ON GAMES OF TOPSØE

RASTISLAV TELGÁRSKY

F. Topsøe [17] introduced several topological games, called strong games with clustering, and by means of the games SC^M and kSC^M he characterized sieve-complete spaces. Both these games and the game P(X, Y) (in the author's notation) considered by E. Porada [10] are natural modifications of the strong game of G. Choquet [1].

In the present paper there are introduced two more games: the k-modification of the game P(X, Y) denoted by kP(X, Y) and game H(X), called the Hurewicz game. The following relations are established (\sim denotes the equivalence of games): $SC^M(X) \sim P(\beta X, X)$, $kSC^M(X) \sim kP(\beta X, X) \sim H(X^*)$, where $X^* = \beta X - X$ and βX is the Čech-Stone compactification of X. Moreover, some relations to the game G(C, X) of the author [12, 13, 15] are derived. For another results concerning P(X, Y) we refer to [14, 16].

All spaces considered here are assumed to be completely regular and all games involve perfect information for both players. N denotes the set of all positive integers. Following the notation of [5], $I \uparrow G$ (II $\uparrow G$) denotes that Player I (respectively Player II) has a winning strategy (w.s. for short) in the game G. $G_1 \sim G_2$ denotes that $I \uparrow G_1 \Leftrightarrow I \uparrow G_2$ and II $\uparrow G_1 \Leftrightarrow II \uparrow G_2$. For topological background the reader is referred to [2].

Recall the game $kSC^M(X)$, where X is a given space. Here, however, the players β and α are called Player I and Player II, respectively. Player I chooses a compact non-empty set C_1 and an open neighbourhood (nbhd. for short) U_1 of C_1 . After that Player II chooses an open nbhd. V_1 of C_1 with $V_1 \subset U_1$. Now Player I chooses a compact non-empty set $C_2 \subset V_1$ and an open nbhd. U_2 of C_2 with $U_2 \subset V_1$. After that Player II chooses an open nbhd. V_2 of C_2 with $V_2 \subset U_2$, and so on. Player II wins the play $((C_1, U_1), V_1, (C_2, U_2), V_2, \ldots)$ of $kSC^M(X)$ if each filter base $\mathscr F$ such that for each $n \in \mathbb N$, there is a $F_n \in \mathscr F$ with $F_n \subset V_n$ clusters in X, that is $\bigcap \{\bar F: F \in \mathscr F\} \neq \emptyset$; otherwise Player I wins. The games SC^M and kSC^M differ just in the following: in SC^M the sets C_n are singletons.

Let Y be a subset of a space X. The game kP(X, Y) is played as $kSC^{M}(X)$ except for the extra rule that C_{n} 's must be subsets of Y. Player II wins the play

Received November 5, 1982; in revised form May 2, 1983.

of kP(X, Y), if $\emptyset \neq \bigcap \{V_n : n \in \mathbb{N}\} \subset Y$; otherwise Player I wins. In P(X, Y) it is further demanded that C_n 's are singletons.

In the Hurewicz game H(X), where X is a given space, Player I chooses an open cover \mathscr{G}_1 of X and after that Player II chooses a finite subfamily \mathscr{H}_1 of \mathscr{G}_1 . Again Player I chooses an open cover \mathscr{G}_2 of X and Player II chooses a finite subfamily \mathscr{H}_2 of \mathscr{G}_2 , and so on. Player II wins the play $(\mathscr{G}_1, \mathscr{H}_1, \mathscr{G}_2, \mathscr{H}_2, \ldots)$ of H(X) if $\bigcup \{\bigcup \mathscr{H}_n \colon n \in \mathbb{N}\} = X$; otherwise Player I wins.

The Hurewicz game is related to Hurewicz spaces studied by A. Lelek [8], the author [11, 12] and others, but introduced in 1926 by W. Hurewicz [6]. A space X is said to be a Hurewicz space if for each sequence $(\mathcal{G}_1, \mathcal{G}_2, \ldots)$ of open covers of X, there is a cover \mathcal{H} of X such that $\mathcal{H} = \bigcup \{\mathcal{H}_n : n \in \mathbb{N}\}$, where each \mathcal{H}_n is a finite subfamily of \mathcal{G}_n . (Or, equivalently: for each sequence $(\mathcal{G}_1, \mathcal{G}_2, \ldots)$ of finitely additive open covers of X, there is a selector $(G_1, G_2, \ldots) \in \mathcal{G}_1 \times \mathcal{G}_2 \times \ldots$ such that $\bigcup \{G_n : n \in \mathbb{N}\} = X$.) It is easy to check that if X is not a Hurewicz space, then $I \uparrow H(X)$; hence, if $II \uparrow H(X)$, then X is a Hurewicz space.

