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APPLICATIONS OF SET-VALUED
RADON-NIKODYM THEOREMS
TO CONVERGENCE OF MULTIVALUED L!-AMARTS

DINH QUANG LUU

Introduction.

The theory of integrals, conditional expectations and martingales of
multifunctions has been developed, recently, by Hiai and Umegaki ([6], [7]).
Costé [4], Luu ([9], [10]), among others. The class of multi-valued L!-
asymptotic martingales (L!-amarts) is here introduced and considered. It is
shown that this class contains multi-valued martingales [7], quasi-martingales
and uniform amarts [10]. The main purpose of this paper is to give some
characterization and convergence theorems for multi-valued L!-amarts.

In Section 1, after stating definitions and notations we shall give some basic
properties of integrals, conditional expectations and the Pettis distance. In
Section 2, we shall consider set-valued Y -measures and prove a set-valued
Radon-Nikodym theorem which can be regarded as a multi-valued version of
the vector-valued Radon-Nikodym theorem, given by Uhl ([11, Proposition
1.1.]). In Section 3, we shall introduce the class of multi-valued L!-amarts.
Some characterization and convergence theorems for multi-valued L!-amarts
are established. Finally, in Section 4, we shall give some related counter-
examples.

1. Notations and definitions.

Let (2, o, P) be a probability space, £ a sub o-field of &/ and B a separable
real Banach space. By L!(B, .o/) we mean the Banach space of all (equivalence
classes of) Bochner integrable functions f: Q — B with

Il = f ISP
Q

and

A = SUPOJ IKx*, f>|dP
x*eU Q

Received January 8, 1982; in revised form May 19, 1982.



102 ' DINH QUANG LUU

where U°={x* € B*; ||x*||<1}. Thus |||f]|| is the Pettis norm of f.
We shall also consider the following classes:

K = {XeB ; X is closed bounded non-empty}
K. = {X e K ; X is convex}
K. ={XeK,; Xiscompact}.

Therefore these classes become complete metric spaces with the HausdorfP’s
metric h(-,-), defined by

(1.1) h(X,Y) = max {su);()d(x, Y), supd(y, X)}, (X,Ye K).
xe yeY

A multi-function X: Q — K is called weakly .o/-measurable, if the set
{w, X (@) NV + )} € & for each open subset V of B. Such a multi-function X
will be called integrably bounded, if the real-valued function w — || X (w)| is
integrable, where given Z € K, ||Z|| is defined by

1Zll = sup{lizll, zeZ}.

If this occurs, then we write X € L!(K,.o/), where two multi-functions
Y,, Y, € L' (K, o) are considered to be identical, if Y, (w)=Y,(w), a.e. Now let

LYK, o) = {XeL (K, o) ; X(w) e K, ae}
L\K.. o) = {X e L'K, o) ; X(@) € K, ae).

Then according to [7], these classes become complete metric spaces with
metric H, defined by

H(X,Y) = j h(X (@), Y(@)dP, (X,Ye L'(K, )
Q

where h(-,*) is given by (1.1).
It is interesting to note that if
XelL (K,o), YelL'(K,«), and ZelL'(K.,«),
then
E(X,B)e L' (K,B), 6E(Y,#)elL (K,#), and &(Z,#8)elL'(K.RB)

where given M € L!(K, /), &(M, #) denotes the #-conditional expectation of

M (cf. [T]). :
In connection with the Pettis norm, we present here the Pettis distance

H,(X,Y), defined for any two elements X, Ye L' (K, &) as follows
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H,(X,Y) = sup J 6% (x*, X (@) —6*(x*, Y (w))| dP ,
Q

x*eU°
where given Z € K, and x* € U°, §*(x*,Z)=sup {(x*,z), z € Z}.
The proof of the following result is similar to that of the vector-valued case.
PROPERTY 1.1. Let X,Ye LY(K, o) and X,,Y, € L*(K_, B), then
(1.2) H,(X,Y) = HX,Y)
(1.3) H,[&(X,%#),6(X,#)] = H,(X,Y)

(14)  sup h<clj X,dP, clI Y,dp) < H,(X, Y,
A A

AeV, o,
<2 sup h(cl j X,dP, cl j Y, dP)
AeV, o, 4 A

For futher information, we refer to [6] and [7].

