (Riesz-Thorin), and so does Peller
[29] in his recent extension of the trace ideal criterion to the vector valued
case; it is an obvious challenge to extend the present approach to the trace
ideal criterion (section 3) to cover this case too.) After the first version of this
paper was completed (December 1981) Joran Bergh kindly turned the authors’
attention to Rychener’s paper [35], where the problem of complex
interpolation between BMO and a potential (Sobolev) space is treated. Per
Nilsson (unpublished) has gotten further results in that direction.

REMARK 5. We have only considered the case when the “second”
interpolation parameter q is adjusted to the situation at hand; as in the case of
Grisvard’s theorem (see section 0) we could of course have- considered the
general space (.,.),, but the description of the resulting spaces is then less
explicit: they are not any longer Besov spaces (cf. the discussion in [25]).

REMARK 6. It is likewise of some interest to point out that the obvious
analogue of Theorem B with BMO replaced by L* is not true. Indeed, it is not
even true, for instance, that

1) By < (L%, B1™);, 0 -

For consider the function f=3 a™** (for simplicity’s sake we revert
temporarily to the case of T) where a, is a twosided sequence with |a,| < /lkl.
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If (1) were true we could for any ¢>0 find an F € L* such that

1° ||Fl, = Ce™!

and

2 o (F=f)l, £ C27V%e.

But 2° implies that |F(h)—a,|<n/lk| with O0<n<1, provided we take ¢
sufficiently small. If we apply the same reiteration as in the proof of the
Theorem in section 1 we get a contradiction — the result obtained would imply
a bilateral Hardy’s inequality, which is known to be false (it is easy to produce
a function fin L! such that Zk*olf(k)|/|k|=oo).

Proor or THEOREM A (after Svante Janson). One inclusion (<) is as usual
trivial. (Alternatively we could have used Grisvard’s result [13] quoted in the
Introduction (section 0).) So our chief concern is the inclusion o.

In view of Wolff’s theorem [46] (and the (usual) reiteration theorem [2]) we
may take p, >1, r, =2 1. We consider first the case s, (and s) >0.

Let thus fe A5, where s>0, 1<p<oo, 1=q, r<oo, be given. (So in
particular supp f<[0,00].) Put fi=w;xf (j € Z), where we now assume that
Yjez@;=4, and let h; be defined as in section 1, that is h;=2P_| f;. Write also
Hi=hj+h;,,+.... Set F=3; ;(cH)f; where ¢ is as in Remark 1 of the
same section assuming, however, that furthermore

P0) =¢"0) = ... =" P0) =0; o™ =C,

m a sufficiently large integer (m=p/p, —1 will do!). As in section 1 it is clear
(see again Remark 1) that F € L*, ||F||,,=0(1/¢), and moreover holds
) w;*(ﬁ—f) = Z d)v*((p(ﬁHV)—l)ﬂ,
v2j-1
with FEPF, &, Pw;; notice that by definition F e BMOA, |[F|gmon
=0(1/¢). Using Minkowski’s inequality and M. Riesz’s conjugate function
theorem (for Lorentz space!) it is easy to see that

IH g S CILS s

(14 is I# with respect to the weight {2"}: {x;} € I iff {2°x;} € 1)) On the other
hand, since |@(z)— 1| < C|z|]* if 0 a <m we get (Holder’s inequality for Lorentz
space!) if a=p/p;, —1=(1-6)/0 and r,=0r:
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loj«F=llp,, £ C 3 NleH 151,
v=j-1

oS

sCe Y NHLLM,,,
v=j—1
o

SCet Y HJLNA -
v=j—-1

Another application of Minkovski’s inequality now yields

IF =g = Wl F=1l, i

< Ce* -=Z_1 "{||Hj+i“:r"fj+i"pr}ul_‘{“
= C¢* }Z_: 27 UH G e}
< CelH L I3 1103

< &I

Introducing the K-functional (see [2]) and choosing e=t~? (recall that
0=1/(1 +a)) we now see that

K(t, f; BMOA, A39) < CE|f 1| 45,
which apparently gives

A% < (BMOA, 439),,, .

The reverse inclusion

(BMOA, A3%)y; = A

pro

indeed, even with BMOA replaced by A5 , is well-known (see [2] or [23]). If
we now use reiteration [2] (notice that
(A5, AT )y = A,
with suitable relations for s, p and g, but irrespective of the choice of r' and r"!)
this clearly yields the desired result.
The case 5, <0 can be handeled in a similar way. Take h;=2P | f}| with now
fi=w_jxf We do not insist upon the details.

