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OUTER AUTOMORPHISMS OF
INJECTIVE C*-ALGEBRAS

KAZUYUKI SAITO and J. D. MAITLAND WRIGHT

Introduction.

Let A be a C*-subalgebra of a C*-algebra B and let f be an inner
automorphism of B which leaves A invariant. When is the restriction of f to 4
an inner automorphism of A? That is, when is f implemented by a unitary in
A, if A is unital, or by a unitary in M(A), the multiplier algebra of A, if 4 is not
unital?

A deep theorem of Kishimoto [10], which builds on the important earlier
work of Elliott [3] and Lance [11], shows that when A is separable and simple
and when B is the second dual of A then the answer is “always”. We proved in
[17] that when A is simple and B is the regular completion of A then the
answer is also “always”. We shall prove a much stronger result than we did in
[17]. Let « be an outer *-automorphism of 4, where A is a-simple. Let B be the
injective envelope of A4 (see below for definitions). Then Theorem 3.6 implies
that « has a unique extension to an outer *-automorphism of B.

The following elementary example illustrates what can go wrong. Let H be
an infinite dimensional Hilbert space, let B be the algebra of all bounded
operators on H and let 4 be the subalgebra of B generated by the identity of B
and the algebra of compact operators on H. Then each unitary in B induces an
automorphism of 4 which, in general, will not be inner.

We shall only consider automorphisms which are *-automorphisms.

1. Preliminaries.

We recall that a C*-algebra B is said to be injective when it is unital and if,
whenever 4 is a unital C*-algebra and S is a self-adjoint subspace of A4
containing the unit, then each completely positive map from S into B which
maps the unit of 4 to the unit of B can be extended to a completely positive
map from A4 into B (see, for example, Choi and Effros in [2]). Arveson [1]
proved that, for each Hilbert space H, the algebra of bounded operators on H
is injective. So each C*-algebra is a subalgebra of an injective algebra.

Received October 29, 1982,
We wish to thank the SERC for supporting the first author while at Reading.



OUTER AUTOMORPHISMS OF INJECTIVE C*-ALGEBRAS 41

Each C*-algebra A can be embedded canonically in a larger C*-algebra
Inj A, called the injective envelope of A. The injective envelope is characterized
by the following two properties. First, InjA is injective. Secondly, if ¢ is a
completely positive map from Inj 4 to Inj A such that ¢(a+Al)=a+ Al for all
ae A and all A e C then ¢ is the identity map on Inj A. The existence of
injective envelopes is a deep result of Hamana [4] who also established their
fundamental properties. For each C*-algebra A, its injective envelope is a
monotone complete AW *-algebra which need not be a von Neumann algebra
[5]

In all that follows, A is a C*-algebra with injective envelope Inj 4 and « is a
*-automorphism of A. By Corollary 4.2 in [4], « has.a unique extension to a *-
automorphism & of Inj 4. This implies, see Corollary 4.3 in [4], that the relative
commutant of A in Inj A is the centre of Inj 4.

Lemma 1.1. Let B be a C*-subalgebra of Inj A such that B contains A. Let J
be a closed two-sided ideal of B such that JN A={0}. Then J={0}.

This is Lemma 3.2 [7].

A subset S of A is said to be a-invariant if oa[S]<S and « " ![S]<S.

When D is any hereditary C*-subalgebra of A, we define Dg to be the set of
all positive elements of D with norm less than one, that is, {d € D: ||d|| <1 and
d=0}. Then, see Theorem 1.4.2 in [15], D¢ is an upward directed, approximate
unit for D. Since Dy is upward directed it has a supremum p in InjA4. It is
straightforward to show that p is a projection and that pd=dp=d for each
d € D. 1t follows from Theorem 6.5 [6] that InjD can be identified with
p(Inj A)p. This fact will be used extensively. When D is a-invariant then D is
also a-invariant. Hence &(p)=p.

LeEMMA 1.2. Let A be a non-unital C*-algebra. Then the supremum of Ag in
Inj A is the unit of Inj A4.

Let p be the projection in Inj 4 which is the supremum of 4. Then p is in
the commutant of 4 and so p is in the centre of Inj 4. So 1—p is a central
projection. Thus (1—p)Inj4 is a closed two-sided ideal of InjA whose
intersection with A is the zero ideal. So, by Lemma 1.1, p=1.

