A NEW TYPE OF AFFINE BOREL FUNCTION

MICHEL TALAGRAND*

Abstract.

We construct a separable Banach space E which has the Schur property and such that there is $x \in E^{**} \setminus E$ which is Borel and strongly affine on $(E^*, \text{weak*})$. If K denotes the unit ball of $(E^*, \text{weak*})$, x is Borel, affine and strongly affine on K. However, x cannot be obtained from affine continuous functions on K by taking pointwise limits and repeating this operation any number of times.

1. Introduction.

Let K be a metrisable convex compact of a locally convex vector space. We denote by A(K) the space of continuous affine functions on K. By induction over the ordinal α , we define the class $A_{\alpha}(K)$ of functions of Baire affine class α . We set $A_0(K) = A(K)$, and we take for $A_{\alpha}(K)$ the set of pointwise limits of sequences in $\bigcup_{K \leq \alpha} A_K(K)$.

Given a Borel probability measure μ on K, we define its barycenter b_{μ} as the unique point of K such that for each $f \in A(K)$, we have

(1)
$$f(b_{\mu}) = \int_{K} f(x) d\mu(x) .$$

A function f on K is called *strongly affine* if for each Borel probability μ it is μ -measurable and (1) holds. A strongly affine function f is affine.

By Lebesgue's theorem, and induction over α , it follows that for each α , each $f \in A_{\alpha}(K)$ is strongly affine.

The following natural question has been open for some time: given a strongly affine function f on K, which is Borel, does f belong to some $A_{\alpha}(K)$? The main result of this paper is to provide a negative answer.

For the convenience of the reader who is not familiar with this question, we discuss now some related results.

If f is an affine function on K, which is of first Baire class, then f is strongly affine, by a result of Choquet ([5, p. 100]). Moreover, f belongs to $A_1(K)$, by a

^{*} This paper was written while the author was visiting The Ohio State University. Received February 21, 1983.

result of Mokobodzki (unpublished). In other words, knowing that f is affine and a pointwise limit of a sequence of continuous functions, it is a pointwise limit of affine continuous functions.

If f is an affine function on K, which is of second Baire class, then f need not be strongly affine, as an easy example shows ([5, p. 104]). Our example will be of second Baire class, strongly affine, but is not any $A_{\sigma}(K)$.

A lot is known under some special assumptions on K. If K is a Choquet simplex, M. Capon has shown that an affine function on K which is Borel of Baire class α belongs to $A_{\alpha+1}(K)$. If K is the unit ball of $(L^{\infty}, \text{weak*})$, a remarkable result of J. P. R. Christensen [2] shows that each Borel affine function on K is automatically continuous. This result has been extended to the unit ball fo the dual of a Banach lattice which does not contain c_0 by G. Godefroy [4].

A closely connected problem is the structure of convex Borel sets. A convex set A is called strongly convex if for each compact set $L \subset A$, A contains the closed convex hull of L. Given a metrizable convex compact K we define the Borel convex classes $C_{\alpha}(K)$, in the following way. $C_0(K)$ is the class of convex closed sets. For α even, $C_{\alpha+1}(K)$ consists of the increasing unions of sequences in $C_{\alpha}(K)$. For α odd, $C_{\alpha+1}(K)$ consists of the countable intersections of elements of $C_{\alpha}(K)$. Finally, if α is a limit, then $C_{\alpha}(K)$ is the union of $C_{\gamma}(K)$ for $\gamma < \alpha$. A remarkable result of D. Preiss shows that a set belongs to some $C_{\alpha}(K)$ if it is Borel and strongly convex. We find it very surprising that the corresponding problem for linear functionals has a negative answer.

2. The Result.

We say that a Banach space E has the Schur property if each sequence (x_n) of E which goes to zero weakly also goes to zero in norm. It then follows that E is weakly sequentially complete. Denote by K the unit ball of (E^*, weak^*) . Then, E identifies with the subset $A^0(K)$ of functions which take values zero at zero. To say that E is weakly sequentially complete is equivalent to saying that each pointwise limit of functions in $A^0(K)$ still belongs to $A^0(K)$. It is then easily seen that $A_1(K) = A(K)$, and so $A_\alpha(K) = A(K)$ for each α , so for each α ,

$$A_{\alpha}(K) \, \cap \, E^{\, \star \, \star} \, = \, \big\{ x \in A_{\alpha}(K) : x(0) \, = \, 0 \big\} \, = \, E \; .$$

THEOREM. There exists a separable Banach space E which has the Schur property, and $x \in E^{**} \setminus E$ such that x is strongly affine and of second Baire class on the unit ball K of $(E^*, weak^*)$.

3. Construction of E.

Let $I = \{(n, p) \in \mathbb{N} \times \mathbb{N} : p \le n\}$. For $(n, p) \in I$, we denote by $e_{n, p}$ the element of R^I such that $e_{n, p}(i) = 1$ for i = (n, p) and zero otherwise. We denote by F the linear span of the $(e_{n, p})$. We denote by $e_{n, p}^*$ the orthogonal system to $(e_{n, p})$.