REMARK 7. The most important case of our theorems is when p=r (i.e., we
are dealing with genuine Besov spaces, not Besov-Lorentz spaces). In that case
one can obtain for instance Theorem B by duality from the following result:
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1
(*) (H;, BpP, = By,

valid for p, € (1,00], 5,0 and 1/p=1-60+6/p, with 6 € (0,1). (Here H!
stands for the “real form™ of the Hardy class H'.) (*), or rather its “A-version”
(and in the “diagonal” case s= — 1/p), was first discovered by Semmes [42]
using a direct ad hoc approach and then one of the present authors (see [25])
remarked that it really is a very special case of a result of Triebel’s for “Triebel-
Lizorkin spaces” (see [45, p. 185]). We do not know if the analogue of (*) holds
in the general case p=r. If Theorem B were true with BMO replaced by CMO
(continuous mean oscillation) this would again follow by duality; apply
Fefferman’s duality theorem [11] to the effect that (CMOY =~ H!. After the first
version of this paper was completed (December 1981) Per Nilsson kindly
turned out attention to Bui’s paper [4] where a proof of (*) is found, indeed,
even in the more general case of weighted spaces. The method of the latter,
which amounts to representing the couple in question as a retract, lends itself
to a determination of the interpolation spaces also in the complex case.

REMARK 8. In an earlier version of this paper we considered only the special
cases g=p and g=o00 (with p, 21). In the former case our proof depended on
the use of the E-functional, along with the E-spaces or “approximation spaces”
([26]; see also [2, Chapter 7]). More specifically, we proved for the pair
(BMOA, B5') the estimate

E(Cle,f) £ CY 2% Y |min(1,e™H ")) ,;
J vzj-1
we mention this because this might perhaps be of some interest in a more
general context.

ReMARk 9. Finally we take up for discussion the case of the torus T. We
claim that with practically no changes of the proof, Theorem A and B go over
to that case. It suffices only to remark that we can employ exactly the same
definition of Besov spaces as on the line R. Namely, we can consider a function
(or distribution) on T as a periodic tempered distribution on the line and then
convolution with a testfunction makes sense. (The Fourier transform of a
periodic distribution is a series of the form ¥ a,6,, where the §, are translates of
the unit mass (delta functiom) at the origin and the g, can be identified with the
Fourier coeflicients of the corresponding object on T; this is essentially Laurent
Schwartz’s approach to Fourier series, see [40, p. 108-109].)

REMARK 10. In comparison with the Besov spaces B}’ the Bergman-Besov
spaces A} have been little studied. We mention e.g. the paper by Stegenga [44].
which is concerned with (pointwise) multipliers (the case p=¢=2). In higher
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dimensions they find their most natural generalization in the context of several
complex variables; see notably [6], [7].

3. Application to Hankel operators.

For convenience we consider now the case G=T only but similar results
hold for G=R. (Indeed, the whole set-up is essentially conformally invariant,
provided we let our functions f transform as forms of type (0,1).) Let H? be the
usual Hardy class (ie. fe H? iff fe L2 supp fe [0,00)) and let H% be its
orthogonal complement in L2, so that H*=PL? H> =P_L* (P=1-P_).

A Hankel operator is a (bounded) linear map U from H? into H% such that
Uyx=P_xU. Here y stands for (multiplication by) the principal character of T,
that is x(x)=e", x € T. It follows from this definition that (Nehari’s theorem)
every Hankel operator U can be expressed in the form U=H fd=erP_ f where f
(the symbol of U) is a function in L* determined up to an element of H*. Thus
the space of (bounded) Hankel operators is essentially, ie., up to complex
conjugation, isomorphic to BMOA. Similarly the space of compact Hankel
operators is isomorphic to VMOA (Hartman’s theorem). A recent survey of
Hankel operators (matrices) is the article by Power [33], containing in
particular a discussion of the above theorems by Nehari and Hartman. See also
his book [34] and further the books Nikol’skii [22, chapter 8] and especially
App. 4 of the forthcoming English translation, and Sarason [38, Chapter 9].

Peller [27], [28] (see also Peller-Hruscev [32] for further work along this
line) solved the problem which Hankel operators are of trace class. (Regarding
the trace classes S, see [43] and also [2, Chapter 7].) His result ([28, Theorems
1 and 2]) says that H isin S,, | <p<oo iff P_f € A}/"? (complex conjugate).
As we have already mentioned (Introduction and Remark 1 in section 2) Peller
gets from this as an application a special case of our Theorems A and B
(section 2). Here we shall go in the opposite direction: we show that Theorem
A entails Peller’s result at least in the intermediate case 1 <p <00, the extremal
case p=1 requiring a special proof (p=o00 is of course just Nehari (or
Hartman)).

