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ON GAMES OF TOPSOE

RASTISLAV TELGARSKY

F. Topsee [17] introduced several topological games, called strong
games with clustering, and by means of the games SCY and kSCM he
characterized sieve-complete spaces. Both these games and the game P(X,Y)
(in the author’s notation) considered by E. Porada [10] are natural
modifications of the strong game of G. Choquet [1].

In the present paper there are introduced two more games: the k-
modification of the game P(X, Y) denoted by kP(X, Y) and game H (X), called
the Hurewicz game. The following relations are established (~ denotes the
equivalence of games): SCM(X)~P(BX, X), kSCM(X)~kP(BX, X)~H(X*),
where X*=8X—X and BX is the Cech-Stone compactification of X.
Moreover, some relations to the game G(C, X) of the author [12, 13, 15] are
derived. For another results concerning P(X, Y) we refer to [14, 16].

All spaces considered here are assumed to be completely regular and all
games involve perfect information for both players. N denotes the set of all
positive integers. Following the notation of [5], I1G (111 G) denotes that
Player I (respectively Player II) has a winning strategy (w.s. for short) in the
game G. G;~G, denotes that 171G, <+ 171G, and 111G, <« II1G,. For
topological background the reader is referred to [2].

Recall the game kSCM(X), where X is a given space. Here, however, the
players f and « are called Player I and Player II, respectively. Player I chooses
a compact non-empty set C, and an open neighbourhood (nbhd. for short) U,
of C,. After that Player II chooses an open nbhd. V; of C, with V; cU,. Now
Player I chooses a compact non-empty set C, = V; and an open nbhd. U, of C,
with U, = V,. After that Player II chooses an open nbhd. V, of C, with V,
cU,, and so on. Player II wins the play ((C,,Uy), V;, (Cp Uy, V,,...) of
kSCM(X) if each filter base & such that for each n € N, there is a F, € # with
F,<V, clusters in X, that is N {F: F € #} + J; otherwise Player I wins. The
games SCM and kSCM differ just in the following: in SCM the sets C, are
singletons.

Let Y be a subset of a space X. The game kP(X, Y) is played as kSCM(X)
except for the extra rule that C,’s must be subsets of Y. Player II wins the play
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of kP(X,Y),if F+MN{V,: ne N}cY; otherwise Player I wins. In P(X,Y) it is
further demanded that C,’s are singletons.

In the Hurewicz game H(X), where X is a given space, Player I chooses an
open cover 4, of X and after that Player II chooses a finite subfamily ., of
%,. Again Player I chooses an open cover ¢, of X and Player II chooses a
finite subfamily J, of %,, and so on. Player II wins the play (¥4,, #,, 9,,
Hp,...)of HX) if U{U#,: ne N}=X; otherwise Player I wins.

The Hurewicz game is related to Hurewicz spaces studied by A. Lelek [8],
the author [11, 12] and others, but introduced in 1926 by W. Hurewicz [6]. A
space X is said to be a Hurewicz space if for each sequence (4,,%,,. ..) of open
covers of X, there is a cover # of X such that #=U {#,: n € N}, where each
M, is a finite subfamily of 4,. (Or, equivalently: for each sequence (4,"%,,. . .)
of finitely additive open covers of X, there is a selector (G,,G,,...) € 9, x 9,
x ... such that U{G,: n e N}=X\) It is easy to check that if X is nota
Hurewicz space, then 11 H(X); hence, if I 1 H(X), then X is a Hurewicz space.

Finally, recall the games G(C, X) and G(F, X) of [12]. In G(C, X) Player I
chooses a compact set C, in X and after that Player II chooses a closed set E,
=X —C,. Player I chooses a compact set C,cE; and Player II chooses a
closed set E, = E, — C,, and so on. Player I wins the play (C,, E;,C,, E,,. . .) of
G(C,X) if N{E,: n e N} =¥; otherwise Player II wins. The game G(F, X) is
played as G(C, X), but with the restriction that C,’s are finite sets.

