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A NEW TYPE OF AFFINE BOREL FUNCTION

MICHEL TALAGRAND*
Abstract.

We construct a separable Banach space E which has the Schur property and
such that there is x € E**\E which is Borel and strongly affine on
(E*, weak*). If K denotes the unit ball of (E* weak*), x is Borel, affine and
strongly affine on K. However, x cannot be obtained from affine continuous
functions on K by taking pointwise limits and repeating this operation any
number of times.

1. Introduction.

Let K be a metrisable convex compact of a locally convex vector space. We
denote by A(K) the space of continuous affine functions on K. By induction
over the ordinal a, we define the class 4,(K) of functions of Baire affine class a.
We set Ay(K)=A(K), and we take for A4,(K) the set of pointwise limits of
sequences in U, A4(K).

Given a Borel probability measure p on K, we define its barycenter b, as the
unique point of K such that for each f € A(K), we have

(1 fb) = I f(x)du(x) .
K

A function fon K is called strongly affine if for each Borel probability u it is
u-measurable and (1) holds. A strongly affine function f is affine.

By Lebesgue’s theorem, and induction over g, it follows that for each a, each
fe€ A,(K) is strongly affine.

The following natural question has been open for some time: given a
strongly affine function f on K, which is Borel, does f belong to some 4,(K)?
The main result of this paper is to provide a negative answer.

For the convenience of the reader who is not familiar with this question, we
discuss now some related results.

If f is an affine function on K, which is of first Baire class, then fis strongly
affine, by a result of Choquet ([5, p. 100]). Moreover, f belongs to 4, (K), by a
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result of Mokobodzki (unpublished). In other words, knowing that f'is affine
and a pointwise limit of a sequence of continuous functions, it is a pointwise
limit of affine continuous functions.

If fis an affine function on K, which is of second Baire class, then f need not
be strongly affine, as an easy example shows ([ 5, p. 104]). Our example will be
of second Baire class, strongly affine, but is not any 4,(K).

A lot is known under some special assumptions on K. If K is a Choquet
simplex, M. Capon has shown that an affine function on K which is Borel of
Baire class o belongs to A4,,,(K). If K is the unit ball of (L*, weak*), a
remarkable result of J. P. R. Christensen [2] shows that each Borel affine
function on K is automatically continuous. This result has been extended to
the unit ball fo the dual of a Banach lattice which does not contain ¢, by G.
Godefroy [4].

A closely connected problem is the structure of convex Borel sets. A convex
set A is called strongly convex if for each compact set L < A, A contains the
closed convex hull of L. Given a metrizable convex compact K we define the
Borel convex classes C,(K), in the following way. C,(K) is the class of convex
closed sets. For « even, C, . (K) consists of the increasing unions of sequences
in C,(K). For « odd, C,,,(K) consists of the countable intersections of
elements of C,(K). Finally, if « is a limit, then C,(K) is the union of C,(K) for
y <o. A remarkable result of D. Preiss shows that a set belongs to some C,(K)
if it is Borel and strongly convex. We find it very surprising that the
corresponding problem for linear functionals has a negative answer.

2. The Result.

We say that a Banach space E has the Schur property if each sequence (x,)
of E which goes to zero weakly also goes to zero in norm. It then follows
that E is weakly sequentially complete. Denote by K the unit ball of
(E*,weak*). Then, E identifies with the subset A°(K) of functions which
take values zero at zero. To say that E is weakly sequentially complete is
equivalent to saying that each pointwise limit of functions in A°(K) still
belongs to A°(K). It is then easily seen that A, (K)=A(K), and so 4,(K)=A4(K)
for each a, so for each a,

A (K) N E** = {x € A,(K): x(0)=0} = E.
THEOREM. There exists a separable Banach space E which has the Schur

property, and x € E**\ E such that x is strongly affine and of second Baire class
on the unit ball K of (E*,weak*).
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3. Construction of E.

Let I={(n,p) e Nx N: p<n}. For (n,p) € I, we denote by e, , the element of
R’ such that e, p(i)=1 for i=(n,p) and zero otherwise. We denote by F the
linear span of the (e, ). We denote by ey, the orthogonal system to (e, ,).

For y € F, we set

Iyll; = Y supleX, ().

n P=n

We denote by X the set of increasing sequences of integers, that is ¢ € X if a(n)
<a(m) for n<m. For ¢ € X, 6= (0(n)), we define the linear functional g, on F
by g,(e, ,)=1if p=a(n) and g,(e, ,)=0 otherwise. For y € F, let

iyl = sup{lg,(y)l:0o€ Z}.

Finally, let [yl =sup (], Iy,

We denote by E, (respectively E,, E) the completion of F for ||,
(respectively || ||, || - [I)- The map y — (y,y) extends into an isometry of E as a
subspace of E, x E,. We shall identify E with its image under this map. We
denote by |- || the norm of E, x E,.