Finally, recall the games G(C, X) and G(F, X) of [12]. In G(C, X) Player I chooses a compact set C_1 in X and after that Player II chooses a closed set $E_1 \subset X - C_1$. Player I chooses a compact set $C_2 \subset E_1$ and Player II chooses a closed set $E_2 \subset E_1 - C_2$, and so on. Player I wins the play $(C_1, E_1, C_2, E_2, \ldots)$ of G(C, X) if $\bigcap \{E_n : n \in \mathbb{N}\} = \emptyset$; otherwise Player II wins. The game G(F, X) is played as G(C, X), but with the restriction that C_n 's are finite sets.

THEOREM 1. Let X be a compactification of Y. Then $SC^M(Y) \sim P(X, Y)$, and $kSC^M(Y) \sim kP(X, Y)$.

The proofs of both statements are similar and quite easy when indicating their essential points: without loss of generality we may assume that Player II always chooses the set V_n with $\bar{V}_n \subset U_n$; $x \in \bigcap \{V_n : n \in \mathbb{N}\}$, iff there is a filter base \mathscr{F} of subsets of Y so that $\bigcap \{\bar{F} : F \in \mathscr{F}\} = \{x\}$ and for each $n \in \mathbb{N}$, there is a $F_n \in \mathscr{F}$ with $F_n \subset V_n$. Therefore the details of the proof are left to the reader.

THEOREM 2. Let Y be a subset of a compact space X. Then $kP(X, Y) \sim H(X - Y)$.

PROOF. For each compact set $C \subset Y$ and each open set U in X with $C \subset U$ denote by $\mathscr{V}(C, U)$ a base of nbhds. of C in X with $\overline{V} \subset U$ for each $V \in \mathscr{V}(C, U)$. For each open set G in X - Y denote by G' an open set in X such that $G' \cap (X - Y) = G$.

Let s be a w.s. of Player I in kP(X, Y). We define a w.s. t for the player in H(X - Y). Put

$$(C_1, U_1) = s(\emptyset)$$
 and $\mathscr{G}_1 = \{(X - Y) - \overline{V} \colon V \in \mathscr{V}(C_1, U_1)\}$.

Then $\bigcup \mathcal{G}_1 = X - Y$. Put $t(\emptyset) = \mathcal{G}_1$. For each finite subfamily \mathcal{H}_1 of \mathcal{G}_1 , there is a finite subfamily \mathcal{V}_1 of $\mathcal{V}(C_1, U_1)$ such that

$$\mathcal{H}_1' = \{(X - Y) - \overline{V} \colon V \in \mathcal{V}_1\}$$
.

Put $V_1 = \bigcap V_1$. Then $C_1 \subset V_1 \subset U_1$. Put

$$(C_2, U_2) = s(V_1)$$
 and $\mathscr{G}_2 = \{(X - Y) - \bar{V} : V \in \mathscr{V}(C_2, U_2)\}$.

Then $\bigcup \mathcal{G}_2 = X - Y$. Put $t(\mathcal{H}_1) = \mathcal{G}_2$. Again, for each finite subfamily \mathcal{H}_2 of \mathcal{G}_2 , there is a finite subfamily \mathcal{V}_2 of $\mathcal{V}(C_2, U_2)$ such that

$$\mathcal{H}_2 = \{ (X - Y) - \bar{V} \colon V \in \mathcal{V}_2 \} .$$

Put $V_2 = \bigcap V_2$. Then $C_2 \subset V_2 \subset U_2$. Put $(C_3, U_3) = s(V_1, V_2)$, and so on. Since

$$(X-Y) \cap \bigcap \{V_n : n \in \mathbb{N}\} \neq \emptyset$$

t is easy to check that $\bigcup \{\bigcup \mathcal{H}_n : n \in \mathbb{N}\} \neq X - Y$.