THEOREM 1. Let X be a compactification of Y. Then SCM(Y)~P(X,Y), and
kSCM(Y)~kP(X,Y).

The proofs of both statements are similar and quite easy when indicating
their essential points: without loss of generality we may assume that Player I
always chooses the set V, with ¥7,cU,; x € N{V,: n e N}, iff there is a filter
base & of subsets of Y so that N {F: F € #}={x} and for each n € N, there is
a F, € # with F,cV,. Therefore the details of the proof are left to the reader.

THEOREM 2. Let Y be a subset of a compact space X. Then kP(X,Y)~
H(X-Y).

Proor. For each compact set C<Y and each open set U in X with CcU
denote by ¥"(C, U) a base of nbhds. of C in X with V< U for each Ve ¥(C, U).
For each open set G in X —Y denote by G’ an open set in X such that G'N
(X-Y)=G.

Let s be a w.s. of Player I in kP(X,Y). We define a w.s. t for the player in
H(X -Y). Put

(CLUy) =s(@) and ¢, = {(X=Y)=V: VeV (C U}
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Then U %, = X — Y. Put t () =%,. For each finite subfamily »#, of 4,, there is
a finite subfamily ¥{ of ¥"(C,,U,) such that
H = {(\X——Y)—V: Ve ¥} .
Put ¥, =MN7¥]. Then C,<=V,cU,. Put
(Cp,Uy) =s(Vy) and %, = {(X-Y)-V:Ve ¥ (CpU,)}.

Then U%,= X — Y. Put t()#,)=%,. Again, for each finite subfamily 5, of %,,
there is a finite subfamily ¥; of ¥*(C,, U,) such that

H, ={(X-Y)-V: Ve ¥;}.

Put ¥,=N%¥;. Then C,=V,cU,. Put (C3,U,)=s(V,, V,), and so on. Since
X-NN{V,:neN} = &,

t is easy to check that U{U#, :ne N} +X Y.

Let s be a w.s. of Player I in H(X —Y). We define a w.s. t for the player in
kP(X,Y). Put 4,=s(0), C,=X-U{G': Ge ¥%,} and U;=X. Then C, Y.
Put t(&)=(C,, U,). Since X is compact, for each open nbhd. V, of C,, there is
a finite subfamily 5, of ¢, such that X —U{G': G € #,} < V,. Put

4,=s(#) and C,=X-U{G:Ge# UY,}.

Then C,<V,NY. Put U,=V, and t(V,)=(C,,U,). Since X is compact, for
each open nbhd. V, of C, with V,cU,, there is a finite subfamily #, of ¥4,
such that X -U{G : G e # UH#,}cV,. Put 3=s(H#,,#,), and so on.
Since U{U #,: ne N} £X -, it is easy to check that

X=-Y)NN{V,:neN}+g .

Let s be a w.s. of Player II in kP(X,Y). We define a w.s. t for the player in
H(X—-Y). For each open (in X—Y) cover 4, of X—Y we put C,=X
-U{G:Ge¥%,}, Uj=X and V,=s(C,,U,). Since C,cV,, there is a finite
subfamily #, of %, such that X —U{G'": G € #,} = V,. Put t(4,)=#,. For
each open (in X —Y) cover %, of X —Y we put

Cz = X—U {G’ : G € g#‘ ng}, U2 = Vl’ and V2 = S(Cl, Ul’ Cz, UZ) .

Since C,cV,, there is a finite subfamily , of %, such that X
-U{G:Ge# UH,}cV, Put t(%,9,)=+#, and so on. Since
N{V,:ne N}, it is easy to check that U{Us#,:ne N}=X-Y.
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Let s be a w.s. of Player II in H(X —Y). We define a w.s. t for the player in

kP(X,Y). For each compact subset C, of Y and each open nbhd. U, of C, we
put

4, = {(X-Y)-V:Ve¥(C,,U)} and #, = s(%,).

