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AN INTEGRAL INEQUALITY FOR CAPACITIES

PERTTI MATTILA

1. Introduction.

Let C, 0<s<n, and C, be the potential-theoretic capacities in the euclidean
n-space R" corresponding to the kernels |x —y|™* and

log, |x—y|™' = max{log|x—y|™',0},

respectively. We shall prove that if f: R" — R™ is a Lipschitzian mapping and
m<s<n, then for any compact subset F of R",

jcs-m(F NS~ YyhdL™y < c(Lip f/Y"C,(F),

where %™ is the Lebesgue measure on R™, Lip fthe Lipschitz constant of fand
¢ a constant depending only on m, n and s. This inequality holds for arbitrary
subsets of R” provided the capacities are replaced by the corresponding outer
capacities and the integral by the upper integral. If s=m we also give an
inequality in 3.2, which however is much more complicated.

In the special case where f is the projection R"xR"™™ — R™ and F is a
product set, F=F, x F,, F, cR™ F,cR"™™, similar inequalities were proved
by Ohtsuka in [4, § 2]. An inequality of the above type for Hausdorff measures
can be found in [1, 2.10.27].

Let V be an n—m dimensional linear subspace of R”, and denote by V, the
n—m plane through y parallel to V, where y € ¥+, the orthogonal complement
of V. Taking f as the orthogonal projection of R" onto V! the above inequality
becomes

J C,-m(FNV)d#™y = cCi(F),
VL

with #™ the m dimensional Hausdorff measure (whose restriction to V* is the
Lebesgue measure of V+). Here the left hand side may be zero and the right
hand side positive, as examples where F is a suitable Cantor set show.
However, if one integrates also over all ¥’s with respect to the orthogonally
invariant probability measure on the space of n—m dimensional linear
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subspaces of R", one has also a reversed inequality, see [3, 4.6]. Combining
these two results we obtain

cTIC(F) = JCs-m(FﬂA)d&.,..-mA = C(P),

where 4, ,_, is an isometry invariant measure on the space of all n—m
dimensional affine subspaces of R” and ¢ depends only on n, m and s.

I want to thank the referee for pointing out an error in the original
manuscript.

2. Preliminaries.

Throughout the whole paper m and n will be positive integers and s a real
number with 0<s<n.

2.1. Radon measures. Let .#, be the space of non-negative Radon measures
on R" with compact support. We equip .#, with the vague topology. Then a
sequence () in .#, converges to u if and only if | gdp; — [gdu for every real-
valued continuous function g on R” with compact support. We denote the
support of a measure u by spt u.

2.2. Capacities. For any u € #, the s potential of u is defined for x € R" by

Us(x) = J|x~,VI"dﬂy, if s>0, .

5(x) = jlog+ Ix—ylI~duy .

The (inner) s capacity of a compact set F<R" is
C,(F) = sup{u(R" : pe #, sptucF, U¥<1 on sptu},

and for an arbitrary subset E of R"
C,(E) = sup{C,(F) : F compact, FcE}.

The outer s capacity of EcR” is defined by
C*(E) = inf{C,(G) : G open, EcG}.

It is well-known that C, and C agree for Suslin (i.e. analytic) sets, and hence
for Borel sets, [2, Theorem 4.5].

To state an alternative definition for C,(F), we denote by I,(u) the s energy of
ue HA,
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Then, see [2, § 2.5],
C.(F) = sup{L,(w)™' : pe M, sptucF, yR)=1}.
For any compact subset F of R” there is a unique measure uf € .#, such that
UX(x) <1 for xesptuf and ufR") = C,(F),
see [2, § 2.5]. By [2, Theorem 2.5], we have also
L(u)) = C(F).

2.3. LEMMA. Suppose that K is a non-negative lower semicontinuous function
on R™ x R™x R" x R", F a compact subset of R" and f: F — R™ a continuous map.
Let p,= W o for y € R™. Then the functions ’

0,z,0) - IK(y,z,u,v)duyu,

,2) — JjK(y, z,u, v)dpudp.v
are Borel functions.

Proor. By the monotone convergence theorem we may assume that K is
continuous with compact support. We first show that y | gdu, is a Borel
function on R™ whenever g is a continuous function on R™ with compact
support. For y e R™ and i=1,2,... let F(y,i) be the union of all closed dyadic
cubes with side-length 27* which meet f~'{y}. Denote u}=puf*9. Then 4
— u, vaguely, see [2, 4.2.1]; therefore it suffices to show that each function ¢,,
@;(v)=] gdu, is a Borel function. Clearly ¢; assumes only finitely many values
and by approximating g we may assume that { g dui+ [ gdul whenever i+ ui.
Let A4; be the set of those ¢ € R! for which there is y € ¢; !{t} such that F(y, i) is
a union of j dyadic cubes of side-length 2. The continuity of f implies that
@; '{t} is open for all t € 4,, ¢; !{t} is relatively open in R™\ ¢; !(4,) for
t € A,, and so on. Thus ¢, is a Borel function.

The Lemma follows now because by the Stone-Weierstrass theorem, K can
be approximated uniformly by finite linear combinations of the functions
0> z,u,0) = K, (»)K,(2)K;(w)K,4(v) where K,,...,K, are continuous with
compact support.

In the following lemma we consider the truncated Riesz kernels K5, 0<d
<00:
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Ki(x,y) = |x—=y|™* for |x—yl2d,

d—s for |x—yl<d.