Let s be a w.s. of Player I in $H(X - \Psi)$. We define a w.s. t for the player in kP(X, Y). Put $\mathscr{G}_1 = s(\emptyset)$, $C_1 = X - \bigcup \{G' : G \in \mathscr{G}_1\}$ and $U_1 = X$. Then $C_1 \subset Y$. Put $t(\emptyset) = (C_1, U_1)$. Since X is compact, for each open nbhd. V_1 of C_1 , there is a finite subfamily \mathscr{H}_1 of \mathscr{G}_1 such that $X - \bigcup \{G' : G \in \mathscr{H}_1\} \subset V_1$. Put

$$\mathcal{G}_2 = s(\mathcal{H}_1)$$
 and $C_2 = X - \bigcup \{G' : G \in \mathcal{H}_1 \cup \mathcal{G}_2\}$.

Then $C_2 \subset V_1 \cap Y$. Put $U_2 = V_1$ and $t(V_1) = (C_2, U_2)$. Since X is compact, for each open nbhd. V_2 of C_2 with $V_2 \subset U_2$, there is a finite subfamily \mathscr{H}_2 of \mathscr{G}_2 such that $X - \bigcup \{G' : G \in \mathscr{H}_1 \cup \mathscr{H}_2\} \subset V_2$. Put $\mathscr{G}_3 = s(\mathscr{H}_1, \mathscr{H}_2)$, and so on. Since $\bigcup \{\bigcup \mathscr{H}_n : n \in \mathbb{N}\} \neq X - Y$, it is easy to check that

$$(X - Y) \cap \bigcap \{V_n : n \in \mathbb{N}\} \neq \emptyset$$
.

Let s be a w.s. of Player II in kP(X, Y). We define a w.s. t for the player in H(X-Y). For each open (in X-Y) cover \mathscr{G}_1 of X-Y we put $C_1=X-\bigcup\{G'\colon G\in\mathscr{G}_1\}$, $U_1=X$ and $V_1=s(C_1,U_1)$. Since $C_1\subset V_1$, there is a finite subfamily \mathscr{H}_1 of \mathscr{G}_1 such that $X-\bigcup\{G'\colon G\in\mathscr{H}_1\}\subset V_1$. Put $t(\mathscr{G}_1)=\mathscr{H}_1$. For each open (in X-Y) cover \mathscr{G}_2 of X-Y we put

$$C_2 = X - \bigcup \{G' : G \in \mathcal{H}_1 \cup \mathcal{G}_2\}, \quad U_2 = V_1, \quad \text{and} \quad V_2 = s(C_1, U_1, C_2, U_2) .$$

Since $C_2 \subset V_2$, there is a finite subfamily \mathscr{H}_2 of \mathscr{G}_2 such that $X - \bigcup \{G' : G \in \mathscr{H}_1 \cup \mathscr{H}_2\} \subset V_2$. Put $t(\mathscr{G}_1, \mathscr{G}_2) = \mathscr{H}_2$, and so on. Since $\bigcap \{V_n : n \in \mathbb{N}\} \subset Y$, it is easy to check that $\bigcup \{\bigcup \mathscr{H}_n : n \in \mathbb{N}\} = X - Y$.

Let s be a w.s. of Player II in H(X-Y). We define a w.s. t for the player in kP(X, Y). For each compact subset C_1 of Y and each open nbhd. U_1 of C_1 we put

$$\mathcal{G}_1 = \{(X - Y) - \overline{V} \colon V \in \mathcal{V}(C_1, U_1)\}$$
 and $\mathcal{H}_1 = s(\mathcal{G}_1)$.

Since \mathscr{H}_1 is finite, there is a finite subfamily \mathscr{V}_1 of $\mathscr{V}(C_1, U_1)$ such that $\mathscr{H}_1 = \{(X - Y) - \overline{V}: V \in \mathscr{V}_1\}$. Put $V_1 = \bigcap \mathscr{V}_1$ and $t(C_1, U_1) = V_1$. For each compact subset C_2 of $V_1 \cap Y$ and each open nbhd. U_2 of C_2 with $U_2 \subset V_1$ we put

$$\mathcal{G}_2 = \{ (X - Y) - \overline{V} \colon V \in \mathcal{V}(C_2, U_2) \quad \text{and} \quad \mathcal{H}_2 = s(\mathcal{G}_1, \mathcal{G}_2) .$$

