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INTEGRABLE, ERGODIC ACTIONS OF
ABELIAN GROUPS ON VON NEUMANN ALGEBRAS

D. DE SCHREYE
Abstract.

Let G be a fixed locally compact abelian group and (.#,a) a von Neumann
algebra with a continuous, faithful, ergodic action of G on .#. Let [G] be the
set of equivalence classes of covariant isomorphic G-systems (#,a). If G is
compact, D. Olesen, G. K. Pedersen, and M. Takesaki proved that there is a
product on [G] such that [G], x ~A(G,II),., the group of anti-symmetric
bicharacters of G. In this paper we prove a similar result for locally compact,
non-compact but second countable groups.

Introduction.

Let G be a locally compact, abelian group, and (.#,«) a von Neumann
algebra with a continuous, faithful, ergodic action of G on . If G is compact,
S. Albeverio and R. Heegh-Krohn in [1], and D. Olesen, G. K. Pedersen, and
M. Takesaki in [11] showed that the G-systems (.#,«), where G is fixed, can be
completely classified with the help of A(G, IT], the anti-symmetric bicharacters
of G.

Since then, a number of attempts to generalize this result have been
succesful. A. J. Wassermann in [19] generalized the classification towards non-
abelian groups. H. H. Zettl in [20] showed that the ergodicity of a can be
weakened down to the condition that the fixed point algebra .#* is contained
in the centre of .

A third generalization which seems natural in this context, is to replace the
compactness of G by locally compactness. However, the connection between a
G-system (.#,a) and a simplectic bicharacter x is completely based on the
existence of a unitary operator u,, for each p € G, satisfying a,(up) =<s, pdu, for
all s € G. Of course, this is not an elegant supplementary condition to impose
on the G-systems. Fortunately we can solve this problem of aesthetics by
showing that, under certain separability conditions on .4 and G, the existence
of unitary eigenoperators u, is equivalent to « being an integrable action of G.
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This is done in the first paragraph. We also show that in this case the von
Neumann algebra has to be semi-finite.

In the second part we prove that, if the same separability conditions are
fulfilled and if « is an integrable action of the locally compact abelian group G,
then the same classification as the one obtained in the compact case will still
hold.

I would like to thank my supervisor Alfons Van Daele and my colleagues at
the Mathematics Institute of Leuven for their many helpful suggestions.

1. Integrable actions and unitary eigenoperators.

Let G be a locally compact group with Haar measure ds. .# is a von
Neumann algebra, a a continuous action of G on .#. The continuity
requirement on « is that each function s> ayx), x € A, is o-weakly
continuous from G to .. Let n be the set of all x € .# such that there is some
y € M with y= j' o,(x*x)ds, then « is an integrable action whenever yu=linear
span of { y*xlx, y € n} is o-weakly dense in .#. As a notation we will use

M, = {x€ Jll o, (x)=(s,p)x, for all se G}, peG.

In order to show that an integrable, ergodic and faithful action admits
unitary eigenoperators, an important problem is that it is not clear whether or
not for each p € G there is some x € y with f o, (x)<s,p> "' ds+0. If so, one can
easily verify that

-1

up = fas(x)<sa P>—l ds Jas(x)<s’ p>—l ds

gives us the unitary eigenoperators. We attack the problems as follows.

1.1. LEMMA. If a is integrable, then the linear span of U, ¢ #, is a-weakly
dense in M.

PROOF. Let ¢ be in #, and its restriction to .# ,, ¢/.# ,=0 for every p € G.
Take any x € y, then [a,(x)¢s, p) ' ds is well defined and belongs to .#,. This
implies »

J‘<;>c:t,(x)<s,17>’l ds =0 foreverypeG.

Thus, @a,(x)=0 for all s € G and also ¢(x)=0. Since wis dense in 4, ¢ will be
0.
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1.2. LEMMA. If « is ergodic, K={p € G | M ,+{0}} is a subgroup of G and
every M, p € K, is one-dimensional.

