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ALMOST ISOMETRIC EMBEDDINGS OF [,
IN PRE-DUALS OF VON NEUMANN ALGEBRAS

JONATHAN ARAZY
Abstract.

There exists a constant 1 <A, <00 having the following property: If X is a
subspace of a predual M, of a von Neumann algebra M, and if X is isomorphic
to I; with constant A<4,, then there exists a projection P from M, onto X
with || P|| £a(A), where a(d) — 1 as A — 1. This extends a theorem of L. E. Dor
for the case of commutative M. Consequently, every %, ;-subspace of M,
with A< 4,, is c(A)-complemented in M.

1. Introduction.

It is well known that if M is a semifinite von Neumann algebra with a
canonical trace t, and if {x;} =L,(M,7) are isometrically equivalent to the
standard basis of I;, then {x;} are mutually two-sided disjointly supported (i.e.,
xx¥=0=x*x; for i#j), see [12] and [20]. This implies immediately the
existence of a norm-one projection P from L, (M, 1) onto span {x;} (defined by
Px=3%;t(vfx)x;, where v; are the partial isometries in the polar
decompositions of the x)). In [3] and [20] this disjointness result is used to
obtain a complete description of isometries T from L,(N,o0) into L,(M,1),
where N is another semifinite von Neumann algebra with a canonical trace o.
It follows, in particular, that for every such T, T(L, (N, 0)) is one-complemented
in L;(M,1).

We are interested here in the almost-isometric version of this result, namely
in the following problem

ProBLEM A. Does there exists a constant A, >1 so that if M and N are von
Neumann algebras with preduals M, and N, and if T is an isomorphism from
N, into M, with constant ||T|-|T~!||=A<A,, then there exists a bounded
projection P from M, onto T(N,) (with | P|| £c(4), where c(A) — 1as A — 1)?

The answer to Problem A is known to be affirmative in case both M and N
are commutative, namely of the form L (u) and L (v) respectively (and thus
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M, =L,(u) and N, =L,(v)). Indeed, in [6] L. E. Dor proved that if {f;} are
normalized functions in L,(0,1), 1 £p<oo, p+2, which are equivalent to the
standard [,-basis with a constant 4, then there exist disjoint measurable subsets
A;of [0,1] so that || fjj 4/l ,Z A~ 2p=2) From this it follows in the case p=1 and
A<2* that there exists a projection P from L,(0,1) onto span{f;} with |P|
<(A72—1)"'. By a direct-limit argument and the fact that L,(v) is one-
complement in its second dual, it follows that if T is an isomorphism from
L,(v)into L, (u) with ||T||- | T ~!|| =A< 2? then there exists a projection P from
L,(u) onto T(L,(v)) with |P|| £ (2472 —1)"". Recently, D. Alspach and W. B.
Johnson [1] generalize this by replacing L,(v) with a general %, ;-space
(which need not be complemented in its second dual) for A close enough to 1.
In the present work we obtain a further generalization, by replacing L, (u) with
a general predual of von Neumann algebra. In particular, it solves Problem A
affirmatively for the case where N is commutative and M is arbitrary. We
conjecture that answer to Problem A is affirmative without any restrictions on
N or M.

We remark that the isomorphic analog of Problem A is known to have a
negative answer even in the commutative case. Indeed, there exists an
uncomplemented subspace of L,[0,1] which is isomorphic to an L, (u)-space,
see [4]. We thank the referee for bringing this point to our attention.

Let us recall briefly some basic facts which are necessary for the statement of
our eesults; see [7], [13], [17], and [19] for more information on non-
commutative L -spaces, [5], [14], and [18] for von Neumann algebras, and
[11] for Banach space theiry.

Let M be a semi-finite von Neumann algebra, and let t be a normal, faithful,
semi-finite (n.fs., in short) trace on M. Then for 1< p < oo, L,(M, ) denotes the
completion of {x € M; 7(|x|P)< 0o} with respect to the norm ||x||,=[t(|x[")]"/”
(here |x|=(x*x)* is the usual modulus). It is known that L,(M,7) has a
realization as a space of all (possibly unbounded) operators x affiliated with M
for which ||x||,=[t(Ix|?)]'/" < co. The dual of L, (M, 1) is M =L (M), where the
duality is given by

{x,y> = 1(xy); xelL,(M,7), ye M.

