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DENSE STRONG CONTINUITY OF MAPPINGS
AND THE RADON-NIKODYM PROPERTY

JENS PETER REUS CHRISTENSEN* and PETAR STOJANOV KENDEROV*

Summary.

Let F: X - E (F: X — E*) be a weak-continuous (weak*-continuous)
mapping from the Baire space X into the Banach space E (dual Banach space
E*). When do there exist a dense G, subset of X at the points of which F is
norm-continuous?

It turns out that this is the case when E(E*) has the Radon-Nikodym
property. The same holds true for multivalued mappings provided one uses a
suitable notion of norm continuity of set-valued maps. An application is given
to the theory of weak Asplund spaces. In particular, without using renorming
theorems, it is proved that closed linear subspaces of a weakly compactly
generated Banach space is weak Asplund.

0. Introduction.

Let F: X — E be a single-valued mapping from the topological space X into
the normed space E. Suppose F is continuous with respect to the weak
topology in E. Is it true that at some points of X the map F is continuous with
respect to the norm topology in E? In [1] Alexiewicz and Orlicz gave a positive
answer to this question for the case when X is of 2nd Baire category and E is a
separable normed space. Fort [7] proved a general result which contained the
result of Alexiewicz and Orlicz but still remained in the frames of separable
normed spaces. Later, under the requirement that X is strongly countably
complete and without any restrictions for the Banach space E, Namioka [16]
showed that F will be norm-continuous at the points of some dense G,-subset
of X. Along this line went the papers of Troallic [22], Talagrand [20] and
Christensen [4]. In this paper we consider the case when F: X — E(E*)is a
multivalued mapping of the Baire space X into the normed space E (dual
normed space E*) with the Radon-Nikodym property. We suppose that F: X
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— E (F: X — E*)is upper semi-continuous and compact valued with respect
to the weak (weak*) topology in E (in E*) and prove that at each point x, of
some dense G, subset C of X the mapping F has the following continuity
property.

There exists such a point y, e Fx, that for each £¢>0 an open
neighbourhood U € x,, U <= X, exists for which

(*) sup {inf{lly—yol :yeFx} : xe€ U}. <e.

Earlier similar results about multivalued mappings F: X — E(E*) were
considered in [11], [13], and [3]. It turns out that the Banach space E is an
Asplund space (the definition is given in section 2) if and only if for every upper
semi continuous compact valued F: X — (E*,w*) where X is a Baire space,
there exists a dense G, subset C< X at the points of which (*) is satisfied. If
Q: E — E, is a continuous linear mapping of the Asplund space E onto a
dense subspace of the Banach space E;, then E, is weak Asplund. In addition
to this result of Stegall (see [19]) we prove here that every closed linear
subspace E, of E, is also weak Asplund. As a corollary we obtain (without
using renorming theorems) that every closed linear subspace E, of some
weakly compactly generated Banach space E; is weak Asplund.

1. Main results.

(1.1) DeriNiTiON. The correspondence (set-valued map) F: X — Y from the
Hausdorff topological space X into the Hausdorff topological space Y is usco
(upper semi-continuous and compact valued) if

i) FxcY is compact and non-empty for all x € X; and
ii) for every open set U< Y the set {x € X: Fxc U} is open in X.

Let E be a normed space and E* be its dual. As usual, we denote by “w*” the
weak * topology in E* and by “w” the weak topology in E. It is convenient for

us to use here the notion “Radon-Nikodym Property” (RNP) in the following
form.

(1.2) DeriniTION. (Namioka and Phelps [17], Diestel and Uhl ([6, p. 281)]).
The dual Banach space E* has RNP if for every bounded subset A* < E* and

every number £ >0 there exist x € E and a number ¢ >0 such that the diameter
of the set

S(A*; x,t) := {x* € A* : {x,x*) > sup{{x,y) : y € A*} -t}

(called sometimes w*-slice of A*) is smaller than .
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The Banach space E has RNP if for every bounded subset A of E and every
£>0 there exist x* € E* and a number ¢ >0 such that the diameter of the set

S(A; x*,1) := {x € A: {x,x*>>sup {{z,x*> : z € A} —t}

(called sometimes w-slice of A4) is smaller than e.