For any C*-algebra A, we recall that its multiplier algebra, M (A), is defined
to be {me A**: mAcA and Amc A} which is a C*-subalgebra of A**.
Clearly, when A is unital, M (A) coincides with 4. When A is not unital, M (4)
can be much larger than the algebra obtained from A by adjoining a unit. For
example, the multiplier algebra of C,(R) is the algebra of all bounded
continuous functions on R. The following lemma shows that we may regard
M (A) as being naturally embedded in Inj 4.
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LEMMA 1.3. Let A be a non-unital C*-algebra with multiplier algebra M (A).
Let @ be the canonical embedding of A in Inj A, the injective envelope of A. Then
there exists an isometric *-isomorphism ¢: M(A) — Inj A which extends ¢.
Moreover,

DO[M(A)] = {zeInjA:zAc A and Azc A} .

Let B be the smallest C*-subalgebra of Inj A which contains 4 and the unit
and is such that, whenever (b)) is an upward directed net in B with supremum b
in Inj 4, then b is in B. Then B is the regular completion of 4 [5, 18].

By the proof of Corollary 2.2 in [16], there is an extension of ¢ to an
isometric *-isomorphism @: M(A) — B such that

P®[M(A)] = {zeB:zAcA and Azc A} .
Let

M = {zelnjA:zAcA and Azc 4} .

To establish the lemma it suffices to show that the C*-algebra M is contained
in B.

By Lemma 1.2, the upward directed set Ag has 1 as its supremum in Inj 4.
* So, whenever m € M, mm* is the supremum in Inj A of {mam* : a € Ag }. Since
mam* € A for each a € A, it follows that mm* € B. Hence M < B.

Let B be any C*-algebra. We shall define C*(B, 1) to be the algebra formed
by adjoining a unit to B, if B is not unital, and define C*(B, 1) to be B whenever
B is unital.

2. Cross-products by discrete groups.

We recall some basic properties of cross-products which will be needed later.

Let G be a discrete group and let § be a homomorphism of G into the group
of *-automorphisms of A. We recall that a (non-degenerate) covariant
representation of the system (A4, G, f) is a triple (r, H,u), where H is a Hilbert
space, (m,H) is a (non-degenerate) representation of A, and u is a unitary
representation of G on H such that

n(B,(@) = u,n(auy

for each a € 4 and each y € G. We refer the reader to [15], for a lucid account
of C*.dynamical systems and cross-products. Corresponding to the system
(A, G, B) there can be constructed the (universal) cross-product A x;G. There
exists a unitary representation U of G in M(A4 x;G) such that

U,aUy = B,(a)
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for each a € A and each y € G. Also, 4 x 3 G is the closure of the sub-algebra
whose elements are all finite sums of the form ¥ a,U,, where each a, is in A4.
Further, 4 x; G has the following “universal” property, given a non-degenerate
covariant representation (n, H,u) of (4, G,p), there exists a representation

(I1, H) of A x,4G such that
I1(aU,) = n(au,

for each a € A and every y € G.

Let (o,H) be the universal representation of A. Then we define a
corresponding covariant representation (g, *(G, H), 4) as follows. First, I*(G, H)
is the Hilbert space of all square summable H-valued sequences indexed by G,
that is, I2(G, H)=I?(G)® H. Secondly, for each ¢ € (G, H) and each g e G

A0 = L'y -
Thirdly, for each a € A and each ¢ € I>(G, H)

@@&e) = (B; (@)W -

Let ¢ x 4 be the representation of A x;G corresponding to the above (non-
degenerate) covariant representation of the system (4,G,pf). The algebra
(@ x A[A4 x 3 G] is defined to be the reduced cross-product, 4 x 4 G. It turns out,
see [15], that if (o, H) were replaced by any faithful representation of A, then
the corresponding construction would give an algebra isomorphic to 4 x,,G.

Whenever the group G is amenable, in particular when G is abelian, the
homomorphism ¢ x 4 is faithful.

LEMMA 2.1. Let G be a discrete group with a representation B in the
automorphism group of A. Let u:G — InjA be a unitary representation of G
such that uzu} =, (z) for all z € A. Let I be the canonical embedding of A into
Inj A. Let B be the C*-subalgebra of Inj A generated by all finite sums of the form
Y a,u,, where each a, € A. Then there exists a surjective homomorphism II from
Ax 4G onto B such that

II@U,) = au

Y

forallae A and all y € G.