Moreover, the Holder inequality holds: if 1/r=1/p+1/q then
Ixyll, = lIxll, llyllgs  x € L,(M,1), y e L,(M,7),

and the dual of L,(M, 1) is L (M, 1), 1/p+1/q=1, where the duality is given via
the trace of the composition.

A general von Neumann algebra M has a unique (up to an isometry)
predual, denoted by M, which consists of all normal (ie, o-weakly
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continuous) linear functionals on M, see [15] or [18, Theorem II1.3.5]. bne
denotes L,(M)=M, and L (M)=M.
Our main results are the following.

THEOREM 1.1. Let M be a semifinite von Neumann algebra with a nfs. trace t.

Let {x;} be normalized elements of L,(M, 1) satisfying for some 0<60<1 and all
finite sequences of scalars {a;}

0% laj <

Z ax;
J

Then there exist sequences {u;} and {w;} of positive elements of M satisfying
Yju=>;w;=I and

6 < tllxlu). 6 < t(wix})

1

for j=1,2,....
Moreover, there exists an absolute constant 0<6,< 1, so that if 0, <6< 1 then
there exists a projection P from L (M,1) onto span{x;} with

IPI = [1-2(1-65*-0(1-6)]1"" < [1-2(1-61]72.

THEOREM 1.2. There exists a constant A, > 1 so that if M is any von Neumann
aigebra and if T is any isomorphism from I, into L,(M)=M, with |T|-|T~!|
=A< Ay, then there exists a projection P from L,(M) onto T(l,) with |P|| <
A[1-2(1—-A"YHH]"2

Our proof of Theorem 1.1 in section 2 below is modelled after Dor’s work
[6], but we use the “square function” (¥;|x jlz)* rather than Dor’s “maximal
function”. We use also some operator inequalities generalizing Jensen’s
inequality.

Theorem 1.2 is proved in section 3, using Theorem 1.1 and a structure
theorem, due to U. Haagerup (see [7] and [8]) which says that if M is
countably decomposable then L,(M)=M, is isometric to a one-
complemented subsapce of a direct limit of L, (N, 7,)-spaces, where 7, are finite
traces.

In section 4 we generalize Theorem 1.2 to almost isometric embeddings of
&, ,-spaces (with 4 close to 1) in preduals of von Neumann algebras, using the
result of Alspach and Johnson [1], and discuss also some open problems.

2. Some operator inequalities and the proof of Theorem 1.1.

The proof of Theorem 1.1 is based on some operator inequalities, which have
an independent interest (they can be used in studying Problem C; see section 4
below).

Math. Scand. 54 — 6
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Recall first the following known fact (see [2] and [9]).

PRroPOSITION 2.1. Let 0<a and let ¢,: B(H)* — B(H)* be defined by ¢,(x)

=xa

(i) If 0<a <1, then ¢, is operator-monotone, ie., x,y € B(H)* and 0<x<y
implies x* < y*.
(il) If 1<a<2,then @, is operator-convex, i.e.,if x,y € B(H)* and 0 A< 1 then

(I=ADx+Ay)y < (1—Dx*+Ay*.

PRrOPOSITION 2.2. Let (€, F, ) be a probability space, and let f: Q — B(H)*
be a simple measurable function. For each 0 <p<o00 consider

1/p
F(o) = ( j ) f(w)"du(w)> .

Then F(p) is a non-decreasing function of p in the interval [1, 00).

Proor. It is clearly enough to prove that if 1 <p=<r=<2p, then F(p)< F(r). By
applying the operator-convex function ¢,, we get first that

r
F(py = (JQ f(w)"d#(w)) p = _[a f(o) du(w) = F(ry .

Next, by applying the operator-monotone function ¢,,, we get F(p)<F(r) as
desired.

ReMARK. Proposition 2.2 can be generalized to non-simple functions
assuming as values even unbounded positive operators, which obey some
integrability restrictions.