2. A Radon-Nikodym theorem for set-valued 3 -measures.

Throughout this paper, let 22 denote the class of all non-empty subsets of B.
Following Hiai [6], call M: &/ — 28 a set-valued measure, if M(@)={0} and

M(Q A,,) = "2 M(4,)

for every sequence (A4,> of pairwise disjoint elements of 28 where given a
sequence (X,> of 28, the sum Y, X, is defined by

00 00
Y X, = {x € B, x=) X, (unconditionally convergent), each x, € X ,,} .
n=1 =

n=1

For such a set-valued measure M and for each 4 € o/, we define

k
IM|(4) = sup Y, IM(4)l,
n=1

where the sup is taken over all o/-measurable finite partitions {4,)%_, of 4. If
|M|(£2) < 0o, then M is said to be of bounded variation. Thus according to [6,
Proposition 1.1.] |[M| becomes a positive measure. Similarly, following Costé
[2] call M: o — K a set-valued 3 -measure, if

M(@) = {0} and M( U A,) = 3 M4,

for every sequence {A,> of pairwise disjoint elements of </, where given a
sequence {X,> of K, the sum 2%, X, is defined by
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1) For each k, 2o X,=X;+ X, + ... + X,=cl (X, + ... + X)),
2) I X, e K,
3) limkﬁwh(2ﬁ=lxm 230=1Xn)=0-

In connection with [6, Theorem 1.3.], we present here the following result.

PROPERTY 2.1. Let M: of — 2B be a set-valued set-function then,

1) If M is a set-valued measure of bounded variation, then cIM and co M
(defined in [6]), are both Y -measures with

IM|(4) = [cIM|(4) = [coM|(4) (Ade ).

2) If M is a set-valued measure 'of bounded variation with M(Q) relatively
weakly compact, then M is also a Y -measure with

IM|(4) = IM|(4) (cf. [6]).

3) If M(A) is weakly compact for each A €, then M is a set-valued measure
of bounded variation if and only if M is a Y.-measure of bounded variation.

A ‘Z-measure M: o — K is said to satisfy the Uhl’s condition, if given ¢>0
there is some C € K, such that for any but fixed >0 one can choose some
A; € o with P(A;)=1—¢and such that: V4 € & if Ac A;then M(A)< P(A)C
+6U, where U denotes the unit ball of B.

The main purpose of this section is to prove the following Radon-Nikodym
theorem for set-valued E-measures which is a multi-valued version of the
vector-valued Radon-Nikodym theorem given by Uhl ([11, Proposition 1.1.]).

THEOREM 2.2. Let M: of — K, be a Y-measure. Then M has a Radon-
Nikodym derivative, contained (uniquely) in L'(K,,sf), if and only if the
following conditions are statisfied:

1) M is P-continuous, i.e. if P(4)=0, then M(A)={0},
2) IM|(Q)< oo,
3) M satisfies the Uhl’s condition.

PRrOOF. Let M: of — K, be a 3 -measure. Suppose first that M has a Radon-
Nikodym derivative, take, X € L!(K,, ), that is

M(A)=I XdP (Aed).
A

Hence by [6, Corollary 5.4], M(A4) € K_ for each A € &. Further, by virtue
of (3) in Property 2.1., M is even a set-valued measure. Therefore, Theorem 5.2.
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in [6] implies that M satisfies conditions (1-3). Conversely, suppose that
conditions (1-3) are satisfied. We shall show that M satisfies even condition
(iii) of Theorem 5.2. in [6]. Indeed, let ¢>0 be any but fixed. Take the set
C € K, which exists in condition 3) for this &. Thus, one can choose a sequence
{A,> in & with P(4,)=1—¢ (n=1) and