For $y \in F$, we set

$$||y||_1 = \sum_{n} \sup_{p \le n} |e_{n,p}^*(y)|$$
.

We denote by Σ the set of increasing sequences of integers, that is $\sigma \in \Sigma$ if $\sigma(n) \le \sigma(m)$ for $n \le m$. For $\sigma \in \Sigma$, $\sigma = (\sigma(n))$, we define the linear functional g_{σ} on F by $g_{\sigma}(e_{n,p}) = 1$ if $p \ge \sigma(n)$ and $g_{\sigma}(e_{n,p}) = 0$ otherwise. For $y \in F$, let

$$||y||_2 = \sup \{|g_{\sigma}(y)| : \sigma \in \Sigma\}.$$

Finally, let $||y|| = \sup (||y||_1, ||y_2||)$.

We denote by E_1 (respectively E_2, E) the completion of F for $\|\cdot\|_1$ (respectively $\|\cdot\|_2, \|\cdot\|$). The map $y \to (y, y)$ extends into an isometry of E as a subspace of $E_1 \times E_2$. We shall identify E with its image under this map. We denote by $\|\cdot\|$ the norm of $E_1 \times E_2$.

4. Construction of x.

For simplicity, we set $G = E_1 \times E_2$. For $p \le n$, let $f_{n,p} = (0, e_{n,p}) \in G$.

For $\sigma \in \Sigma$, we have $\lim_{n \to \infty} g_{\sigma}(e_{n,p}) = 1$ if $\lim_n \sigma(n) < p$ and = 0 otherwise. It follows that $\lim_p \lim_n g_{\sigma}(e_{n,p})$ exists. Since the set $(g_{\sigma}, \sigma \in \Sigma)$ is weak* compact, it follows from Krein-Millman's theorem and Lebesgue's theorem that $\lim_p \lim_n z(e_{n,p})$ exists for $z \in E_2^*$. It follows that $x = \lim_p \lim_n f_{n,p}$ exists in $(G^{**}, \text{weak*})$.

We show now that $x \in E^{**}$. For a sequence of real numbers a_n with $a_n \to a$, we have

$$a = \lim_{k} k^{-1} \sum_{i \leq k} a_i.$$

It follows that in $(G^{**}, weak^*)$, we have

$$x = \lim_{k} \lim_{n} k^{-1} \sum_{p \leq k} f_{n,p}.$$

Let $g_{n,p} = (e_{n,p}, e_{n,p}) \in E$. Let us fix k and $n \ge k$. Let

$$\bar{f}_{n,k} = k^{-1} \sum_{p \le k} f_{n,p}$$
 and $\bar{g}_{n,k} = k^{-1} \sum_{p \le k} g_{n,p}$.

For $z \in E_2^*$, we have $z(\overline{f}_{n,k}) = z(\overline{g}_{n,k})$. For $z \in E_1^*$, we have $z(\overline{f}_{n,k}) = 0$, while

$$|z(\bar{g}_{n,k})| \le \left| k^{-1} z \left(\sum_{p \le k} e_{n,p} \right) \right| \le k^{-1} ||z||_1.$$

It follows that $\|\overline{f}_{n,k} - \overline{g}_{n,k}\| \le k^{-1}$. Now, we notice the $\overline{g}_{n,k}$ belongs to the unit ball of E, and that the unit ball E_1^{**} of E^{**} and G_1^{**} of G^{**} are weak*-compact. It follows that

$$\lim_{n} k^{-1} \overline{f}_{n,k} \in E_1^{**} + k^{-1} G_1^{**}$$

and hence that $x^* \in E_1^{**}$.

We denote by K the unit ball of E^* and L the unit ball of G^* . We denote by φ the canonical map from L to K. It is continuous. Let us consider x as an element of E^{**} , that is a function on K. Then, $x \circ \varphi$ is a function on L, and identifies with x considered as an element of G^{**} . The definition of x shows that $x \circ \varphi \in A_2(L)$. In particular, $x \circ \varphi$ is of second Baire class on L. A deep result of L is Saint-Raymond [6] shows that L is of second Baire class on L (hence also on L*, weak*). We do not know an easy way to write L as a limit of a limit of continuous functions on L. It is however possible to check that, for L is how the characteristic that L is how that L is how the characteristic that L is how that L is how the characteristic that L is

$$x(z) = \lim_{k} \limsup_{n} p^{-1} \sum_{p \le k} z(e_{n,p})$$

but this formula shows only that x is of third Baire class.

Since $x \circ \varphi \in A_2(L)$, $x \circ \varphi$ is strongly affine. If μ is a probability measure on K, there is a probability ν on L with $\varphi(\nu) = \mu$, and since φ is affine, we have $\varphi(b_{\nu}) = b_{\mu}$. Now,

$$\int x \, d\mu = \int x \circ \varphi \, dv = x \circ \varphi(b_{\nu}) = x(b_{\mu})$$

which shows that x is strongly affine.