For the rest of this section, let M be a semi-simple von Neumann algebra
with a normal, faithful, semi-finite (n.f:s.) trace 7, and let |x|= (x*x)%.

ProposiTiON 2.3. Let xy,X,,...,x, € L,(M,7), 1=p<o00. Let 0<6 and
suppose that for all scalars a,. . .,a,

n 1/p n
(2.1) 0(12 Iaj'p) = Z apxll , if 1sp=s2
j=1 i=1 )
or
n n 1/p
(22 Y axj| = 0(; Iajl”) , if25p=c0.
j=1 4 j=1
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Then for every choice of scalars a,. . .,a, we have

, if1sp=2
14

n i/p
@3) oL |a,-|"> < ]

n 4
) |a,~|2|x,~|2)

or

(2.4)

n R 4|
Z la,"z'le >
j=1

n 1/p
< 9(; Ityl") , if25psoo.
p j=1

Proor. Since {x € M; t(|x|? < oo} is dense in L,(M,7) in case 1 £p<oo, it is
clearly enough to assume that x; € M. Assume first that 1<p=<2. Let r;(1),
j=1,2,...,n,denote the Rademacher functions. Then for every choice of scalars
a,,...,a, and every t € [0,1] we get by (2.1)

p
2 riMax;

j=1 P

Y rilbax;

j=1

p
=1

Integrating this inequality over [0,1], we get by Proposition 2.2

o? i lajP < jl (r i rj(t)ajxjp> dt

ji=1

1

i ri(t)a;x; pdt)

1| n p /p
= ( Y riDax; dt)

p

JOli=1 p

p

I\

f1 | n 2 %
Y ri0a;x; dt)
JO {j=1

. 2y |2 4
= Z |aj| [le
=

4

p

where the last step follows by the orthogonality of the {r;}}- . The proof in the
case 2<p< oo is similar, but all inequalities are reversed.
If p= o0, then for all scalars a,,...,q, and all t € [0,1] we have

Y rorj(0aaxkx;
i,j=1

2

< 6% max |a .
1sjsn

2 ri®ax;

i=1

]
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So
n 1 n 2
Z laj?Ix;?|| = ‘J Y riax;| de
1 n 2
s 2 ri(tap;
JOjlli=1
r1
£ | 6* max |a)*dt = 6* max |a)*.
(4] 1sjsn 15jsn

In what follows we denote by s(x) the support projection of the selfadjoint
operator x, i.c., the projection onto (ker x)!. Notice that s(x) belongs to the von
Neumann algebra generated by x, in fact s(x)= xr- (o} (¥)-

PRrOPOSITION 2.4. Let M be a von Neumann algebra, let x,,. . .,x, € M and let
x=(X7-11x;®)}. Then there exists a unique sequence y,,...,y, € M so that

@ yx =x, j=2,2,...,m

™M=

(i) v}y = sx);

ji=1

(iii)

N

*y
YiXxj =

j=1

Proor. Suppose that M acts on a Hilbert space H. For every j and every
¢ € H we have

Ix€1% = (xfx8,8) = (x*6,8) = [x¢)* .

Therefore there exists a unique operator y; on H satisfying y;(x¢)=x;¢ for all
¢ € H and yjlye,=0. Clearly, y;=s—lim, |, x;(x+&l)”", so y; € M. From y;x
=x; we get xy¥=x¥, and thus

= Z x;xj = xy: yix (12 Yi yl)
j=1

ji=1

This, together with y .., =0forj=1,2,...,nimply that 3}_, y}*y;=s(x). Also,
= Y xfx; = X oxyfx; = x )yl
j=1 j=1 j=1
So

n n
x =s(x) Y yix; = Y y¥x
j=1 ji=1
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This proves the existence of {y;}}-, & M which satisfy (i), (ii), and (iii). For the
uniqueness, notice that 37j_, y}y;=s(x) implies that yj|yer =0 for all j. So
yix=x; completely determines y;, since x(H) is dense in (ker (x))*.