Let H, be the universal representation space of Inj A4.

When 1 € A4, then A acts non-degenerately on H,. So (I,H,,u) is a non-
degenerate, covariant representation of the system (4, G, ). By the universal
property of the cross-product, II exists.

Let us now suppose that 4 is not unital and let C*(4, 1) be the C*-algebra
obtained from A by adjoining a unit. Then Inj 4 is the injective envelope of
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C*(4,1). Let H be the closure of A[H,]. Since u,Auy =A for each y € G, we
have u,[H]=H for each y € G. Thus H is invariant under B. For all b € B let
n(b)=b|H and let 4i: G — Z(H) be defined by #,=u,|H. Then (n,H,d) is a
covariant non-degenerate representation of the system (4, G, ). So there exists
an homomorphism I1; from 4 x,;G onto n[B] such that

Hl(aUy) = n(a)ay H

for each a € A and each y € G.

Since  is faithful on 4, z~'{0} is an ideal of B which is disjoint from A. So,
by Lemma 1.1, n7'{0}=0. Let IT=n"'oll,. Then IT has the required
properties.

Let A, G, B be as above. We shall need the following basic property of
reduced cross-products by discrete groups. There exists a completely positive
map E from A x ;G onto 4 such that

(i) E(6@)=a forallae A
(i) E(¢(a)A,)=0  whenever y is not the neutral element of G.

When 4 is not unital, neither is 4 x,;G. Then E can be extended to a
completely positive map from C*(4 x,;G, 1) onto C*(4, 1) where E1=1. To
see this let P be the projection from 1> (G, H) onto H defined by P& = ¢£(0), where
0 is the neutral element of G. Then the compression z — PzP is a completely
positive linear map whose restriction to C*(4 x,;G,1) has the required
properties.

When G is amenable, in particular, when G is abelian then we may identify
the cross-product and the reduced cross-product. So there exists a completely
positive projection E from C*(A4 x,G,1) onto C*(4,1), such that E(aU,)=0
whenever y is not the neutral element of G.

3. Automorphisms.

When « is an automorphism of a C*-algebra A, then A is said to be a-simple
if the only a-invariant, closed, proper, two-sided ideal of A4 is 0.

We shall need the following notation. Let H*(4) be the family of all non-
zero, closed, a-invariant, hereditary C*-sub-algebras of A. For each B € H*(4)
we define Sp (x| B) to be the spectrum of the operator «, restricted to B,
regarded as an operator on the Banach space B. We define the Connes spectrum
of o to be

I'@ = N {Sp(x|B): Be H*(4)} .

Let (4, Z,{a)) be the dynamical system, where {a) is the action of Z defined
by n — «". Then the Connes spectrum of the dynamical system, as defined by
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Olesen, coincides with I'(«), see page 340 in [15]. Provided that A4 is a-simple,
I'(a) also coincides with the Borchers spectrum of the system (A, Z, {a)).
Let ['()*={neZ: A"=1 for all A € I'(a)}.

LemMa 3.1. (Olesen-Pedersen) Let o be a *-automorphism of A such that A is
a-simple. Let n be a positive integer. Then the following statements are
equivalent :

(i) The integer n is an element of I (x)*.

(ii) There exists B € H*(A) and a *-derivation § on B such that o" | B=exp 6

and 000 =doa.

(iii) For each £¢>0 there can be found B € H*(A) and a *-derivation 6 on B,

commuting with o, such that a"|B=expd and |lexpd—1I| <e.

(iv) There exists B € H*(A) such that ||(a"—1)| B|| <2.

The equivalence of (i) and (ii) is a consequence of Theorem 4.3 in [14]. It
follows from Lemma 4.1 in [14] that (ii) implies (iii). Trivially (iii) implies (iv).
To complete the circle of implications, we observe that, by the Kadison-
Ringrose Theorem, (iv) implies the existence of a derivation § on B such that
o"| B=exp 0. Moreover 9 is the limit of a sequence of polynomials in a and
hence commutes with a. That is, (iv) implies (ii).

We come now to the first key theorem.

THEOREM 3.2. Let A be a non-zero C*-algebra. Let o be an automorphism of A,
not the identity automorphism, such that A is a-simple. Further, for each integer
n, either o"=1 or else, for every a-invariant, non-zero, hereditary C*-subalgebra
D,

["=DID| = 2.