Since o, is finite, there is a finite subfamily ¥{ of ¥"(C,, U,) such that #,
={(X-Y)-V: Ve ¥{}. Put V=N 7] and t(C,,U,)=V,. For each compact
subset C, of ¥;NY and each open nbhd. U, of C, with U,=V,; we put

4, ={(X-Y)-V:Ve?¥(C,,Uy,) and K, = s(9,%,).

Since 5, is finite, there is a finite subfamily ¥; of ¥"(C,, U,) such that #,
={(X-Y)-V: Ve ¥}. Put V,=N75,t(C,,U,,C,,U,)=V,, and so on. Since

U{Us#,:neN} = X-Y and V,=0N¥% cN{V:Ve¥} cU,,

it is easy to check that @+N{V,:ne N} Y.

From Theorems 1 and 2 we immediately get, denoting by X * the remainder
BXNX:

COROLLARY 1. 11 kSCM(X) < 11 kP(BX,X) < 11 H(X*).
Moreover, we get

COROLLARY 2. The following conditions are equivalent:

2.1. 11 SCM(X).

22. 111 P(BX, X).

2.3. IITkSCM(X).

24. 11T kP(BX, X).

25 IITH(X*).

2.6. 11 G(C,X*), that is, X* is compact-like (cf. [12, p. 195]).
2.7. X is sieve-complete (cf. [9, 15, 17]).

Proor. The equivalence of 2.1, 2.3, and 2.7 was proved by F. Topsee [17],
the equivalence of 2.6 and 2.7 was proved by the author in [15], and the
remaining equivalences follow from the above theorems.

The list of conditions in Corollary 2 can be considerably extended. F.
Topsee showed in [17, p. m620], that SCM~S*CM and kSCM ~kS*CM, where
the games S*CM and kS*CM are defined precisely as SCY and kscM
respectively, except for the extra rules that U; =X, U, = V,, U3=V,,.... Other
conditions can be derived from recent results of F. Galvin and the author [4];
it turns out that in 2.1-2.4 and 2.6 one can equivalently state: the player has a
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stationary w.s. in the corresponding game (the same also holds for
111 S*CM(X) and 111 kS*CM(X)). For further conditions we refer to [15].

Since each space X is the remainder of some space Y for a compactification
Zof Y (e.g., for Y=([0,1)x BX)U ({1} x X*) and Z=[0,1] x X we get Z—Y
={1} x X), from Corollary 2 we get

CoroLLARY 3. IITH(X) < 11 G(C, X).

This corollary provides a new characterization of compact-like spaces.
Comparing to Corollary 5 in [15], this one involves families of open sets only.
By 6.4 of [12] from Corollary 3 we get

COROLLARY 4. Let X be a metrizable space. Then 111 H(X) <> X is a-compact.

Let X; denote the topological space obtained from X by taking its G,-sets as
basic open sets. Since

ITG(F,X) < I1G(F,X,) = 11G(C, X,)
(cf. [13, 5.3]), by Corollary 3 we get

CoroLLARY 5. II 1 H(X,) < [ 1 G(F, X).

This corollary provides a new characterization of finite-like spaces (cf. [12,
p. 195], [3, p. 445], and [15, Corollary 8]).
It is easy to verify the following.

ProrosiTioN 1. 11 H(X) = 111 G(C, X).

It is, however, an usettled question whether or not the converse implication
holds.

ProrosiTioN 2. 11 H(X), iff either X is not a Lindeldf space or there is a
continuous map from X onto a separable metric space Y such that 11 H(Y).