REMARK. Let xy,...,X,; V1, - -,V € B(H), then

n 2 n n
(2.5) Yoixl S IY vl X oxxx;
i=1 j=1 j=1
and
n n 4 n 4
(2.6) Y yix| = (Z y;-“y,-> > x}"xj> .
i=1 j=1 j=1

(“generalized Cauchy-Schwartz inequalities”).
Indeed, let X=37_,x;®e;,, Y=27-,;®¢;,, and notice that (2.5) is
equivalent to

(Y*X)*(Y*X) = X*YY*X < |[Y*PX*X = |Y*Y|X*X

and that (2.6) follows from (2.5) by applying the operator-monotone function
x — x*. Proposition 2.4 says that the inequalities (2.5) and (2.6) become
equalities for a special choice of {y;}}-,, depending on the {x;}]-,.

The following lemma is central in the proof of Theorem 1.1. Here M is again
semi-finite, and t is a n.fs. trace on M.

LEMMA 2S. Let {x;};- L, (M,7)*, |x;ll;=1,j=1,2,...,n (n<0). Let 0< @
<1 and suppose that for all non-negative scalars ay,. . .,o, (k<n)

k +
)

i=1

k
2.7 0y o<
i=1

1

Then there exists a sequence {u;}j_, SM™ so that 3}_, u;=1 and t(xu)26*
for j=1,2,....

Proor. We proceed like in [6, Proposition 2.2]. In the space (M xM x ...)
with the product w*-topology we consider the set

D = {(yj);f=1; y;eM, Y y}‘yél}.
j=1

J

D is convex and compact. The easiest way to see this is to notice that the map

‘P((Yj);ﬂ) = '21 y;®e;
j=
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establishes an affine homeomorphism between D and the unit ball of
(M®B(1h)) ®e,,,, taken with the w*-topology.

CuraM, There exists a (y;)7-, € D so that Ret(y;x;)=0 for all i.

Indeed, if this is not the case we consider the map T from D into real [,
equipped with the w*-topology, defined by

T(y)i-1 = (Ret(yx))i-; -
T is affine and continuous, so T(D) is convex and compact, and by assumption
it is disjoint from the w*-closed, convex set A={(c;)!-, € I; ¢;=6, Vi}. So by

the separation theorem there exists an element a= (a,)?-, in real I} so that for
some 0, <0 we have

(2.8) 0= ac, forevery (c)i-, €4
i=1
and
29) Y o;Ret(yx)<6,, forevery (y)i-,€D.

i=1

Clearly, (2.8) implies that a; =0 for all i and }}_, «;= 1. Since 6,/0 < 1, there is a
finite k<n so that 6, <0Y*_, .

Let x = (3_¥_, a?x?)%. By Proposition 4, there exists a sequence y,,...,y, € M
so that 3%_, y*y,=s(x) <1, and y;x =u;x; for every i. By the assumption (2.7)
we get

S =)
™M~
R
A

Q

< N
™M~

K
3y

x
-

\/
o

]

aQ
—

>
R

i
-

It
[a)
= ~
] M =
=
"%
=
=
S—

il
™
R

A
—
=

*
=

Since 1(x)=0 we get that

k k
tx) = ¥ ar(yx) = Y a(y¥x)

i=1 i=1
k k
= Z ot(xy) = Z aT(yix;) -

i=1 i=1
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It follows from this and the above inequality that

k

k
0Y o< ¥ o Ret(yx)

i=1 i=1

k
<0, <0 «
i=1
by (2.9) and the definition of k. This contradiction proves the claim.
Let (y)?-, € D be so that Ret(y;x;)=6 for all i. Then
(2.10) 0 < Ret(yx) < [t(yx)l = le(yxfxd)
[rOyryxd]tt(xixht = [e(yryx)]?t,

by the Cauchy-Schwartz inequality and the fact that ||x,||, =7(x;)=1. Define u,
=1->"_,y¥y;, and u;=y¥y, for 1 <i<n. Clearly, u;=0 and }'?_, u;=1I. Since
u, 2yf¥y, it follows from (2.10) that 6?<t(uxx;) for all i=1,2,...,n. This
completes the proof of the Lemma.