Then, &, the unique extension of a to an automorphism of Inj A, is an outer
automorphism.

If there is no positive integer n for which a” =1, let G=Z. Otherwise, let k be
the smallest positive integer for which a*=1 and let G=2Z,.

By Lemma 3.1, I'(2)* = {0} and hence I'(x) is the full circle group. So, by a
theorem of Olesen and Pedersen [15], the reduced cross-product A x,,G is
simple. Since G is abelian, it is an amenable group and so the canonical
homomorphism from A x ;G onto A4 x,,G is an isomorphism.

We shall assume that & is not an outer automorphism of Inj4 and then
derive a contradiction. By our assumptions there is a unitary u in Inj A which
implements 4.

When G=Z,, we have u*(a+Al)u"*=a+Al for a € 4 and 4 € G. So, by the
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fundamental property of the injective envelope, u*zu~*=z for each x in Inj 4,
that is u* is in the centre of Inj A. Since d(u*) =u*, either u* is a scalar multiple of
the identity or, by spectral theory, there exists a non-trivial central projection g
such that d(q)=gq. If such a g exists then q(Inj)4 is a non-zero, proper, closed
two-sided ideal of Inj 4 which is d-invariant. So, by Lemma 1.1, g(Inj A)N A4 is
a non-zero ideal of 4. But g(Inj AN A) is a-invariant and A is a-simple. So
q(Inj A)N A= A. Similarly, (1 —q)(Inj )N A= A. This is impossible, so u* is a
scalar multiple of the identity. We may suppose that u*=1.

Let B be the closed subspace of Inj 4 generated by all sums of the form
2jesaw, where S is a finite subset of G and a; € A for each j € S. Then Bis a
C*-subalgebra of Inj4A and, by Lemma 2.1, there exists a surjective *-
homomorphism IT from A x,G onto B such that IT(aU’)=aw’. Since G is
abelian, 4 x; G may be identified with 4 x,, G which is simple. So we may
regard IT as an isomorphism from A4 x,, G onto B.

From the basic properties of reduced cross-products by discrete groups,
discussed in section 2, it follows that there exists a completely positive
projection E from C*(B,1) onto C*(4,1) such that E(au)=0 for a € A and
j € G\ {0}. Since Inj A is an injective C*-algebra, E can be extended to a
completely positive map E from Inj A to Inj A. Since the restriction of E to
C*(4,1) is the identity map it follows, by the fundamental property of the
injective envelope, that E is the identity map on Inj A.

Let a be any non-zero element of A. Then

au = E(au) = E(au) = 0.
So
a=auu* =0.

This is impossible. So the assumption that @ was implemented by a unitary in
Inj A4 is false, that is, & is an outer automorphism.

LeEMMA 3.3. Let o be an automorphism of a non-zero C*-algebra A such that A
is a-simple. Let H be any non-zero, a-invariant hereditary C*-subalgebra of A.
Then H is also a-simple.

Let J be any proper, closed a-invariant ideal of H. Then there exists a
primitive ideal of H, Q, such that J = Q. Since H is an hereditary C*-subalgebra
of A, there exists a primitive ideal P in A such that Q=PNH.

Let A be the collection of all primitive ideals of A4, L, such that J < L. By the
preceding paragraph, A is not empty. Since J is a-invariant, L € A if, and only
if a[ L] € A. Let M be the intersection of all the ideals in A. Then M is an a-
invariant closed ideal of A. Each ideal in A is primitive and hence proper. So M
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is a proper, a-invariant, closed ideal of A. Since A is a-simple, M must be the
zero ideal of A. Hence J is the zero ideal of H. So H is a-simple.

LeMMA 3.4. Let B be a *-automorphism of a C*-algebra B such that B is -
simple. Let there exist a positive integer k such that B* is a derivable
automorphism. Then, given any primitive ideal J, the primitive ideal space of B,
Prim B, is the finite set

{p"LJ]: n=0,1,.. ,k—1}
equipped with the discrete topology.

Let E be any primitive ideal of B. Then S*[E]=E because #* is derivable.
Since B is f-simple, it follows that

k—1
M B"[E] is the zero ideal .
n=0

In particular,
k-1
N AEl <.