(1.3) THEOREM. Let F: X — (E*,w*) (F: X — (E,w)) be an usco mapping
Jfrom the Baire space X (i.e. every open U < X is of 2nd Baire category) in the dual
space E* (space E) which has RNP. Then there exists a dense G subset of X at
each point x, of which the following condition is fulfilled

(*) there exists a point y, € Fx, such that for every ¢>0 an open Uc X,
U 3 x,, exists with inf {||yo—y| : y € Fx} <& whenever x € U.

In the proof of this theorem we will make essential use of a general concept
introduced by Christensen in [3]. For any topological spaces X and Y denote
by USCO (X, Y) the set of all correspondences F: X — Y which are usco. By
G(F), as usual, we will denote the graph of the correspondence F: X — Y. The
set USCO (X, Y) is naturally ordered by inclusion of the graphs. Since the
graph of any usco correspondence is automatically closed and since being usco
is preserved by taking correspondence whose graph is closed and contained in
the graph of a given usco correspondence (see the discussions in [3]), the order
in USCO (X, Y) is inductive and Zorn’s lemma can be applied. Therefore every
F € USCO (X, Y) contains a minimal correspondence F e USCO (X, Y).
Minimal elements of USCO (X, Y) have some interesting properties.

(1.4) LeMMA. If F is minimal in USCO (X, Y) and U is an open subset of X,
then the restriction of F to U is minimal in USCO (U, Y).

(1.5) LEMMA. Let F be minimal in USCO (X, Y) and Y, be a closed subset of Y
for which F(x)NY,+ & for every x € X. Then F(x)=U{Fx:x e X}cY,.

Proor oF THEOREM (1.3). It is clear that theorem (1.3) can be derived form
the following statement.

(1.6) LEMMA. Let X, F, E*(E) be as in Theorem (1.3). Suppose, in addition, that
F is minimal usco. Then there is a dense G, set C =X such that for each x, € C
the set Fx, contains only one point and F: X — E* (F: X — E) is upper semi-
continuous at x, with respect to the norm in E* (in E).

We will prove only the first half of the theorem. The second half (contained
in brackets) can be proved similarly and we omit the proof.
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Let B* be the unit ball of E*. For every positive integer n put

1
V,=U {int{x eX: Fxcy+—B*}:y € E*} ,
n

where int S stands for the interior of the set S in X. As union of open sets V, is
an open subset of X. We will show now that it is dense in X. Take some
nonempty open U< X. We have to see that UNV, + . Put, for each integer
k>0, F,={x e X: FxNkB*+ ¥}. Since F: X — (E*,w*) is upper semicon-
tinuous Fx, k=1,2,3,.. ., are closed sets which cover X. As Uc X is a Baire
space, there is some integer k for which U, = (int F,) N U #+ . Having in mind
(1.4) and (1.5) we see that F(U,)=U {Fx: x € U,} ckB*. In particular F(U,)
is a bounded subset of E*. By the Radon-Nikodym property there exists some
w*-open set Wc E* such that WNF(U,)+ & and diam (W NF(U,))<1/2n.
Using minimality of F: U; — E* once more we see that for some x, € U,, Fx,
< W. Since F: X — E* was w*-upper semi-continuous at x, we will find some
open U,cU,, U, 3 x,, such that F(U,)eWNF(U,). Hence U,cV,NU,
< V,NU. Therefore V, is dense in X. To prove (1.6) (and Theorem (1.3)) it
remains to put

C=N{,:n=123,..}.