IIA

ProorF oF THEOREM 1.1. Let {x;}7., (n<o00) be normalized elements of
L, (M, 7) satisfying
k

0 Z ‘ajl b

k
Z a;x;
i=1 =1

for every choice of scalars {a;}%_, (k<n). By Proposition 2.3 we have

k k L
0(2 ’aj|) = Z Iajlzlxﬂz) .
ji=1 j=1

1

and

k k 3
o ¥, |aj|> () |a,~|2|x;‘|2) I
j=1 j=1 1

for every choice of scalars {a;}%_; (k=<n). By Lemma 2.5 there exist two
sequences {u;}7-, and {w;}}-, in M* so that

M=

w;

n
Yu=1=
i=1 1

i
and
0> < T(uglx ), 0> < T(wilx})

for all j. It follows that
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llxj—xully = | lleillei(l - uj)‘}(l - uj)&"l
Dl Wt (=¥l D1 =)
L[l (1 —uplx )3 1
Lellx = Ixjlu)]t < (1-69)*.

A 1A

Similarly, ||x;—w;x;|| < (1 - 6% It follows that

||xj" ijj“jul < ”xj_xjuj"x + l!x;uj— ijjujul

< 2(1-6%,
and thus

Cj = ”W_,x]u‘,ﬂl 2 l""xj"‘wlxlu!lll g 1-2(1_02)i = C.

Let v; be the partial isometry in the polar decomposition of w;x;u; that is
wixu;=vjwixuj, j=1,2,.... Let X =span {x;}}_, and define a map P, from

L,(M,) into X by

Pox = ), cj't(vfwpu)x; .
j=1
Pyx is well-defined, since the series converges absolutely. Indeed, if
x € L,(M,t) with polar decomposition x=v|x|, then

IA

n n
¥l ewpwpaixl S ¢t 3 1w oot (el

lIA

n
Y orwhll o Iwdolx I IxFud | lud o
j=1

lIA

n +/ n 4
(% wposrz) (z st
=1 =1
n 2/ n +
= c“l(lz t(w}lelv*w}‘)) ('Z t(u§|x|u})>
=1 =1

c_(f(j; wj|x*|))*(’(fi u,-lxl>>&

e alx*DE@ixt = e Hix*iixit

I

¢ Hixlly -

So P, is bounded and |Py||Sc™!. Next, if x=37_,t;x; € X, then using the
above estimate we get
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n
|Pox—x|; < '21 le; r(oFwixu)—t))
iz

I
1O

n
-1
c; .Zl tT(vfwxu) —t;
i

1

J

n
-1
¢; .Zl tT(vFwixu;)
&

I
™M=

1

i

i*j

n n
¢! Z |l Z loFwxu;l,

=1 j=1

i*i

n n 3 n +
Ssct Y e X lex.-*|> > u,-l)ql))

=t j;% j;%

=t Z e (£ (= wlx#D)* (2 (( — i)}

< et (- 02 (1 - 69}

i=1

¢ =07 xIl, -

IIA

It follows that
IPox—Ixl < ¢71071(1-6%) = (1-2(1—6%}) 107 (1-6) = «.

If 120>60,=091273 ..., then 0<a<1 and P, x is invertible. Let T
= (Py;x)” ! and define P: L,(M,1) > X by P=TP,. Clearly, P is a projection,
P(L,(M,7))=X, and

IPI S ITIIPoll € 1=a)"tc™! = (1-2(1-60%* -0 (1—-06%)"".
Putting 6 =1/4, we obtain the estimate
1Pl < 1+2)/2(A- 1) +0(A—1).

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2.

Let 0<6,<1 be the constant from Theorem 1.1, put A,=60, ', and for every
1<4

fA = [1-21-A79472.

Step 1. Reduction to the case where M is countably decomposable.
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We say that a projection p in von Neumann algebra M is countably
decomposable if it can be written as the sum of at most countably many
disjoint, non-zero projections from M. M is said to be countably decomposable
if the identity projection I € M (hence, every projection p € M) is countably
decomposable.