M(A) € P(A)C+n U (n21, Ae of and AcA,).
Now put

A

s
(-

A, = lim,sup 4, =

m -

n=1 m=n

Then it is clear that 4, € o with P(4,)=1—¢. Given A € & with A< A4, one
has AcUZ_, A, (n=1). Hence, if n € N is any but fixed and if we define
n+k

Sn = Am Sn+1 = An+l\An; "‘;Sn+k+l = An+k+l\ U Am’
m=n

then it is obvious that ¢S,),,5, is disjoint and

Consequently,

S MAns,)

m=n

M(A)

c Zw [P(ANS,)C+m 2U]

m=n

P(A)c+<§ m‘2>U.

m=n

This follows that M (A)<= P(A4)C. Further, put ¢,=1/n (n21). Take the sets C,
and A, as above for each ¢, Then

M(Q) = M(4,)+M(4}) .
It implies that:
h(M(A4,), M(Q) < [M|(4) - 0, as n— 0.
Consequently, M(Q) € K., hence M(A4) € K, for each A € of. Therefore the
measure M satisfies conditions (i}-(iii) required in Theorem 5.2 in [6]. Thus, M

has a Radon-Nikodym derivative contained (uniquely) in L'(K,, /). This
completes the proof of Theorem 2.2.
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COROLLARY 2.3. Let X € L'(K,_, /), then the set-valued set-function M: of
— K,, defined by M(A)=cl[,XdP, is a set-valued 3-measure with |M|(A)
=(4IX | dP. Furthermore, X € L' (K, o) if and only if M satisfies the Uhl’s
condition.

Proor. This follows from [6, Proposition 4.1], Property 2.1, and the above
theorem.

3. Characterization and convergence theorems for multi-valued L!-amarts.

Throughout this section, we fix an increasing sequence <&, of sub o-fields
of o with o/, 1. A sequence {X,> of multi-functions is said to be adapted
to (&>, if each X, is weakly o/ ,-measurable. Unless otherwise mentioned
all our considered sequences are assumed adapted to {(</,> and taken from
L'(K,, /). Call {(X,> a martingale (cf. [7]), if X,=X,(m) for all m2ne N
where given m2ne N, X,(m)=&(X,, «,). Equivalently, (X,> satisfies the
equality H(X,, X,(m)=0 for all m>ne N. We call {(X,> an L'-amart, if

3.1) lim H(X,, X,(m) =0
equivalently,
(3.2) Ve >03n,¥m=2nzn, H(X,X,m) = e.

REMARK 3.1. As in [10], call {X,> a uniform amart if

r]g],,meTH(X"’X"(T)) =0,
where T denotes the set of all bounded stopping times and
X,(0) = £(X o) (12neT).

Thus, by (3.1), every uniform amart (hence by [10], every quasi-martingale,
martingale) is an L'-amart.

The following result gives us a characterization of L!-amarts.

THEOREM 3.2. A sequence (X,» is an L'-amart if and only if there is a unique
martingale {M,) in L'(K,, of) such that

(3.3) lim H(X,M,) = 0.

n—*o00

ProOF. (=) Let (X,)> be an L'-amart. Then by (3.2) and [7, Theorem 5.2
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(1)], the sequence <X,(m)>x., is Cauchy in metric H for each ne N.
Consequently, there is a sequence {M, >, adapted to {&/,) such that

(3.4) lim H(X,m,M,) =0 (nx1).

m= 0o

We claim that {M,) is a martingale. Indeed, let m=n € N be any but ﬁxéd.
By (3.4), one has

lim H(X,(m+k),M,) = 0.

k— 00

Hence, by [7, Theorem 5.2 (1)], we obtain
lim H[&(X,,(m+k), «,),M,(m)] = 0.

k— o0
Therefore, in view of [7, Theorem 5.3 (3)], we get
lim H[X,(m+k), M,(m)] = 0.

k- 00

Consequently, by (3.4) one has M,(m)=M, ae. This proves the above
assertion. Further, since for all m=>n e N

H(X,M,) = H[X,, X,(m]+H[X,(m),M,]
then by (3.1) and (3.4) we have
lim H(X,,M,) = 0.

n—o00

This proves (3.3).