Proor. First observe that if x € .#,\ {0}, then x*x and xx* are in .#, and
by ergodicity of « we have x*x=A.1 and xx*=pu.1, L, u e R* and |A|=|yl.
This means that x is some multiple of a unitary operator. It also shows that .#,
is one-dimensional if it is non-zero. If x and y are two operators belonging to
the same eigenspace then ay(x*y)=x*y, which shows that .#, is one-
dimensional if it is non-zero. Now if we have unitaries u € .#, and v e .4,
then uv is in .#,,, and u* is in .# _, so that K is a group.

1.3. LEMMA. If « is a faithful, integrable action, then K is dense in éG.

PRrooF. Suppose K is not dense. Then there exists an s € G\ {e} such that
{s,p>=1 for all pe K. For this s we have ay(x)=x for every x € .#, and
because of Lemma 1.1, a,(x)=x for all x € .#. But since a is faithful, this is
false.

1.4. LEMMA. If a is integrable, then K is open in G.

PROOF. Let x € ., ¢ € (A ,)+, and @(x)%0. Put f(s)=a,(x), then fis in
L'(G) and
f) = J pa(x)ds > 0.

Since [ is continuous there is some open part V of G containing 0 such that
f(p)£0 for p € V. Hence we have

I(pas(x)(s,p)'lds + 0 and fas(x)<s,p>'lds¢0 forallpe V.

Because j'ocs(x)(s,p>‘l ds is in #, K must be open.

1.5. LEMMA. If a is an integrable, ergodic and faithful action, then for every
p € G there exists a unitary operator u in M, such that a (u)=<s,p>u, s € G.

ProoF. From Lemma 1.2 we have that K is a subgroup of G. By Lemma 1.4
it must be open, hence it is also closed. Lemma 1.3 shows that K is dense in G,
5o that K = G. This means .# ,+ {0} for all p € G and as in Lemma 1.2, we can
find unitary operators in each .4,

Next we show that the correspondence between integrability and the
existence of unitary eigenoperators works in the other direction as well, if we
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impose separability contions on .# and G. So, let us assume that Vp € G,
du € U(M), a,(u)=_s,p)ufor all s € G, where a is a continuous, ergodic action
of G on #. The subgroup of U (.#) consisting of all such eigenoperators will be
denoted G,. We then have a short exact sequence:

{} >0 -G, G- {0},

where 7: u € G, — n(u) € G with a,(u) = (s, n(u))u for all s € G. G, is obviously
an extension of IT by G, but we have more:

1.6. LeMMA. n: G, — G is a continuous map.

PROOF. Let g be fixed in G, K a compact set of G and ¢ <4. Then take an
open set of G,

0 = {peG| {s,p)—<s,q)|<e for all se K} .

Assume u € n~'(0). We will construct an open neighbourhood of u contained
“in #~1(0). To do this, observe that s — [{s,n(u)) —{s,q)| is a continuous
function G — R*. Thus, on a compact set it attains its supremum. Put

(1) o = S\lll()Ks,n(u))-(&q)I <e.

Next pick any ¢ € A4, with |p(u)|=1, then s — @a(-) is a norm-continuous
function G — #, [6]. Therefore we can find s,,s,,...,s, € G and open sets

i

O,={seG 3

£e—0
sup |pa,(x)—@a,(x)| < ————}
Ixi<1

covering K. For the open neighbourhood of u we now choose

£E—

6

Combining |pu)—@()|<(e—0)/6 with [{s,m(w))>p(u)—<s;, n(v))e)l <
(e—0)/6, we obtain that

0, = {v €G, | lpa,(u—v)| < ,i=0,1,...,n where so=0} .

@) 155 (W) — (55 mO)D] < ?, i=1,2,...,nand v€ O, .

On the other hand, for every s € K there is some s; with |pa,(v) - @a, (V)] <
(e—0)/6 for all v € O, and since

ool s =2 <4,

we have |¢(v)|>4 so that
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® Ks=s,ml < 232

From the combination of (1), (2), and (3) we then immediately get O, € n~!(0).

Another result concerning G is the following.