(1.7) REMARKS. As stated in Theorems 1 and 2 in the paper of Christensen
[3], the “bracket part” of our Theorem (1.3) remains valid even for arbitrary
Banach space E (not necessarily having RNP), provided some mild
requirements are imposed on X. Nothing similar is to be expected for
mappings F: X — E* in dual spaces E*. The presence of RNP in E* is not
only a sufficient but also necessary condition for the Theorem (1.3) to be true.
Indeed, suppose the conclusion of (1.3) is valid for some dual space E*. Take
some w*-closed bounded subset X < E*. As any other compact space the set X
endowed with the w*-topology will be a Baire space. Consider the identity
map F: (X,w*) —» (E* w*) and apply (1.3). This yields a lot of points in
(X, w*) at which the identity is w*-to-norm continuous. Thus X contains non-
empty relatively w*-open sets of arbitrary small diameter. As shown in the
paper of Namioka and Phelps [17] this implies RNP.

For the particular case when F is a monotone operator the construction
from the proof of (1.6) was used in [12].

(1.8) THEOREM. Let F: X — (E,w) be a minimal usco correspondence from the
Baire space X into the Banach space E having RNP. Suppose that X has the
countable chain condition on the open sets, i.e. each disjoint family of open subsets
of X is countable. Then F(x)=U {Fx: x € X} is a norm separable subset of E.
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Proor. The proof is almost identical to the proof of Theorem 3 from [3].

2. Asplund and weak Asplund spaces.

We apply here our main result in order to give an improved version of a
theorem of Stegall.

(2.1) DerFINITION. (Asplund [2], Namioka and Phelps [17]). The complete
normed space E is called Asplund (weak Asplund) if every continuous real-
valued convex function f: E — R is Frechet (Giteaux) differentiable at the
points of some dense G4 subset of E.

Evidently, every Asplund space E is weak Asplund. Mazur [15] proved that
every separable complete normed space E is weak Asplund. The well known
separable space [, is an example of a weak Asplund space which is not Asplund.
At present there are many nice characterizations of Asplund spaces (see Stegall
[19], Namioka and Phelps [17]; some of the results are gathered in the book
by Diestal and Uhl [6]). Most important for us is the fact that E is an Asplund
space if and only E* has the Radon-Nikodym property.

The situation with weak-Asplund spaces is not so fortunate (see Larman and
Phelps [14], Talagrand [21] and Hagler and Sullivan [8]).

No characterization of weak Asplund spaces seems to be known at the
moment. We discuss here the following interesting connection between
Asplund and weak Asplund spaces.

(2.2) THEOREM. (Stegall [19]). Let E be an Asplund space and Q: E — E, be a
continuous linear map of E onto a dense subset of the Banach space E,. Then E,
is weak Asplund.

As mentioned in the manuscript of Phelps ([18, p. 3-12]) it was not clear
from the proof of Stegall whether every closed linear subspace E, of E, is also
weak Asplund. We give here an affirmative answer to this question.

(2.3) DeFiNiTION. The multivalued map T: E — E* is said to be monotone if
{x;—X%p,xFf—x¥>=0 whenever x* € Tx;, i=1,2. T is said to be maximal
monotone if its graph is not properly contained into the graph of any other
monotone mapping. By Zorn’s lemma for every monotone T: E — E* there
exists a maximal monotone map T: E — E* such that Tx < Tx for each x € E.

The subdifferential of a continuous real-valued convex function f: E — R is
a multivalued mapping d: E — E* defined by the formula

0(xp) = {x* € E*: f(x)—f(xg)={x—xp,x*> for every x € E} .
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It is easily seen that every subdifferential 3: E — E* is a monotone mapping.
Since the real valued continuous convex function f: E — R is Gateaux
differentiable at some x, € E if and only if the set d(x,) consists of only one
point, the next result is an improvement of (2.2).

(2.4) THEOREM. Let E be an Asplund space and Q: E — E, be a continuous
linear map of E onto a dense subset of the complete normed space E,. Let E, be a
closed linear subspace of E, and T: E, — E¥ be a multivalued monotone
mapping. Then there exists a dense G4 subset C of E, such that Tx is a singleton
for each x € C. In particular, E, is weak Asplund.

Proor. Without loss of generality we could think that T: E, — E} is a
maximal monotone mapping. It is known (Kenderov [9]) that in this case T is
norm-to-w* upper semicontinuous. Also important for us is the theorem of
Rockafellar [18] about the local boundedness of monotone mappings. Le. to
each x, € E there corresponds a norm-open UcE, x, € U, such that T(U)
=U{Tx: x € U} is a bounded subset of E*.