4. Construction of x.

For simplicity, we set G=E, xE,. For p<n, let f, ,=(0,¢, ) € G.

For ¢ € X, we have lim,_,, g,(e, ,)=1 if lim,o(n)<p and =0 otherwise. It
follows that lim,lim, g, (e, ,) exists. Since the set (g,, 0 € X) is weak* compact,
it follows from Krein—Millman’s theorem and Lebesgue’s theorem that
lim,lim,z(e, ,) exists for z € E¥. It follows that x=lim,lim, f, , exists in
(G**, weak*).

We show now that x € E**. For a sequence of real numbers a, with a, — a,
we have

a =limk™ ") a.
k

i<k
It follows that in (G**, weak*), we have
x = limlimk™" Y f, .
k n psk.

Let g, ,= (e, e, ,) € E. Let us fix k and nzk. Let

fn,k = k—l z fn,p and gn.k = k~1 Z gu.p'

p=k Pk

For z € E¥, we have z(f, ,)=z(g, ). For z € E}, we have z(f, ,)=0, while

k“z( Y e,,,p>
psk

< k7 Hzl, -

Iz(gn,k)l é
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It follows that || f, , — g,..ll Sk '. Now, we notice the g, , belongs to the unit
ball of E, and that the unit ball E}* of E** and G}* of G** are weak*-
compact. It follows that

limk™'f, . € EX*+k™'G¥*

and hence that x* € E¥*.

We denote by K the unit ball of E* and L the unit ball of G*. We denote by
¢ the canonical map from L to K. It is continuous. Let us consider x as an
element of E** that is a function on K. Then, xo¢ is a function on L, and
identifies with x considered as an element of G**. The definition of x shows
that xop € A,(L). In particular, xo¢ is of second Baire class on L. A deep
result of J. Saint-Raymond [6] shows that x is of second Baire class on K
(hence also on E*, weak*). We do not know an easy way to write x as a limit of
a limit of continuous functions on K. It is however possible to check that, for
z e E*,

x(z) = limlimsupp™' ) z(e, ,)
k n p=k
but this formula shows only that x is of third Baire class.

Since xop € A,(L), xo@ is strongly affine. If u is a probability measure on K,
there is a probability v on L with ¢(v)=p, and since ¢ is affine, we have ¢(b,)
=b,. Now,

de;z = Jxogodv = xo@(b,) = x(b,)

which shows that x is strongly affine.

5. Proof that E has the Schur Property.

It is enough to prove the following stronger fact: each sequence (y,) of E, of
norm one, and such that e*(y,) — O for each i € I, contains a subsequence
which spans a complemented copy of I'.

A standard pertubation argument reduces the problem to the case where
there is a sequence (k,) such that y, belongs to the linear span of the vectors e, ,
for k,<p<k,,;-

Assume first that there is a subsequence of (y,), still called y,, such that ||y,|,
>a >0 for each n. Then, y, is equivalent to the unit vector basis of I'. Denote
by z, a sequence of E} with z,(y,)>0, |Iz,]; =1, and z,(e, ,)=0 for p<k, or
p=k, ;. The map

QX — Z (Zn(x)/zn(y))yn

is a projection of E on the span of (y,).
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Assume now that |y,|l; — 0. Since | y,|| =1, there exists a sequence ¢" € X
such that g..(y,)>3. For each g, we have
im ) ley, (vl = 0.

n=oo r<q
p2r

By extracting a subsequence, we can assume that
Z |e:,r(ynn < %'
r<k,

pzr

For a subset P of N, let us denote by o, the following sequence.
For k,<p<k,,1

ap(p) = p+1 if n¢ P
op(p) = sup (o,(p)k,) ifneP.

It is easy to check that op is increasing. For n ¢ P, we have g, (y,)=0. For
- n € P, we have

gop(yn) = ga"(yn)—‘z e:,n(Yn)
where the summation is taken for k,<p=<k,,, and o,(p)<q<Ah, and hence

8.0 2 7.

Using a lemma of Rosenthal ([7, Proposition 4]), this shows that y, is
equivalent to the [!-basis.

For each n, let z, € E* be given by z,=3 e, ,, where the summation is taken
for k,<p<k,,, and sup (o,(p), k,) <q <p. It is routine to check that the map

y = Y (202,00 ")y

is a projection of E onto the span of the y,.
The theorem is proved. '

It should also be noticed that E also shows that the converse of Theorem 13
of [3] does not hold. Indeed, the result of this paragraph shows that each
infinite-dimensional subspace of E contains a copy of [! which is
complemented in the whole space. However, for each bounded operator T:
E — I', T**(x) is Borel on (I*, weak*), so it belongs to I’
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