ProoF. Let s be a w.s. of Player I in H(X), where X is a Lindelof space. Then
we may assume that each cover determined by s is countable, and moreover,
that it consists of cozero sets in X. Therefore the strategy s is associated with a
countable family @ of real-valued continuous functions. Then the topology J
generated by & is separable, pseudometrizable and coarser than the original
topology of X. Let Y be the quotient space obtained from X by identifying
points which are not distinguished by ® and endowed with the quotient
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topology determined by 7. Then Y is separable, metrizable and the natural
map from X onto Y is continuous. It is easy to check that I H(Y). Conversely,
if X is not a Lindeldf space, then any open cover with no countable subcover
provides a w.s. for Player 1. If X admits a continuous map f onto a separable

metric space Y with 11 H(Y), then f ™! transfers w.s. from H(Y) into H(X), and
therefore 11 H(X).

We conclude with two examples of certain singular spaces.

ExampLE 1. Let X be any Bernstein set contained in the closed unit interval
J. Then the game P(J,X) is not determined (cf. [10, p. 353]), however,
111 G(C, X) (cf. [12, 5.11]). Moreover, 11 kP(J, X). For, Player I in kP(J, X)
can choose finite sets and small nbhds. of these sets so that (1 {V,: n e N} will
be a copy of the Cantor discontinuum; therefore he can win each play. By
Theorem 2 we infer that I 1 H(X), and moreover, X is not a Hurewicz space,
because it is not totally paracompact (cf. [7, 8]).

ExampLE 2. Let X be a Lusin set in J so that G(F, X) is undetermined (cf. [3,
p. 448]; the continuum hypothesis is assumed). Since X is not g-compact, the
game G(C, X) is also undetermined. As in Example 1, the game P(J, X) is
undetermined and I 1 kP(J, X). By Proposition 1, Player I has no w.s. in H(X).
Since X is not o-compact, Player II has no w.s. in H(X). Therefore H(X) is
undetermined. By Theorem 2, the game kP(J,J—X) also is undetermined.
However, 111 G(C,J — X) (cf. [12, 5.11]). By Theorem 2, I 1 H(J — X), because
11 kP(J, X). The space X has the property C” and therefore it is a Hurewicz
space (cf. [8, p. 210]).

REFERENCES

1. G. Choquet, Lectures on analysis, Vol. 1: Integration and topological vector space. W. A.
Benjamin Inc., New York, Amsterdam, 1969.
2. R. Engelking, General topology (Monograf. Mat. 60), PWN - Polish Scientific Publ,
Warszawa, 1977.
3. F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. 26 (1978),
445-449.
4. F. Galvin and R. Telgarsky, Stationary strategies in topological games (in preparation).
. J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161.
. W. Hurewicz, Uber die Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1926),
401-421.
. A. Lelek, On totally paracompact metric spaces, Proc. Amer. Math. Soc. 19 (1968), 168-170.
. A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), 209-218.
9. E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733.
0. E. Porada, Jeu de Choquet, Collog. Math. 42 (1979), 345-353.

a W

oo~

—



176 RASTISLAV TELGARSKY

11.
12
13.
14.

15.
16.
17.

R. Telgarsky, Concerning product of paracompact spaces, Fund. Math. 74 (1972), 153-159.

R. Telgarsky, Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.

R. Telgarsky, Spaces defined by topological games 11, Fund. Math. 116 (1983), 189-207.

R. Telgarsky, On a game of Choquet, (Proc. Fifth Prague Topol. Symp. 1981), ed. J. Novak,
pp. 585-592, Heldermann Verlag, Berlin, 1982.

R. Telgarsky, On sieve-complete and compact-like spaces, Topology Appl. 16 (1983), 61-68.

R. Telgarsky, Remarks on a game of Choquet (submitted to Colloq. Math. in 1983).

F. Topsee, Topological games and Cech-completeness, (Proc. Fifth Prague Topol. Symp. 1981),
ed. J. Novak, pp. 613-630. Heldermann Verlag, Berlin, 1982.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY
WYSPIANSKIEGO 27

PL-50-370 WROCLAW

POLAND