Suppose that the statement of Theorem 1.2 holds whenever M is countably
decomposable. Let N be a von Neumann algebra and let T: [, - N, be an
isomorphism with | T||.|T™!||=A<A, Recall that every ¢ € N, has a
canonical polar decomposition (see [18, Theorem II1.4.2]) ¢ =ul¢|, with u a
partial isometry from N and || a positive element of N,. Let M be the von
Neumann subalgebra of N generated by all the partial isemetries u in the polar
decompositions of elements ¢ € T(l,), as well as the subprojections of uu* and
u*u. We claim that M is countably decomposable. Indeed this follows easily
from the separability of T'(/;) and from the fact that the support projection of
every ¢ € (N,)* is countably decomposable (in N).

Let j: M — N be the inclusion map. By normality, j=Q* where Q: N,
— M, is a quotient map (the restriction map). By the construction, @, =Q|r(,
is an isometry. Consider the isomorphism S=Q, T from [, into M. Clearly,
ISHIS™ M K THIT ! £A Since M is countably decomposable and A< 4, we
get by our previous hypothesis the existence of a projection P from M, onto
S(l,) with |P||£A-f(A). Define R=Q['PQ. Then R is a projection from N
onto T(l;) and |R|| = |/P|.

StEP 2. Proof of Theorem 1.2 in the countably-decomposable case.

Let M be a countably decomposable von Neumann algebra and let T:
I, - M, be an into-isomorphism so that | T||-||T ™| =A<4,. By a result of
U. Haagerup and A. Connes (see [7, § 7], and [8]), M is isomorphic as a von
Neumann algebra to a subalgebra of a von Neumann algebra N (the crossed
product of M with the group of dyadic rationals), which is the direct limit of an
increasing sequence {N,}i>, of finite von Neumann subalgebras. Moreover,
there exist normal conditional expectations from N onto each of the N, and
onto the image of M in N. Using the fact that a normal map is a dual map
(being w*-continuous) we may assume that M _ is a 1-complemented subspace
of the Banach space X = N, which has the following structural properties (see

[81:

(i) There exists an increasing sequence {X,};%, of subspaces of X so that
U, X, is norm-dense in X;

(i) Xy is isometric to (N,),=L,(N,, 1), k=1,2,..., where 1, is a finite n.fs.
trace on N;;
(iii) There exist norm-one projections P, from X onto X,, k=1,2,.. ., so that

PkPn=Pmin{k,n} for all k,n=1,2,....
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Let {e;}2, be the canonical basis of I, and let I} =span {e;}"_ ;. By a standard
approximation argument, there exist an increasing sequence {k(n)} of positive
integers and one-to-one operators S,: If — X, so that

1S, =Tlgl = 0, S, 1S, = 4, < Ao, 4, > 4.

By Theorem 1.1 there exist projections Q, from X, onto S,(I1) with |Q,]
<f(4,). It follows that R,=Q,P,., n=1,2,. .., are projections from X onto
S,(I7). By a standard perturbation argument, there exist projections R, from X
onto T(I}), with

.}LTO IRl £ f(A).

By a standard compactness argument there exist a subnet {R,,} of the
sequence {R,} and an operator R: X — T(l,)** so that Rx=lim, R,,,x in the
a(T()**, T(l,)*) topology for every x € X. Clearly, RTy= Ty for every y € I,
and |R| £ f(A). Since I, is 1-complemented in [¥*, there exists a projection Q
from T(l,)** onto T(l,) with |Q|| <A It follows .that QR: X — X is a
projection with range T(l;). Thus P=QR|, is a projection from M, onto
T(l,) and |P| £]|Q|- |R|| £ Af(A). This completes the proof of Theorem 1.2.

4. Almost isometric embeddings of ¥, ; spaces in preduals of von Neumann
algebras.

Recall [10] that a Banach space X is an %, ;-space if every finite
dimensional subspace E of X is contained in a further finite dimensional
subspace F of X which is A-isomorphic to I}, where n=dim F (i.e., X is a direct
limit of a family of finite dimensional subspaces, A-isomorphic to [}-spaces).
The class of &, ;-spaces is quite large; let us just mention that every L, (v)-
space is an &, ;-space for every A>1, and that there exist %, ;-spaces which
are uncomplemented in their second duals.