1.7. LeMMA. If A acts on a separable Hilbertspace # and G is second
countable, then G, is a Polish space.

PRrooF. Because J is separable, 8 (), is separable and metrisable and so is
G,. It remains to show that G, is complete. We will verify the completeness in
the strong topology. First observe that G is a Polish space, since it is second
countable, locally compact and Hausdorff [12]. Therefore it is also metrisable
and complete. Now, by Lemma 1.6, if {u,} is a net in G, converging strongly to
x in .#, then {n(u,)} is a Cauchy net in G converging to p € G. So, for any fixed
seGand £ e H#,: ‘

Il (s (x) = <5, POX)EN = M (o (x) — ot ()Nl +
+ (s, () >u— s, prull + 1 (<s, o= <s, p>x)|

and therefore it must be zero. But then a,(x*x)=x*x, so that by ergodicity of

o, xx*=A.1=x*x, where A€ R*. Furthermore |x¢&|=lim ||u;|=|¢&| for
every ¢ € &, so that ||x||=1. Thus A=1 and x € G,.

Probably the conditions we imposed on .4 and G are a little too strong for
this result, but they will prove easy to handle later on. There is a strong relation
between Polish spaces and the existence of a Borel-measurable section for a
given function between those spaces. The reason why we brought up the notion
of a Polish space is that we want to find such a section for =.

1.8. LEMMA. If # acts on a separable Hilbert space # and G is second
countable, then there exists a Borel map u: G — G, such that nqu=1¢.

PRroor. Because of the results in Lemmas 1.6 and 1.7, the conditions of [17,
Theorem A.16] are seen to be fulfilled.

In order to have a better view on the situation we recall that if we have a
topological group extension G, of IT by G, then there always exists a
Borel section u because IT is separable [5], [9], [13]. In our short exact
sequence
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{1} » 1> G, G- {0}

we meet more difficulties, since 7 is not necessarily open. However, by the
separability conditions we imposed, G, is turned into a separable locally
compact group and therefore 7 must be open by the Open Mapping Theorem
[10].

Later on we will give an example showing that those conditions are not
merely due to our lasyness. Without the separability the action need not be
integrable. We now have the tools necessary to attack the problem of
integrability of a.

1.9. LEMMA. If a is an ergodic action of G on M, then n={0} or n is o-weakly
dense in M.

PROOF. 7 is a left ideal of .#, so taking the o-weak completion 7, we get a g-
weakly closed left ideal with identity e and 7= .#e.

Since «,() = n and a, is continuous, we have that «,(7) =7 for all t € G. From
this a,(7j)=7# follows, which in its turn implies «,(e)=e for all t. But now, by
ergodicity of @, e=0 or e=1 so that n=0 or # is dense in ..

Because of this Lemma, it will be sufficient to find one integrable, non-zero
element in .

1.10. LEMMA. Let .# be a von Neumann algebra acting on a separable Hilbert
space . Denote

yr = jf (p)u,dp ,

where f € LY(G)NL*(G) and p — u, is a section for n, Borel measurable on the
support of f, then y; € n and

jas()’}‘yf)ds = IfI,-

PrOOF. Let & be in o, ||£] =1, and let {¢;} be an orthonormai basis for J#,
then:

f ag(yFypé, &> ds

= j T Kayy )& el ds
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P>

JZ |F(f(-)Ku.&ed)(s)*ds .

2
jf (p)<s,py<u,é,e;> dp| ds

Now apply the monotone convergence theorem and the fact that # is an
isomorphism on L*(G) to obtain

00

=) Jlf(P)(upé,eolzdp.

i=1

Making use of the monotone convergence theorem again, we get

= If(p)|2< Y IKuyg, e.->|2> dp
i=1
= | If @) |u,&ldp

= |l (p)*dp.

LY

In order to obtain the equality for all ¢ € .4, use the polarisation identity and
the fact that we are working on a bounded set in .#.

The relation j a(yfypds=|f |32 should not surprise us. As we will see later
on # ~C x,, G, the twisted crossproduct of C by G with the 2-cocycle m(p, q)
=U Uy s g In this case the Plancherel formula between dual weights (here 1
on C and [a,(-)ds on .#) is known to hold [14], [15].