Since \mathcal{H}_2 is finite, there is a finite subfamily \mathcal{V}_2 of $\mathcal{V}(C_2, U_2)$ such that $\mathcal{H}_2 = \{(X - Y) - \bar{V} : V \in \mathcal{V}_2\}$. Put $V_2 = \bigcap \mathcal{V}_2$, $t(C_1, U_1, C_2, U_2) = V_2$, and so on. Since

$$\bigcup \{\bigcup \mathscr{H}_n : n \in \mathbb{N}\} = X - Y \quad \text{and} \quad V_n = \bigcap \mathscr{V}_n \subset \bigcap \{\bar{V} : V \in \mathscr{V}_n\} \subset U_n,$$

it is easy to check that $\emptyset \neq \bigcap \{V_n : n \in \mathbb{N}\} \subset Y$.

From Theorems 1 and 2 we immediately get, denoting by X^* the remainder $\beta X \setminus X$:

COROLLARY 1.
$$1 \uparrow kSC^{M}(X) \Leftrightarrow 1 \uparrow kP(\beta X, X) \Leftrightarrow 1 \uparrow H(X^{*})$$
.

Moreover, we get

COROLLARY 2. The following conditions are equivalent:

- 2.1. II $\uparrow SC^M(X)$.
- 2.2. II $\uparrow P(\beta X, X)$.
- 2.3. II $\uparrow kSC^M(X)$.
- 2.4. II $\uparrow kP(\beta X, X)$.
- 2.5. II $\uparrow H(X^*)$.
- 2.6. I $\uparrow G(C, X^*)$, that is, X^* is compact-like (cf. [12, p. 195]).
- 2.7. X is sieve-complete (cf. [9, 15, 17]).

PROOF. The equivalence of 2.1, 2.3, and 2.7 was proved by F. Topsøe [17], the equivalence of 2.6 and 2.7 was proved by the author in [15], and the remaining equivalences follow from the above theorems.

The list of conditions in Corollary 2 can be considerably extended. F. Topsøe showed in [17, p. 620], that $SC^M \sim S^*C^M$ and $kSC^M \sim kS^*C^M$, where the games S^*C^M and kS^*C^M are defined precisely as SC^M and kS^*C^M respectively, except for the extra rules that $U_1 = X$, $U_2 = V_1$, $U_3 = V_2$,... Other conditions can be derived from recent results of F. Galvin and the author [4]; it turns out that in 2.1–2.4 and 2.6 one can equivalently state: the player has a

stationary w.s. in the corresponding game (the same also holds for $II \uparrow S*C^M(X)$ and $II \uparrow kS*C^M(X)$). For further conditions we refer to [15].

Since each space X is the remainder of some space Y for a compactification Z of Y (e.g., for $Y = ([0,1) \times \beta X) \cup (\{1\} \times X^*)$ and $Z = [0,1] \times \beta X$ we get $Z - Y = \{1\} \times X$), from Corollary 2 we get

COROLLARY 3. II
$$\uparrow H(X) \Leftrightarrow I \uparrow G(C, X)$$
.

This corollary provides a new characterization of compact-like spaces. Comparing to Corollary 5 in [15], this one involves families of open sets only. By 6.4 of [12] from Corollary 3 we get

COROLLARY 4. Let X be a metrizable space. Then II $\uparrow H(X) \Leftrightarrow X$ is σ -compact.

Let X_{δ} denote the topological space obtained from X by taking its G_{δ} -sets as basic open sets. Since

$$I \uparrow G(F, X) \Leftrightarrow I \uparrow G(F, X_{\delta}) \Leftrightarrow I \uparrow G(C, X_{\delta})$$

(cf. [13, 5.3]), by Corollary 3 we get

COROLLARY 5. II
$$\uparrow H(X_{\delta}) \Leftrightarrow I \uparrow G(F, X)$$
.

This corollary provides a new characterization of finite-like spaces (cf. [12, p. 195], [3, p. 445], and [15, Corollary 8]).

It is easy to verify the following.

Proposition 1.
$$I \uparrow H(X) \Rightarrow II \uparrow G(C, X)$$
.

It is, however, an usettled question whether or not the converse implication holds.

PROPOSITION 2. I $\uparrow H(X)$, iff either X is not a Lindelöf space or there is a continuous map from X onto a separable metric space Y such that I $\uparrow H(Y)$.