CoROLLARY 4.1. There exists 1<A, and a function b:[1,4)) — [1,00)
satisfying lim; . b(A)=1, so that if X is an & ;-subspace of a predual M , of a
von Neumann algebra M with A<A, then there exists a projection R from M,
onto X with ||R|| £b(A). In particular, this holds if X is A-isomorphic to L, (v) for
some measure v.

We need the following known fact (see [18, Theorem I11.2.14]).

PROPOSITION 4.2. Let M be a von Neumann algebra. Then every fe€ M* has a
unique representation f= g+ h, where g is a normal functional (i.e.,g € M ) and h
is a singular functional, and || f| =gl + |hll.
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It follows that M*=M @, S, where S is the subspace of M* consisting of
all singular functionals. We shall need also the following result whose proof is
contained in [1].

LemMa 4.3. There exists a function ¢: (1,2) — [1, 00) satisfying lim,_, ;+ ¢(4)
=1, for which the following is true. Suppose that Y is a Banach space having a
subspace X so that '

(i) There exist a constant 1 < A<2 and a projection P from Y** onto Y so that
for every y** € Y**

A-min {|[Py**|, | =P)y**I} = ly**|l . .

(ii) There exists an operator Q: Y — X** so that

Qlx =Ix and max{|iQ|,|PQ|} =4 < 4.

Then there exists a projection R from Y onto X so that |R| <@ (A).

PrOOF OF COROLLARY 4.1. Let a()=A[1-2(1—A"")*]"2 and put 4,
=min {4y, a”*(2)}, where 4, is the constant from Theorem 1.2. Clearly, 1 <4,.
Let b(A)=p(a(A)), where 1 A< 4, and ¢ is as in Lemma 4.3. Clearly b(4) — 1
as A— 1+4.

Suppose now that M is a von Neumann algebra and X is a subspace of M,
which is an &, ,-space for some A<4,. By definition, there exists a directed
family {X};.; of subspaces of X with X=U,;,; X, n;=dim X;<00, and X is
A-isomorphic to I} for every j € J. By Theorem 1.2 there exists for each j e J a
projection Q; from M, onto X; with ||Q;| Sa(4). As in the proof of Theorem
1.2, there exists an operator Q: M, — X** so that Qy=Ilim;Q;y in the
o (X **, X *)-topology for every y € M. It follows that Q|x =1y and ||Q| <a(A).

Let P be the projection from M* onto M, given by Proposition 4.2, and put
Y=M,. Clearly, | P|| =1 and (i) of Lemma 4.3 is satisfied with A =2. Since a(4)
<A=2, we get by Lemma 4.3 that there exists a projection R from M, =Y
onto X with |[R|| Z¢@(a(A)=>b(A).

Corollary 4.1 gives an affirmative answer to Problem A in the case where N
is commutative (ie., N,=L,(v)) and M is general. As for non-commutative
N’s, the most interesting case seems to be N=B(l3), n=21 (so N,=B(l3),=C],
the n x n complex matrices with the trace-norm):

ProBLEM B. Does there exist a constant 4,>1 and a function c: [1,4,)
— [1, 00) so that if M is a semifinite von Neumann algebra and X is a subspace
of M, which is A-isomorphic to C1 for some n=2 and A< 4,, then there exists a
projection P from M, onto X with ||P|<c(4)?
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It is natural to extend Problem A to non-commutative L -spaces.

ProsLeM C. Does there exist for every 1 <p<oo, p+2, a constant A(p)>1
and a function y,: [1,A(p)) — [1,00) (possibly with lim,_,,, ¥,(4)=1) so that
if M and N are semifinite von Neumann algebras with n.fs. traces 7 and ¢
respectively, and if L (N, g) is A-isomorphic to a subspace X of L,(M,), then
there exists a projection P from L,(M,7) onto X with |P|| Sy,(4)?

Of course, the most important cases are N=I;, (with L,(N,0)=1}) and
N =B(l3) (with L,(N,0)=C}). We remark that Problem C has an affirmative
solution in case both M and N are commutative, i.e., L,(M,7)=L,(¢) and
L,(N,0)=L,(v) for some measures u and v, see [16]. Also, by [3] and [20], any
subspace of L,(M,1) which is isometric to L,(N, o) is 1-complemented.
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