Combining the results of the Lemmas 1.8, 1.9, and 1.10, the converse of
Lemma 1.5 is proved.

1.11. LEMMA. If A is a von Neumann algebra acting on a separable Hilbert
space #, G is a locally compact abelian group with second countable dual G, if a
is an ergodic, continuous action of G on M, such that

VpeG, ue UM : o) = (s,ppu  forall se G,

then o is integrable.

A different proof for Lemma 1.11 can be given using Theorems III 2.12 and
III 3.1 from [4]. Such a proof would make use of the notions of dominant- and
square integrable a-twisted *-representations of G in .#. The advantage of the
proof we gave is that it gives a better view of where the different elements fit in.
Unfortunately everything does not work out so nicely when we drop the
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separability condition on .#.

1.12. ExaMmpLE. Let G be any locally compact, non-compact abelian group
and take its Bohr compactification G, Then there exists a continuous
isomorphism f: G — G, such that $(G) is a dense subgroup of G, and {p, f(s))>
=(s,p) forall p e G and s € G. Now take .# =L>*(G,) and for a: G — Aut.#
the translation (a,f)(t) =f(t — B(s)), where f € L*(G,) and t € G,. This action is
obviously continuous and faithful. Moreover, since G, is a compact group, the
translation (&f)(f)=f(t—s) as an action of G, is ergodic. So, if we take
x € L*(G,) satisfying a,(x)=x for all s € G, then &g, (x)=x for all f(s) € B(G)
and using the continuity and ergodicity of & x must be in C.1. Furthermore
the action d of G, admits unitary eigenoperators u,, p € G, as it was shown in
[11]. These operators also satisfy

as(up) = &[I(s)(up) = (P,ﬂ(s»up = <S,P>“p ’

so that (L*(G,),a) admits unitary eigenoperators as well. Now, are the
separability conditions fulfilled ? Well, since we have the property that a locally
compact group can only be countable if its topology is discrete [10], G must be
non-countable. Therefore G with the discrete topology on it is a non-second
countable group and this in turn implies that G, is non-second countable,
because the smallest cardinal number « of a basis for the topology is the same
for a group and its dual group [7]. Furthermore, the dimension of L2(G) is
always equal to that same cardinal number a associated to the group G [7],
thus L%(G,) is a non-separable Hilbert space.

Finally we come to the key question whether the action is integrable. Well,
assume that it is and take any x € 7, then

j.‘ a,(J‘ a,(x*x)dt)ds eC.1.
G, G

Now take G such that Haar measure on it is o-finite (this is certainly the case if
G is separable). We can then apply Fubini’s Theorem, so that the integral is
equal to

j- J Gyspy(X*x)dsdt .
G JG,

By invariance of Haar measure on G, we get | A.1dt which is not defined. So,
o cannot be integrable.

Next we show that the semi-finite, normal, faithful, G-invariant weight ¢ on
M, defined by |
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ex) = jas(X)ds,
is a trace on ./ if we work within the complete setting of Lemma 1.11.

To do this we will make use of the standard representation (my, H,) of A
associated to . The Hilbert space J#, is obtained from .# and g by taking the
pre-Hilbert space {&(x) | x € n} with the inner product {&(x),&(y)> =o(y*x)
and completing it for the norm arising from this inner product. The
representation m, of .# on #, is the representation induced by m,(x)¢(y)
=¢&(xy). This gives a *-isomorphism of .# onto the left von Neumann algebra
associated to the left Hilbert algebra n Nn* [2], [16]. For the proof that g is a
trace, we will need a section p+»u, which is more than just measurable.

1.13. LEMMA. Let a be a continuous, integrable and ergodic action of G on M,
then there exists a locally continuous section u: p € G — u,€ G,. If in addition
G is second countable and M acts on a separable Hilbert space, then u can be
chosen a Borel section as well.

PRrOOF. As in Lemma 1.4, let x be in u, and take any open set V of G
containing 0 such that

jas(x)(s,p>_‘ds £0 forallpeV.