Before entering into the details let us mention that Peller in [28] gives yet
many other, most striking applications, of which we here wish to emphasize the
quite surprising result (Theorem 7 and 7' in [28]) on the rate of approximation
by rational functions in the BMOA or the BMO metric. (See also [27].) Is it
possible to prove such a result directly without invoking Hankel operators?
(This would call for an elimination of the deep theorem of Adamjan—Arov—
Krein [1] used by Peller.) Let us also point out (cf. Remark 4 of section 2) that
Rochberg [36] has obtained Peller’s main results by yet another route, via a
certain type of molecular decomposition in the spaces A}’. After the above lines
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where written (December 1981) the trace ideal criterion has been extended to
the case 0 <p <1 by Peller [31] himself, and independently and simultaneously
by Semmes [41], the latter using an approach in Rochberg’s spirit [36] (“the
St. Louis spirit”). This implies in particular that the above mentioned result on
rational approximation extends to all values of the degree. For a “vector”
generalization, that is, with “block” Hankel operators (matrices), see further
[29]. There he uses complex interpolation a la Rochberg [36] (the Riesz—
Thorin method). Is there any hope to extend our result to a vector-valued
situation so as to cover that result too?

Perhaps it is also appropriate here to quote the work of Janson and Wolff
[16] where the problem of trace class commutators of Calderon-Zygmund
operators is solved. At least in one variable the two problems are intimately
connected (see [36]). There is further a notion of Hankel (and Toeplitz)
operators in the context of several complex variables (see e.g. [7]).

Let us now give the proof promised of Peller’s result, that is, we want to
prove the

THEOREM (Peller [28, Theorem 2]). Let 1<p<oo. Then H;e S,
< P_fe A}PP. '

Proor. Let us denote by a the mapping P_f— H, Then by Nehari’s
theorem, and by [28, Theorem 1]
{a: BMOA - & .

a: AP > S, .
Thus by interpolation
a: (BMOA,A}'l)Op - (eoo’ 61)01: (0 € (Oa 1)) .

If 6=1/p we have (BMOA, A}'!),,=A,”"? (our Theorem A for the case of T)
and (S, S,)y, =S, (well-known, see e.g. [2, Chapter 7]). This gives

a: A)PP - S, (l<p<o)
and-proves half of the theorem. The remaining half will be obtained simply by
duality. Indeed taking the transpose we get
oS, > ALPLP (1<p<o0)

(we use here the obvious generalization to the A case of the well-known fact
that (B;")’zB;,“", see [2] or [23], and the corresponding result for trace
classes: &,~ S, see [43]). There remains to “explicate” the map o'. We claim
that afoa, which thus is a map that to a function (“symbol”) assigns another
function, is essentially derivation, a‘oa = Dd=°f1/i -d/dx. This is most simply seen
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by introducing the matrix of the Hankel operator (a Hankel matrix). Then « is
a map which to a vector (a,,a,,...) assigns the matrix

a, a, ay ...
(@iv) = a; as a5 ... |.

It is clear that the transpose «' (for the natural dualities) now is the operator
which to a given matrix (b,) assigns the vector whose entries are the sums
Yi+k=nbu. (Taking b, =a,,, we get back the nth component of the original
vector (ay,a,,...) multiplied by n; it is the factor n that accounts for D.)
Introducing formally the map f=D"'o’ we have indeed Boa=id, whence
a: AP — S,and p: S, > A}/"P. We have thereby represented the spaces of
symbols A}/7? as retracts of the corresponding trace classes S,. A well-known
elementary argument (see [23] for many instances of it) now gives the desired
conclusion: H; e &, = P_fe Al/»».

REMARk 1. The above duality is of course also present in Peller’s treatment
[28] but we believe that in this way the state of affairs becomes much more
transparent.