(<) Conversely, suppose that there is a martingale {(M,> which satisfies
(3.3). Hence for all m=n e N, we get

H[X, X,(m] £ H[X,(m,M,]+H[M,X,] .
Consequently, again, by [7, Theorem 5.2 (1)]
H[X,X,m)] = H[X,,M,]+H[M,K,].
Therefore, condition (3.3) implies that

lim H(X,m),X,) =0.
mzn—oo
This proves (3.1), hence {X,) must be a L'-amart.
We show now that the martingale satisfying (3.3) is unique. Otherwise, there
are two martingale {(M!» and (M2} such that
lim HX,,M) =0 (i=1,2).

n— 00
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Hence by [7, Theorem 5.2 (1)], for each n and for all k of N one has
HIM,M?] < H[M},,, M2,,]
S HXpio Mas J+HIX 0 M2 T
Consequently, H(M!, M?)=0, by letting k1 occ. Equivalently, M}=M? ae.

(n=1). This completes the proof of the theorem.

COROLLARY 3.3. An L'-amart {X,> in L*(K,, s#) is H-convergent (hence) to
some element of L' (K., /), if and only if the martingale associated with (X, is
H-convergent.

The following result generalizes Theorem 6.5 in [7].

CoRrOLLARY 3.4. (see [9] and [4]). A Banach space B has the Radon-Nikodym
property w.r.t. (, o, P) if and only if every uniformly integrable (equivalently,
L*-bounded and equicontinuous) L'-amart in L'(K,, of) is regular i.e. there is
some X, € L'(K,, s) such that

lim H(X,, X,(c0)) = 0.

n—oo

Proor. This follows from Theorem 3.2 and Corollary 3.5 in [9], where it was
shown that a Banach space B has the Radon-Nikodym property if and only if
every uniformly integrable martingale in L!(K,, &) is regular.

Now let (X,> be a L'-amart and {M,) the martingale satisfying (3.3).
Define F: V, o/, — K by F(A)=cl|,M,dP (A € «,) then by Corollary 2.3, F
is a finitely additive 3 -measure on V, s,. Furthermore, by (3.3) we get

(3.5) Ve > 03n, Vn = ny sup h[clj‘ X,dP, F(A):' <e.
AedA, A

In the sequel, F will be called the limit 3-measure associated with ¢(X,).
LeEmMMA 3.5. Let

H[K . {A,)] = {X e L' (K, o), lim H,[&(X, ,), X]=O}

n-0o

and {X,> a L'-amart with its limit 3 -measure F.
Suppose that F has a generalised Radon-derivative, take

X, € H,[K,{s,>] that is F(4) = cl I X, dP (de ).
A
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Then {X,) is H,-convergent to X ..

Proor. Under the above assumptions, it follows from (3.5), (1.4), and [7,
Theorem 5.4 (2)] that
lim H [8(X,,#,),X,] =0.

On the other hand since, by definition of H [ K,<{/,)>], we have
lim H (X, #,), X] =0,

n— oo

then
limH[X,X,]=0.

n— oo

This completes the proof of the lemma.

THEOREM 3.6. Let B be a Banach space with the Radon-Nikodym property and
{X,> a uniformly integrable L*-amart with F (Q) compact, where F is the limit 3-
measure associated with (X,>. Then {X,) is H,-convergent to some element of
LYK, ).