On V we define the section

-1

upeVeu, = jas(x)<s,p>"lds jas(sz,p)“ds

Since the Fourier transform of a function s — @o,(x), ¢ € 4 ,, is continuous,
p+ [ a,(x){s,p) " ds is continuous on V.
Moreover, V&, n €

‘(jas(xK& py~lds¢, n>‘

= U (s, p)> 1o (e, (x> ds

=S j llots (HEN - s (x| ds

i 3
= (f loes (e dS> (J o ¥l d8>

Math. Scand. 53 — 18
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1 3
= (I oy (x)E, & dS) q Lo, (I, > dS)
j og(x)ds

So that ||f o (x)<s,p> ' ds| £ ||fa,(x)ds| and since the norm-function is o-
weakly lower continuous, p — u, is continuous on V.

=

N linl -

Next we extend this section to the whole of G. To do this, observe that V*
and (n~'(V)) are both closed and therefore Polish subspaces of G and G,.
Also, the restriction of 7 stays continuous from (z~!(V))* onto V*. Therefore,
the conditions of [17, Theorem A.16] are fulfilled again and we have a Borel
section u': V¢ — G,. Finally, take the section u+u': G — G,

Now, using the section u+ ', we see that the Hilbert space # , appears to be
rather elegant. We work with the conditions of Lemma 1.11.

1.14. Lemma. #,=L2*(G).

Proor. Let o be the set {y, | fe LY(G)N L*(G)} where we use the locally
continuous Borel section of Lemma 1.13 in the integral for y,. First we show
that o is o-weakly dense in #.

Indeed, let ¢ € #, and @(y,)=0 for all y, in /. Then ¢(u,)=0 almost
everywhere. Suppose that ¢(u,)+0 for some g € G, then p+q — Vpig=Uglp 18
a new Borel section for m which is continuous at g. For this section as well we
have ¢(v,)=0 almost everywhere and ¢(v))+0 since v,=Au, for all r e G,
A, € I1. But this contradicts the continuity of v at g, so that ¢(u,)=0 for all
p € G. On its turn this implies ¢ =0, because {u, | p € G} has a dense linear
span in .# by Lemma1.1.

o has some fine properties. First, from Lemma 1.10 we see that

r

as(y;yg)ds = <g’ f>Lz

o

and a similar proof as the one of Lemma 1.10 gives us

r

as(ygy}‘) dS = <ga f>Lz

as well. So, g is a trace on /. A second property is that < is closed for the
involution. We have

v = fﬁiﬁu:dp - f(?(iﬁu:uz,,)u-,dp - j T Pmip, ~p) uydp
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where m is the 2-cocycle in Z2(G, IT) defined by m(p, g)= U Uy, . Since m is
bounded and Borel measurable, the function

p+ f(=p).mp, —p)~!
is in L'(G)N L?(G) again.

Next we take a look at the pre-Hilbert space {(f)c A, Taking its
norm completion we obtain a sub-Hilbert space of # which is isomorphic to
L*(G) as was demonstrated in Lemma 1.10.

Now let x be a linear combination from the u,’s and &(y,) € é(o), then
T, (x)¢(yy) € (). Furthermore, if x € #, then there is a net {x;} of linear
combinations of the u,’s and x; > x g-weakly. By o-weak continuity of r,
n(x;) — m(x) and in particular n(x)¢(y,) — n(x)¢(y,) in H, and therefore
also in L%(G). So, E(xyy) € L*(G) for each x € .# and yre .

We next investigate multiplication from the right. Therefore let x € n and
y; € o, then

CWr-x) = Lxeyme

will be in L?(G) again if we can prove that for every z € nNn*, £(z) € L*(G)
implies &,+) € L?(G). To prove this, let {z,} be a net in ./ such that Sy~ Sy
then

1Een— el = jas('zn—zm)(zn—zm)*ds = "é(zn?‘é(z")llz

since g is a trace on /. Thus, {{(Z:,} also converges. Now there is a densely
defined linear operator S on £,

S§: ¢y eln— f(z‘) ’
which is pre-closed [2]. By this property of S, the facts that {&e—&.»}
converges and &, — &) — 0 imply that &(x—¢&+ — 0. Hence ¢,. € L*(G)
and therefore ¢(y,.x) € L*(G).
Finally we use the g-weak continuity of 7, again and the fact that o/ is o-

weakly dense in .# to find that ¢, € L*(G) for all x € .4, y € n and so &(n)
cL*(G) and L*(G)= .