REMARK 2. We conclude this section with the following observation.
Consider any “pure” Toeplitz operator, i.e. an operator of the type V=T, d=efPf
where f is a bounded anti-holomorphic function (i.e. f€ H®). Then V maps
every Bergman-Besov space A4}, where s>0, 0<p, g= oo, into itself. This
generalizes a statement of Peller’s [28, p. 563, 1.9-10], the special case s=1/p,
q=p, 1Sp<oo. It suffices to prove the result for g=o0o and then use
interpolation (with p fixed!). Let thus u € A;* where s> 0 and, for simplicity’s
sake, 1 Sp<oo, too. (Cf. also Kahane [18] who gives practically the same
argument. An alternative approach uses duality and the explicit representation
of A3 (s<0) as a “true” Bergman space.) Then Vu=3 P(fu)) with u;=w;*u
and o, (and below @) as in section 2. It follows again that (cf. the corre-
sponding argument in section 2!)

wxVu =Y @,*fu,,
vzj-—1
whence
2w Vull, £ Y 297725 u, | f oo -

vzj—1

Since by assumption (definition of A}°!) we get |lw;* Vul| ,,=0(2""), too, which
proves Vu e A3°. Notice that this observation sheds new light on the
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construction in section 2 (and section 1): The function F is obtained by the
intermediation of special (pure) Toeplitz operators. The argument in [28],
attributed to N. K. Nikol’skii, is given for any “approximation space” and uses
again the theorem of Adamjan—Arov-Krein [1]. However, a direct proof,
without invoking Hankel operators, can be obtained by “interpolation”, simply
by remarking that V obviously preserves BMO and maps rational functions
onto rational functions without increasing the degree.

4. Generaliztion to R".

We now give a generalization of the previous considerations to the case of
R". Since no genuinely new ideas are needed, we allow ourselves to be
somewhat sketchy. But in a way it is this section which is really the raison d’étre
of the entire paper.

Our notation is more or less standard: elements of R" are denoted by x
=(x,,...,X,) and elements of the “dual” R" by £=(&,,...,¢&,), the two types of
vectors being connected by the duality (x,{>=x,¢, + ... +x,¢,. In one case
we have the Haar measure dx=dx, ...dx,, in the other case (2m)™"d¢
=Q2n)""d¢, ... dE,.

Let E be an (open) subset of R” contained in an open halfspace. Without loss
of generality we may assume that it is the half-space R", ={{, >0}: EcR". Ifa
is a given locally integrable function on E we are interested in finding a
function fin L® = L*(R") such that f(&)=a(¢) for 5 € E. To this end we try to
imitate the procedure of section 1.

Let thus {E;} be a suitable partition of E. Set

fi(x) = (2ﬂ)"'I a(g)e’ e d¢
so that obviously ﬂ(é):a(é) for (e E; f\jnd define
F =Y e tththotoof
with h;=2P_|f]|. Here P_ is defined in the obvious way:
(P_g) (©)=8(®) if & <0, 0else,
for (say) ge L% As in section 1 we see that Fe L® and ||F|, <1/e

Furthermore we have the basic identity

FO—-a®) = Y [le®*hn*-1)fT ()
veN;
for £ € E;, where N; denotes the set of indices v such that the sum of E, and the
complementary halfspace R ={{, <0} has non-empty intersection with E;
(the family { N} thus depends on the “geometry” of the situation). We therefore
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get as a generalization of the estimate of the Lemma in section 1 the following
inequality

(1) IF@&)—a@) < )/2e ¥ byb,+b,s1+...)

veN

with b, = ((2n) ™" [ la(d)* d&)*.
Next we seek conditions such that the reiterative procedure can be applied.
Let d; be the (Haar) measure of E;. Assume that the function a satisfies the
condition |a({)|SM/é; for ¢ € E;. Then b,=0(5, *) so that (1) gives

IF(O)—a(@)] < const-M?/2e Y 67367 4074 +...).

veN,

Next if we impose the extra (hypothesis that (say)

) Y 6 O+ .. S G,

J
vEN,

we get by choosing ¢ sufficiently small
IF(&)—a(@)| < nM/s; (E€E)

where we can take 0<n<1 (along with the estimate |F| < CM). Thus we
can effectively set the reiteration at work and finally solve our interpolation
problem.

Using the interpolation result the following inequality of Hardy type can
easily be proved

)] Ifl 2 C Ilf(é)ldé/é(él) (€C>0).

Here fis any function in L! with supp f=R" and §(t) denotes the measure of
the set supp fN{0<¢,<t}. The inequality is non-trivial only for those
functions for which §(t) < oo for some t>0 and in these cases the inequality
follows from the above if we put E=supp f and make a “dyadic” partition of
supp f in slices orthogonal to the ¢,-axis. If supp f is contained in a proper
cone (in turn contained in R"%) then of course 4(¢,)<const-||" and therefore

(3) Iy 2 € ~[lf(é)ldf/lél" (C>0).