Proor. We call (X,) uniformly integrable, if so is {}| X,(-)|/>. Let {(X,) bea
uniformly integrable L!-amart and F the limit }'-measure associated with
{X,>. Then also the martingale (M, satisfying (3.3) is uniformly integrable.
Therefore, F can be extended to a Z':-measure F: o — K, which is P-
continuous and of bounded variation. Further, since F() is compact, then by
[6, Corollary 2.4] and Property 2.1 (3), F is also a set-valued measure taking
values in K. Hence by virtue of [6, Theorem 4.3], F has a generalized Radon-
Nikodym derivative, take X € L!(K,, &), that is

F(4) = cl‘[ X, dP (Ae o).
A

Again, since F(Q) is compact then in view of Corollary 2.4 and [6, Lemma 5.1],
the class &={F(A); A eV, «,} is relatively compact w.r.t. the Hausdorff’s
metric h(-,-), given by (1.1). Now let B be the space of all real-valued functions
on B*, positively homogeneous, whose restrictions to equicontinuous sets of
B*, are bounded and strongly continuous. Then by the remark of Theorem II-
19 ([1, p. 51]), B becomes a Banach space with the norm

loll = sup {lp(x*)l; Ix*I <1} (p e B).

Moreover, one can embed K, (hence K.) into a closed convex cone in B in
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such a way that conditions (i)-(iii), mentioned in [7, Theorem 3.6 (1)] are
satisfied (see, Theorem II-18 and II-19, pp. 49-51 in [1]). Therefore, as a B-
valued measure, F has a relatively compact range. Thus by ([8, Theorem 97),
given &¢>0, there is some V, /,-simple function X, in L'(B, &) such that

sup J X, dP—F()|| < £.
AeV, oA, A 6
Equivalently,
sup hU X,dP, F(A)“ <.
AeV, o, A 6

Since X, is V, o,-simple, then X, is weakly .o/, -measurable for some n, € N.
We infer that by Property 1.1. if n=n, then

2 sup h[clj X,,dP,f XEdP]+25
AeV, o, 4 A 6
2 sup h[clj X,dP, f ngP]+
Aesd, A A

2 sup h[clj X, dP, F(A)]+2-f+f.
A

HJ[X,X.]

IIA

A
W o™

IIA

Aesd, 6 3

But in view of (3.5), one can suppose, without loss of generality, that for n2=n,
the following inequality holds

sup h(cl J X,dP, F (A))
Aed, A

Therefore, if n=n, one has

IIA
A\l o

€ £ &
< r—_—t -4 =
H X, Xo] S 2 ptzty=c.

It follows that {(X,> is H,-convergent to X . This completes the proof of
Theorem 3.6.

Note that neither in Lemma 3.5 nor in Theorem 3.6, the word “H -
convergent” cannot be replaced by “H-convergent” (see Example 4.3, below).
We obtain however the following result which generalizes [7, Theorem 6.3].

THEOREM 3.7. An L'-amart {X,) (in L*(K_,«)) is H-convergent to some
X, € L*(K,, ) if and only if it is uniformly integrable and satisfies the Uhl’s
condition, i.e. given ¢ >0, there is some C € K_ such that for any but fixed 6>0
one can choose some ny € N, Ay € o, with P(A)21—¢ and such that
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VnznyVAe o, if A c A, then j X,dP < P(A)C+4U .
4

Proor. Let (X,> be a L'-amart in L'(K,./) and {(M,) the martingale
satisfying (3.3). Suppose first that <{X,> is H-convergent to some
X, € L'(K,, ). Thus, if we define M,=&[X,s/,] for each n then by [7,
Theorem 6.1], oen has also

lim HM, X_) = 0.