With this Lemma, all “hard labour” has been done in our quest to find the
Holy Trace.

1.15. ProposiTION. If .# is a von Neumann algebra acting on a separable
Hilbert space # and G is a locally compact, second countable, abelian group, if «
is an ergodic, continuous and integrable action of G on M, then @(x).1 = [ a,(x) ds
defines a G-invariant, normal, semi-finite faithful trace on A.
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Proor. In the proof of Lemma 1.13 we found that g is a trace on a dense part
. We also saw that if z € nNn* and if {z,} is a net in &, &(z,) — £(2), then
Ez# — e By the conclusion of Lemma 1.13 such a net always exists. Thus
for any z e nNn*:

J%(Z*Z)ds = €@ = lim [EENHI? = lim |E@EDI?

= &M = jas(zz*)ds.

An immediate consequence is that for all

x,yenNn*: jas(xy*)ds = Jas@*x)ds .

Now from Proposition 3.8 of [3] we may conclude that the restriction of g to
the von Neumann algebra obtained in the o-weak completion of nNn* is a
trace. But since y=n Nn* and « is integrable, this von Neumann algebra is .#.

2. Integrable G-systems.

2.1. From now on let G be a fixed locally compact, second countable abelian
group. A pair (#,a) will be called an integrable G-system, whenever ./ is a
von Neumann algebra acting on a separable Hilbert space and « is a faithful,
continuous, ergodic and integrable action of G on .#. It is not clear whether
the separability conditions are still essential here, but in the sense of Lemma
1.11 they provide us with an easy way of verifying when an action is integrable.

We define the product of 2 integrable G-systems as it is done in [11] for G-
systems. This means: (#,a) x (A, f)=(2,a®1), where 2 is the fixed point
algebra of .# ® A" under the action s - ¢, ®f _,.

By Lemma 1.5, for each pe G, there is a corresponding unitary
eigenoperator u in .# and v in 4. Then, u®u is a unitary eigenoperator
corresponding to p in 2.

The verifications on (#,a® 1) are now easy. Faithfulness and continuity of
a®]1 are no problem, nor is the separability of the Hilbert space. To see that
a®1 is ergodic, suppose that x € 2 and for all s € G, (¢, ®1)(x)=x. Then take
any o € M, and Yy € &', and apply ¢®VY to the previous equality. We
obtain:

e [1®Y)(X)] = o[(1®Y)(x)] forallpe.#,andseG.

Since a is ergodic, this means that there is some A, €C so that: (1®y)(x)
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=4, . 1. The same procedure applied to the equality (1® B,)(x)=x shows that
there exists a 4, € C so that (¢®1)(x)=4,.1. Thus,

Ao(l) = (e®Y)(x) = Ay¥(1).
Now if ¢ is such that ¥(1)+0, we get

(P@Y)(x) = %‘(q)@llf) and  x = A/yq)-1,
where AY/,, is now independent of . So, a®1 is ergodic. Finally, the
integrability of a®1 follows from Lemma 1.11.

2.2. As it was done in [11], we will make use of an equivalence relation on
the set of all integrable G-systems: (.#,a)~ (4", f) whenever there exists an
isomorphism ¢: .# — A, so that poa,00 ™' =p,, for all s € G. [«] denotes the
equivalence class containing (.#,«) and [G] is the set of all equivalence classes.
The product of 2 classes is defined as the class of the product of 2
representatives. One can easily check that this is well defined.

2.3. Next we observe that to any integrable G-system we have an associated
Borel 2-cocycle m € Z2(G, n),

m(p,q) = u(p)u(@u(p+9)*,

where u: G — G, is a Borel section for 7. Since the linear space .#,, p € G, are
all 1-dimensional, a different choise for u does not change the equivalence class
corresponding to m in

HY(G, 1) = Z3(G, )/ g6.m) -

As it was done in the compact case, we will classify integrable G-systems by
means of H2(G, IT). However, we would be viciously misleading the reader, if at
the same time we did not give him sufficient tools to calculate H2(G, IT). To this
end, we recall the following result, which is well known in the theory of
multipliers. (See for instance [8].)