REMARK 1. From this it is easy to get the corresponding result for the real
Hardy class H! = H!(R" (cf. infra). This n-dimensional form of the classical
Hardy’s inequality seems to have been known in 1974 to a number of authors
(see [3], [10]). The proof is essentially based on the use of “atoms”.
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REMARK 2. It is also of interest to notice that (3') is still valid if we only
assume that supp fis contained in a half-space, say, R", = {¢, >0}. A proof can
be readily obtained by “transference” (cf. [8]) using the classical (one
dimensional) result. Indeed, we have the following more general result: if f € L*
with supp f={¢,>0} and k is any positive, homogeneous of degree —n
- function whose restriction to the unit sphere $"~! in R" is an integrable
function, [g-1k(§)dA <oo (dA=area element), we have

Il 2 Cjk(é)lf(é)ldé (€C>0).

PRrOOF. Setting w=_¢/|¢| (w € 8" 1) and y=x, + w,/®, X3+ . . . + ©, /0, "X,
(=<{x,w)/w,) we may write

- 02 On
j(é) —f<51a¢1 wla'--aél wl)
= Je‘é"<jf(y—2—:x2— . —g:—x,,xz,. . .,x,,) dx, ... dx,,) dy

= Je"’:“G(w, y)dy

where G(w, y)=F(w, yw,) - w, and F(w,y) stands for the Radon transform of f,

d dx
F(w,y) = — dx = .
(0, ) 2 Lx’wg f(x)dx Lx’wq f(x)d<x, o>

Using the 1-dimensional Hardy’s inequality (keeping w fixed so that 7
=f(&,, & wy/wy,. . ., & " w,/w,) may be regarded as the Fourier transform of
G(w, y) we see that

f Ifolde/e, < € J IF(w,y)ldy < CIIfl, .

Multiply this inequality by k(w) and integrate over ", noticing that d¢,dA/¢,
=d¢, ... dE,/1E" Indeed by &,=¢,.m,/w, we have

d¢, = d&, = d¢; o Jo,+¢d(w/o,)  (k=2,3,...).
This gives
dé, ... d¢, = & YE d(wy/wy) . . . d(w,/w,) .

Dividing by |{|" the desired relation follows. Now the above inequality results.
For an alternative proof, due to Janson, see [25].
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Now we leave the (pointwise) interpolation problem and, taking the word
interpolation in a different sense, turn to interpolation spaces.

We claim that the obvious analogous of at leat Theorem B of section 2 holds
true in R", viz.

(BMO, B#)e = By ,
in the same hypothesis as in that section.

First we must define the spaces involved. As for the Lorentz-Besov spaces B
this is obvious (cf. [2], [21]); we use as before sequences of test functions
{w;};cz> now of course in R", requiring from the supports that supp &;<{2/~*
<|€1<2* 1}, As for BMO we use a “microlocal” definition inspired by a paper
by Carleson [5]: fe BMO=BMO (R" iff for every direction ¢ (%0) there
exists a Calderon-Zygmund (CZ) operator K, which is non-characteristic in
that direction, and a function g in L® such that Kf=Kg. A few words of
explanation: A CZ operator is a convolution with a smooth (in R"\ {0})
function k, which is homogeneous of degree —n and has zero mean value over
the unit sphere §"~ !, jsm k(x)dA =0; it is non-characteristic in the ¢ direction
if k(£)%0. If n=1 there are essentially only two CZ transforms, viz. the (Riesz)
projections P and P_, so it is clear that this is essentially the previous
definition. If n>1 one needs a formal proof. Using a finite partition of unity
one sees that an f which is in BMO according to our definition can be written
in the form f=3"N | K,g,, where the K; are suitable CZ operators and each g; is
in L*®, so that f is certainly in BMO in the usual sense (CZ operators act on
BMO). The other direction follows by duality from Carleson’s result ([5,
Theorem 3]).

With this preliminaries settled it is now obvious how to carry over the
arguments of section 2. Let thus fin B2 be given. Without loss of generality we
may assume that supp fis contained in a “narrow” cone E inside the halfspace
R".. Set again f;=w;*f and

F = Z (p(a(h1+hl+l+ . .”f,
jeZ
with ¢ as in section 2 and h;=2P_|f}| as earlier in the present section. Again it
is plain that ||F|,=0(1/¢). Define F=KF, &;=Kwj, where K is a CZ
transform such that k has its support in a slightly larger cone E, < E still inside
R" and equal to 1 on E (so that Kf=f). Then clearly

wj*(F—f) = Z D;x(p(e(h,+hy oy + .. N-1f,
vzj—io
where j, is a constant depending solely on the “geometry” (the choice of E and
E,). Also by definition ||F||gyo=0(1/e). It is now obvious how to complete the
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proof (following the pattern laid down in section 2) and we are thus l-ead toa
conclusion of the type f € (BMO, B!,

pPin
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