n—oo

Hence

lim H(X,,M,) = 0.
Consequently, by Theorem 3.2, the uniqueness of (M, implies that M,= M,
(nz1), thus lim,, H(M, X,)=0. Applying [7, Theorem 6.3] to the
martingale (M, ), we infer that (M, is uniformly integrable and satisfying the
Uhl’s condition, hence by (3.3) so is {X,)>. Conversely, suppose that {(X,) is
uniformly integrable and satisfies the Uhl’s condition then by (3.5) the limit -
measure F, associated with (X, is P-continuous of bounded variation and
satisfying the Uhl’s condition. Therefore, by Theorem 2.2, F has a Radon-
Nikodym derivative, take X ,, contained (uniquely) in L' (K., /). Now, define
M,=8(X,,) (n=1). Again, by [7, Theorem 6], {(M,) is H-convergent to
X .- Thus, by Property 1.1 and Lemma 3.5, we have
lim H,[X,,M,] =0.
But lim, ., H(X,, M,)=0 then it is easy to check that in the case, one has
H,(M, M,)=0 (n=1).
Equivalently, by Property 1.1 and [6, Corollary 5.4], we obtain

clj M,,dP=J M,dP (Aed,).
A A

Consequently, in view of [7, Lemma 4.4], we get
M, = M,ae. (n21).

Hence, M, € L'(K_, o,) (n21). It implies that
M, = M,ae. (n21).

Therefore, by (3.3) and Corollary 3.3, <(X,> is H-convergent to
X, € L'(K,, o). This completes the proof of Theorem 3.7.
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4. Some counter examples.

ExampLE 4.1. (See [6, Example 1.4 (2)]). Let B be a nonreflexive Banach
space. Hence by ([6, Example 1.4]), B contains two disjoint closed bounded
convex sets, X and Y which cannot be separated. Therefore the set

X-Y={x—y;xeX;yeY}

is not closed. Let 2=[0,1), o/ =% ) and P the Lebesgue measure on %y, )
Define M: of — 2B by

M(4) = PIAN[O,YIX —P[AN[L,1]Y (Ade o).

Then M is a set-valued measure having convex values which is P-continuous
and of bounded variation.
On the one hand, since

AM(0, D) +cIM([5 1) = HX-Y) * 3 (X-Y) = cIM([0,1)),

then cl M fails to be a set-valued measure.

On the other hand, by Property 2.1 (1), cI M is however a K -valued 3-
measure. At the same time, the example shows that the assumption that each
M (A) is weakly compact in Property 2.1. (3) cannot be omitted.

ExampLE 4.2. Following [5], call (X, an approximate martingale, if the net
¢clfo X,dP), ris bounded. We note that there is a L'-potential (hence, L'-
amart) of nonnegative real-valued functions which fails to be an approximate
martingale.

Indeed, let (2, «/,P) be as in Example 41 and ne N. Define X, ;:
Q — [0,00) by

X”_k = nl[(k_l)z—n’kz—n) k"—-" 1,2,. . .,2"

where 1, denotes the characteristic function of A. By (n,k)> (n',k’) we mean
either n>n’ or n=n' and k>k'. Let (P, be the resulting sequence renumbered
according to the above order. It is easy to see that (P,) is a L'-potential but

supr g P, dP = c0.

EXAMPLE 4.3. There is a regular martingale in L!(K_(l,), &) which is H,-
convergent but it is not H-convergent.

ConsTrUCTION. (See [3, Example 1].) Let (2, o/, P) be as in the previous
examples and B=1,. Let X be the multi-function, constructed by Coste [3],
then X has the following properties,
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a) X(w)¢K,, forallweQ
b) [,XdPe K, (A€

Let {(&/,) be any but fixed increasing sequence of finite sub o-fields of .« with
o, 1. Thus by (b), M,=68(X,«,) € L'(K,., o) (n=1). Hence by (a) and the
H-completeness of L'(K_, /) {(M,> cannot be H-convergent. But by (b) and
Theorem 3.6, (M, is H -convergent to X.

Note that the above example with Theorem 6.1 in [7] shows that
L!(2,B)tH, [K,{s,>] even in the case where B is a Hilbert space and
L!(2,B) is borrowed from [7]. This is an essential difference between the
theory of vector-valued martingales and that of multi-valued ones.
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