PROOF. Let s be a w.s. of Player I in H(X), where X is a Lindelöf space. Then we may assume that each cover determined by s is countable, and moreover, that it consists of cozero sets in X. Therefore the strategy s is associated with a countable family Φ of real-valued continuous functions. Then the topology \mathcal{F} generated by Φ is separable, pseudometrizable and coarser than the original topology of X. Let Y be the quotient space obtained from X by identifying points which are not distinguished by Φ and endowed with the quotient

topology determined by \mathcal{F} . Then Y is separable, metrizable and the natural map from X onto Y is continuous. It is easy to check that $I \uparrow H(Y)$. Conversely, if X is not a Lindelöf space, then any open cover with no countable subcover provides a w.s. for Player I. If X admits a continuous map f onto a separable metric space Y with $I \uparrow H(Y)$, then f^{-1} transfers w.s. from H(Y) into H(X), and therefore $I \uparrow H(X)$.

We conclude with two examples of certain singular spaces.

EXAMPLE 1. Let X be any Bernstein set contained in the closed unit interval J. Then the game P(J,X) is not determined (cf. [10, p. 353]), however, II $\uparrow G(C,X)$ (cf. [12, 5.11]). Moreover, I $\uparrow kP(J,X)$. For, Player I in kP(J,X) can choose finite sets and small nbhds. of these sets so that $\bigcap \{V_n : n \in \mathbb{N}\}$ will be a copy of the Cantor discontinuum; therefore he can win each play. By Theorem 2 we infer that I $\uparrow H(X)$, and moreover, X is not a Hurewicz space, because it is not totally paracompact (cf. [7, 8]).

EXAMPLE 2. Let X be a Lusin set in J so that G(F, X) is undetermined (cf. [3, p. 448]; the continuum hypothesis is assumed). Since X is not σ -compact, the game G(C, X) is also undetermined. As in Example 1, the game P(J, X) is undetermined and $I \uparrow kP(J, X)$. By Proposition 1, Player I has no w.s. in H(X). Since X is not σ -compact, Player II has no w.s. in H(X). Therefore H(X) is undetermined. By Theorem 2, the game kP(J, J - X) also is undetermined. However, II $\uparrow G(C, J - X)$ (cf. [12, 5.11]). By Theorem 2, $I \uparrow H(J - X)$, because $I \uparrow kP(J, X)$. The space X has the property C'' and therefore it is a Hurewicz space (cf. [8, p. 210]).

REFERENCES

- 1. G. Choquet, Lectures on analysis, Vol. I: Integration and topological vector space. W. A. Benjamin Inc., New York, Amsterdam, 1969.
- 2. R. Engelking, General topology (Monograf. Mat. 60), PWN Polish Scientific Publ., Warszawa, 1977.
- F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. 26 (1978), 445-449.
- 4. F. Galvin and R. Telgársky, Stationary strategies in topological games (in preparation).
- 5. J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161.
- W. Hurewicz, Über die Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1926), 401-421.
- 7. A. Lelek, On totally paracompact metric spaces, Proc. Amer. Math. Soc. 19 (1968), 168-170.
- 8. A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), 209-218.
- 9. E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733.
- 10. E. Porada, Jeu de Choquet, Colloq. Math. 42 (1979), 345-353.

- 11. R. Telgársky, Concerning product of paracompact spaces, Fund. Math. 74 (1972), 153-159.
- 12. R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
- 13. R. Telgársky, Spaces defined by topological games II, Fund. Math. 116 (1983), 189-207.
- 14. R. Telgársky, On a game of Choquet, (Proc. Fifth Prague Topol. Symp. 1981), ed. J. Novák, pp. 585-592, Heldermann Verlag, Berlin, 1982.
- 15. R. Telgársky, On sieve-complete and compact-like spaces, Topology Appl. 16 (1983), 61-68.
- 16. R. Telgársky, Remarks on a game of Choquet (submitted to Colloq. Math. in 1983).
- 17. F. Topsøe, Topological games and Čech-completeness, (Proc. Fifth Prague Topol. Symp. 1981), ed. J. Novák, pp. 613-630. Heldermann Verlag, Berlin, 1982.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY WYSPIAŃSKIEGO 27 PL-50-370 WROCLAW POLAND