Since J is primitive, it is a prime ideal. So, for some positive integer n, f"[E]
<J. Similarly, for some positive integer m,

B"J] < E.
So

ﬂM+"[E] c B’”[J] c E.
Hence
E > p"*"[E] > f"*[E] > ... > f"I[E].

Since p* is derivable, we have E = pgHm*"[E].

Hence B"[J]=E. So every primitive ideal of B is in the finite set {$*[J]: «
=0,1,...,k—1}.

Since each closed ideal of B is the intersection of the primitive ideals which
contain it and since Prim B is finite, one of the primitive ideals must be a
maximal ideal. Since § is an automorphism, it follows that each of the primitive
ideals is maximal and hence corresponds to a closed point in the hull-kernel
topology. In other words, Prim B has the discrete topology.

COROLLARY 3.5, Let 8 be a *-automorphism of a C*-algebra B such that B is f-
simple and, for some positive integer k, ||f*— 1| <2. Then there exists a unitary v
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in M(B), the multiplier algebra of B, such that B(v)=v and f*=Ad v* where  is
the unique extension of B to an automorphism of Inj B.

Since [|f*—1||<2 it follows from the Kadison-Ringrose Theorem that g*
=exp 6, for some *-derivation ;. Moreover, , is' the norm limit of a sequence
of polynomials in powers of . So §; commutes with B. Let § = (1/k)6,. Then
Pod=0d0p.

Let h be the minimal positive generator of & in B**,

By Lemma 3.3, every real valued function on Prim B is continuous. So, by
Theorem 8.6.9 in [15], h is in M(B), the multiplier algebra of B. Because
commutes with g and B!, trivial algebraic manipulation shows that B(h)
and B~ !(h) are also positive generators of 5. So h< B(h) and h< B~ (h). Thus
h=pB(h).

Let v=expih, so that v is a unitary in M(B) with the required properties.

We come now to the main theorem.

THEOREM 3.6. Let A be a non-zero C*-algebra. Let o be a *-automorphism of
A such that A is a-simple. Let & be the unique extension of a to a *-automorphism
of Inj A, the injective envelope of A. If & is an inner automorphism of Inj A then o
is also an inner automorphism of A, being implemented by a unitary in M (A), the
multiplier algebra of A.

Let u be a unitary in Inj A which implements & By Theorem 3.2 there exists a
positive integer k and some B € H*(A) such that | («* —I)| B|| <2. Equivalently,
by Lemma 3.1, k € I'(o)*. Let us suppose k to be the smallest positive integer in
I'(®)* and let B € H*(A) such that ||(«*—1I)| B|| <2.

By Corollary 3.5, there exists a unitary v in M (B) for which a(v)=v and such
that «*| B=Adv. Let y=Ad v*o(a| B). Then the dynamical systems (B, Z,<{}y))
and (B, Z,<a|B)) are exterior equivalent. So, by Proposition 8.11.5 in [15],
r4)=r(|B).

Let g be any positive integer in I'(y)*. Then q € I'(«| B)*. Since I'(¢) = I' (x| B),
q € I'(®)*. Hence q=k.

We shall now assume that k> 1 and deduce a contradiction. For 1 £r<k we
have that r ¢ I'(y)* and so, by Theorem 3.1 applied to B and y, y is not
implemented by a unitary in Inj B. Hence a| B is not implemented by a unitary
in Inj B. But, see section 1, there is a projection p from Inj 4 such that Inj B
may be identified with p(Inj A)p. Since B is a-invariant we also have &(p)=p.
Thus p commutes with u, the unitary in Inj 4 which implements & So pu is
a unitary in Inj B which implements «|B. This is a contradiction. So k=1.

Since «| B is a derivable automorphism, each ideal of B is a-invariant. By
Lemma 3.2, each closed a-invariant ideal of B is either B or the zero ideal. So B
is simple. It then follows from Lemma 1.1 that the centre of InjB is trivial.
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We have

(up)x(up)* = vxv*

for all x in B and so all x in Inj B. So (up)*v is in the centre of Inj B. Thus up is
a scalar multiple of v. So up is a multiplier of B.

Let J={x € A:ux € A}. Then J is a closed, a-invariant ideal. By the
preceding paragraph, J contains B, so that J is not the zero ideal. Since A is
a-simple, J must be the whole of A. So, for all x € 4, ux € A. Whenever y € 4,

yu = uu*yu = ua"'(y).

So yu € A. Thus u is a multiplier of 4.
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