After these preliminary remarks let us consider the diagram

El—) El 4——ILE2
iT

E* J:_Efﬂ,}g;

where id is the identity inclusion of E, into E; and Q*, (id)* are the mappings
conjugate to Q and id correspondingly. We have to prove that the set
D={x € E,: Tx has more than one point} is of the first Baire category in E,.
According to a known result it is enough to show that this set D is of the first
category locally. Le. for each x € E,, there exists an open (in the norm of E,)
set Uc E,, U 3 x, such that U N D is of the first Baire category in E,. Having in
mind the above mentioned result of Rockafellar it suffices to show that U N D is
of 1st category whenever U is a norm-open subset of E, for which T(U) is a
bounded subset of E,. Take such an U < E,. It is no harm to think that T'(U)
< B¥, where B¥ is the unit ball of E¥. Define the mapping T,: U — E} by the
formula: for x e U

T,x = ((id*)~'Tx) N Bf.

Here B} denotes the w*-compact unit ball od E}. Since the restriction of id*
on B} is w*-continuous and, therefore, maps w*-closed subsets of Bf into w*-
closed subsets of B¥, the map T,: (U,|-|) —» (B¥,w*) is usco. The map
Q*: Ef — E* is continuous with respect to w*-topologies in Ef and E*. Since
Q(E) is dense in E,, Q* is one-to-one. Therefore the map F: (U, ||‘|)
— (E*,w*) defined by the formula F=Q*oT will also be usco. Since E is
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Asplund, and therefore E* has RNP, we can apply Theorem (1.3). Hence a
dense G; subset C<= (U, || - ||) exists at each point of which the condition (*) is
fulfilled. The rest of the proof is contained into the following resuit.

(2.5) LEMMA. Let x, € U be a point at which (*) is fulfilled. Then Tx, has only
one point.

Proor or THE LEMMA. Take the corresponding point yf € Fx, (from (*))
and put z¥ = (Q*) 'y¥ € T,x,. We will show that T,x,<z&+ E;, where

E; = {x* € E¥: {(x,x*)=0 for every x € E,} .

This is equivalent to Tx, (= (id)* T;x,)= (id)* z§. Hence it is enough to prove
that

(**) {x,z*—z§> = 0 whenever x € E, and z* € T;x, .

Suppose (**) were not fulfilled and take some e, € E, and z{ € T,x, for which
{ey,z¥—z¥>=¢>0. By the monotonicity of T: U — EJ, for every positive
number ¢ such that x=x,+te, € U and x* € Tx we have (e, x*— (id)* z¥)
=0. Then, for each z* € T,x, we have

(ep,z*—2z8)
= (epz*—zf) +<{eyz¥ —28)
2 {(id)eyz*—zF)+e = (e (d)* (z*—zF))+e 2 €.
Therefore, for t>0,
T,(x) = Ty(xo+te)) = A:= {z* € E¥: ey z*>2e+<e3 28D} .

Note that z¥ ¢ AN B}¥. Since Q(E) is dense in E, and since ANB¥ is a w*-
compact and convex set which does not contain z§, there will exist some beE
for which (Qb,z*—z¥>26>0 whenever z* € ANB}. In particular, for
y* € F(xo+te;)=Q*oT,(x,+te,) and z* € Ty(x,+te,), y*=Q*z*, we have

Il y*—y§ll = <b,y*—yg> = <b,@*(z*—2z8)) = <Q(b),z*—28)> 24 > 0.

Therefore |y*—y&l|=6/||b| >0 for every y* € F(x,+te,). Since t may be
arbitrarily small positive number this contradicts the condition (*).