5. Proof that E has the Schur Property.

It is enough to prove the following stronger fact: each sequence (y_n) of E, of norm one, and such that $e_i^*(y_n) \to 0$ for each $i \in I$, contains a subsequence which spans a complemented copy of l^1 .

A standard pertubation argument reduces the problem to the case where there is a sequence (k_n) such that y_n belongs to the linear span of the vectors $e_{p,q}$ for $k_n \le p < k_{n+1}$.

Assume first that there is a subsequence of (y_n) , still called y_n , such that $||y_n||_1 > \alpha > 0$ for each n. Then, y_n is equivalent to the unit vector basis of l^1 . Denote by z_n a sequence of E_1^* with $z_n(y_n) > \alpha$, $||z_n||_1 = 1$, and $z_n(e_{p,q}) = 0$ for $p < k_n$ or $p \ge k_{n+1}$. The map

$$\varphi: x \to \sum (z_n(x)/z_n(y))y_n$$

is a projection of E on the span of (y_n) .

Assume now that $||y_n||_1 \to 0$. Since $||y_n|| = 1$, there exists a sequence $\sigma^n \in \Sigma$ such that $g_{\sigma^n}(y_n) > \frac{1}{2}$. For each q, we have

$$\lim_{n\to\infty}\sum_{\substack{r\leq q\\p\geq r}}|e_{p,r}^*(y_n)|=0.$$

By extracting a subsequence, we can assume that

$$\sum_{\substack{r \leq k_n \\ p \geq r}} |e_{p,r}^*(y_n)| < \frac{1}{4}.$$

For a subset P of N, let us denote by σ_P the following sequence.

For $k_n \leq p < k_{n+1}$,

$$\sigma_P(p) = p+1$$
 if $n \notin P$
 $\sigma_P(p) = \sup (\sigma_n(p), k_n)$ if $n \in P$.

It is easy to check that σ_P is increasing. For $n \notin P$, we have $g_{\sigma_P}(y_n) = 0$. For $n \in P$, we have

$$g_{\sigma_P}(y_n) = g_{\sigma^n}(y_n) - \sum_{n} e_{p,n}^*(y_n)$$

where the summation is taken for $k_n \le p \le k_{n+1}$ and $\sigma_n(p) \le q < k_n$ and hence

$$g_{\sigma P}(y_n) \geq \frac{1}{4}$$
.

Using a lemma of Rosenthal ([7, Proposition 4]), this shows that y_n is equivalent to the l^1 -basis.

For each n, let $z_n \in E^*$ be given by $z_n = \sum e_{p,q}$, where the summation is taken for $k_n \le p < k_{n+1}$ and sup $(\sigma_n(p), k_n) < q \le p$. It is routine to check that the map

$$y \rightarrow \sum (z_n(y)z_n(y_n)^{-1})y_n$$

is a projection of E onto the span of the y_n .

The theorem is proved.

It should also be noticed that E also shows that the converse of Theorem 13 of [3] does not hold. Indeed, the result of this paragraph shows that each infinite-dimensional subspace of E contains a copy of l^1 which is complemented in the whole space. However, for each bounded operator T: $E o l^1$, $T^{**}(x)$ is Borel on $(l^{\infty}, \text{weak*})$, so it belongs to l^1 .

REFERENCES

- M. Capon, Sur les fonctions qui vérifient le calcul barycentrique, Proc. London Math. Soc. 32 (1976), 163-180.
- J. P. R. Christensen, Topology and Borel structure (North-Holland Math. Studies 10 (Notas Mat. 51)), North-Holland, Amsterdam, 1974.

- 3. G. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983), 83-98.
- 4. G. Godefrey, Etude topologique des éléments du bidual d'un espace de Banach. Applications, C.R. Acad. Sci. Paris Sér. I Math. 287 (1979), 67-72.
- 5. D. Preiss, The convex generation of convex Borel sets in Banach spaces, Mathematika 20 (1973), 1-3.
- 6. R. R. Phelps, Lectures on Choquet's theorem (Van Nostrand Math. Studies 7), D. Van Nostrand Co., Inc., Princeton, Toronto, London, 1966.
- 7. H. P. Rosenthal, A characterisation of Banach spaces containing l¹, Proc. Nat. Acad. Sci. U.S.A. (1974), 2411-2413.
- 8. J. Saint-Raymond, Fonctions boreliennes sur un quotient, Bull. Sci. Math. 100 (1976), 141-147.
- 9. R. D. Williams, Iterated sequential closure of a Banach space in its second conjugate, Proc. Amer. Math. Soc. 16 (1965), 1195-1100.
- 10. R. D. Williams, A note on weak sequential convergence, Pacific J. Math. 12 (1962), 333-335.

EQUIPE D'ANALYSE-TOUR 46 UNIVERSITÉ PARIS VI 4. PLACE JUSSIEU 75230 PARIS CEDEX 06 FRANCE