2.4. LEMMA. Let G be a locally compact abelian group, then there exists an
isomorphism @: m +— m.m™*, from H(G, II) into A(G, Il), the anti-symmetrical
bicharacters of G x G. ((x,y)=m(y, X)).

Although this result enables us to compute H2(G, M) in many cases, an
“onto”-isomorphism instead of “into” would be preferable. Unfortunately, as
far as we know it is an unsolved problem whether or not such an isomorphism
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exists for every locally compact abelian group. It was however obtained for
every one of the following special cases [8]:

a) G is discrete.

b) G/K is a union of compact open subgroups and the 2-primary component
of G is a direct product of a compact group and a discrete group, where K is
the connected component of the identity of G. (special case: G is compact).

¢) x — x? is an automorphism of G.

d) G is a direct product of the above 2 types.

2.5. LeMMA. If me Z2(G,II), then there exists an integrable G-system
(M™, a™) such that it admits a map:

peGr u, € G, satisfying m(p,q) = u,u drrq -

Proor. For the vori Neumann .#™ we take C x,, G, which is a special case
of an m-twisted cross product as it was defined in [15]. We recall that this
is the sub-von Neumann algebra of #(L?(G)) generated by the operators

U, =AMy p, ), Where

Ap()@) = flg—p) and (Mg ()@ = mp,9)f(9) .

From this, we immediately obtain u,uu¥,,=m(p,q). On this algebra we use

the action of G implemented by the left regular representation

v: (0,(NNP) = <sp>f(p) -

Straightforward calculation shows: af'(u,)= s, poup,

Observe that o™ is continuous and faithful and that L?(G) is separable, since
G is a locally compact, second countable Hausdorfl space [12].

The ergodicity of o™ can be seen as follows. Assume that «f'(x)=x for some
x € B(L*(G)) and all x € G. Then x commutes with all v; and therefore also
with {v, l s € G}"=L*(G) [18, B2]. Now, with a simple verification one can
see that each u, commutes with all 4,m,,_,, so that in combination with the
result above x commutes with every Am,, f € L*(G). But these last operators
are dense in #(L?(G)) so that x e C.1 and « is ergodic. Again the integrability
of o™ is clear from Lemma 1.11.

Next we show the uniqueness of this system up to equivalence .
2.6. LeMMA. If m e Z2(G, IT) and (M, %) and (./V , B) are integrable G-systems

both admitting a Borel map pe G u,€ G, (or Gy satisfying m(p,q)
=U, Uy, g then (M, a)~ (N, B). -
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Proor. We will work in the standard representation of .# associated to g,.
According to Lemma 1.14 the representation ,, gives a *-isomorphism of .#,

representing it on L2(G). If g — u, is the locally continuous Borel section
obtained in Lemma 1.13, then

(u,) jf (Puydp = j fp)m(p.q)u, ., dp

for all fe LY(G)NL2(G).
In the same way .4 in represented on L2(G) by n,, and if g — v, is a locally
continuous Borel section, we have that

Ty, (V,) Jf (p)v,dp = Jf (Pm(p.q)v, 4 ,dp .

Now the linear span of the Uy q € G, is a-weakly dense in .# by Lemma 1.1
and so is the span of v, q € G, in /. Moreover, these operators act in the same
way on the same Hilbert space. Therefore the *-isomorphism ¢:u, — v,
between the 2 *-algebras they generate extends to an isomorphism of the
enveloping von Neumann algebras. We clearly have: @q0,= 00, for all s € G.

Finally we can generalize the isomorphism of [G], x onto H3(G, IT) in the
locally compact setting.

2.7. THEOREM. The groups [G],x and H%(G,II) are isomorphic.
Proor. This is an easy consequence of 2.1, 2.3, and the Lemma 2.5 and 2.6.
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