(2.6) CoroLLARY. (Asplund [2]). Let E, be a closed linear subspace of the
weakly compactly generated Banach space E, (i.e. in E; a w-compact set K exists
whose close linear span is all of E,). Then E, is weak Asplund.
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Proor. We remind the factorization theorem of Davis, Figel, Johnson, and
Pelczynski [5] according to which for every weakly compactly generated
Banach space E, there exists a reflexive space E and a continuous linear map
Q: E — E, such that Q(E) is dense in E,. As noted by Stegall [19] this result,
together with theorem (2.2) and the fact that reflexive spaces are Asplund,
imply that E, is weak Asplund. Using theorem (2.4) instead of (2.2) one gets
that E, is weak Asplund.

(2.7) REMARK. In contrast to Asplund’s original proof of (2.6) the one given
here does not use renorming results.

REFERENCES

1. A. Alexiowicz and W. Orlicz, Sur la continuité et la classification de Baire des fonctions
abstraites. Fund. Math. 35 (1948), 105-126.
. E. Asplund, Frechet differentiability of convex functions, Acta Math. 121 (1968), 31-47.
. J. P. R. Christensen, Theorems of Namioka and R. E. Johnson type for upper semi-continuous
and compact valued setvalued mappings, to appear in Proc. Amer. Math. Soc.
4. J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc.
82 (1981), 455-461.
. W.J. Davis, T. Figel, W. B. Johnson, and A. Pelczynski, Factoring weakly compact operators, J.
Funct. Anal. 17 (1974), 311-327.
6. J. Diestel and J. J. Uhl, Jr., Vector Measures (Math. Surveys 15), Amer. Math. Soc. Providence,
R.I, 1977.
. M. K. Fort, Category Theorems, Fund. Math. 43 (1955), 276-288.
. J. Hagler, and F. Sullivan, Smoothness and weak* sequential compactness, Proc. Amer. Math.
Soc. 78 (1980), 497-503.
9. P. S. Kenderov, The set-valued monotone mappings are almost everywhere single-valued, C.R.
Acad. Bulgare Sci. 27 (1974), 1173-1175.
10. P. S. Kenderov, Multivalued monotone mappings are almost everywhere single-valued, Studia
Math. 56 (1976), 199-203.
11. P. S. Kenderov, Semi-continuity of set-valued mappings with respect to two topologies, C.R.
Acad. Bulgare Sci. 29 (1976), 1569-1572.
12. P. S. Kenderov, Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci. 30 (1977), 963
964.
13. P. S. Kenderov, Dense strong continuity of pointwise continuous mappings, Pacific J. Math. 89
(1980), 111-130.
14. D. G. Larman and R. R. Phelps, Gdteaux differentiability of convex functions on Banach spaces,
J. London Math. Soc. (2) 20 (1979).
15. S. Mazur, Uber konvexe Mengen in linearen normierten Riumen, Studia Math. 4 (1933), 70-84.
16. 1. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531.
17. I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42
(1975), 735-750.
18. R. R. Phelps, Differentiability of Convex functions on Banach spaces, Lecture notes from a
postgraduate course, University College, London, 1977.

w N

w

o0 3



78 JENS PETER REUS CHRISTENSEN AND PETAR STOJANOV KENDEROV

18. R. T. Rockafellar, Local Boundedness of non-linear monotone operators, Michigan Math. J. 16
(1969), 397-407.

19. C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property,
Israel J. Math. 29 (1978), 408-412.

20. M. Talagrand, Deux généralizations d'un théoréme de 1. Namioka, Pacific J. Math. 81 (1979),
239-251.

21. M. Talagrand, Deux examples de fonctions convex, C.R. Acad. Sci. Paris Sér. A 288 (1979),
461-464.

22. J.-P. Troallic, Fonctions a valeurs dans des espaces fonctionnels généraux: théoréme de R. Ellis
et I. Namioka, C.R. Acad. Sci. Paris Sér. A 287 (1978), 63-66.

MATEMATISK INSITUT

H. C. ORSTED INSTITUTTET
UNIVERSITETSPARKEN 5
DK-2100 KOBENHAVN O
DENMARK

AND

BULGARIAN ACADEMY OF SCIENCES
MATHEMATICS INSTITUTE

P.O. BOX 373

1090 SOFIA

BULGARIA