2.4. LEMMA. There is a constant C depending only on n such that for any
uve M, 0<d<oo,

jj S(x,yduxdvy < C(J]Kf,(x,y)duxduy+JjK}(x,y)dvxdvy).

Proor. Let M =d~*. By a well-known formula we have

H a(x,y)dpx dvy =J pxv{(xy) : Kj(x,y)>t}dt
0

M

M
= j pxv{(x,y) : |x—y| ">t} dt =J JHU(y,t“”’)dvydt,
0

V]
where U(y,r) stands for the open ball with centre y and radius r. We estimate
the inner integral and set r=t~'. We can cover sptv with balls U(y,r),
i=1,...,k, such that any point of R" is contained in at most N of the balls
U (y,-, 2r), where N is an integer depending only on n. Observing thaty € U(y;,7)
implies U (y,r)< U(y,,2r) we estimate

HM:r

JMU(y,r)dvy < j prU(y,r)dvy
Uin

A
M =

wU(y, 2rvU (y, 1)

W
—

((RU s 20) + (VUG 1))

A
B

I
—

x

= Z (1 x U(y.,2r)>< U s 20)+v xv(Uan) x U, )

§ N(”Xﬂ<0 U(yi,2r)xU(yi,2r))+vxv<U 'U(yiar)x U(Yvr))>
i=1 i=1
< N(uxp{(x,y): x—yl<dr}+vxv{(x,y) : |x—yl<4r}).

Thus we have as before

” a(x,y) dux dvy
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A

M M
N(f pxp{(x,y) : |x—Y|<4t_l/’}dt+I vxv{(x,y) : Ix—yl<4t"”}dt>
0 o

4~*M

I

4 M
N4‘(f uxp{(x,y) : |x—y|">t}dt+‘[
V] (1]

N4"(IJ K3 (x,y)dux duy + J‘J‘ K3 (x,y)dvx dvy) .

3. Integral inequalities for capacities.
We let a(m) denote the volume of the unit ball in R™ and f(m)=ma(m) the
m—1 dimensional area of the unit sphere.

vxv{(x,y) : |x—yl " >t} dt)

IIA

3.1. THEOREM. There is a constant ¢ depending only m, n and s with the
Jollowing property: If m<s<n and f: R* — R™ is Lipschitzian, then for any
compact set FcR"

Ics-m(an‘l{y})dS’"'y s c(Lip f)"C,(F)

and for any set EcR"

r CEn(ENSf Yy)dL™y < c(Lip /)"CH(E) .

ProoF. For each y € R™ we denote p,=uf"/ "'V, and define p e .#, by

fgdu = Hgdu,d-?’"'y

whenever g is a real-valued continuous function on R"; this is possible by
Lemma 2.3. Then the formula remains valid for every non-negative lower
semicontinuous function g on R". Obviously spt uc F. We shall now estimate
I,(). The several applications of Fubini’s theorem can all be justified with the
help of Lemma 23. Denoting L=Lipf, we have for y,ze R™ (with
L dist (&, A)= 00)

ly—zl = Ldist (f~'{y}, f~*{z}) = Ldist (spt u,,sptp,),

and using Fubini’s theorem

I(w) = J. |u—v|™* duu dpv
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roPrr

= lu—v|"*dpudLmydp,vd L™z

rere
= ju—ov| " dpudpvd L™y dF™z
rorr

= lu—v|"*dpudp,vdLmyd L™z .

JIJI{w0): ly—zi S Lju—vl}

Applying Lemma 2.4 with d=|y—z|/L we have

J‘J‘ lu—o|™* d”y“ du,v
{(u,0): ly—zIS Lju—o]}

< C(Jj Kiy (W, v)dpudpv + Jj K3, oy (u,v)dp.u du,v) .

Therefore by Fubini’s theorem

I(w £ 2C jjijfy_,l,L(u,v)duyuduyvdg""yd!f'"z

2C<J1”T lu—v| " duudppdFmydFmz
{(u,0): ly—zi S Llu—vl}

+ J]]‘j Lily—z|™*dpudupd ™y d.Z""z) .
{(u,v): ly—2|>Llu—vl}

We see by Fubini’s theorem that the first integral in the above sum equals

J‘J‘J‘ FL™{z:ly—zISLlu—v|}lu—v|"*dpudppdLmy

a(m)L™ ‘UJ‘ [u—o|" " *duudpydLmy

Ii

a('")L"'Jls-...(uy) dLmy .

Applying Fubini’s theorem and the formula (which follows by integration in
polar coordinates)

1) J ly—zl"*d&"z = B(m)(s—m)~'r"7*,
R™\ B, 1)

we obtain for the second integral



262 PERTTI MATTILA

Ls J‘J‘J‘J‘ ly—zI"*dL"zdpudppd "y
{z:|ly—zI>Lju—vl}

B(m)(s—m) LS J\J‘J‘ L™ Slu—v" *dpudppd L™y

mo(m)(s—m)~'L" Jls—m(ﬂ,)dﬁf'"y .

Hence (recall 2.2)

I(p) = cL™ jls—m(#y)di”"'y

= cL" jcs-m(F nf=tyhdemy .
Since sptu< F and

u(R?) = juy(R")dif’"' = JCs-m(Fﬂf"{Y})di’"' )

which we may assume to be positive, we have by 2.2

Cy(F) 2 L(uR) ')

PRI~z ¢TI JCs-m(Fﬂf"{y})df"'y :

This proves the first inequality.

It is sufficient to prove the second inequality for open sets. But every open set
Gc<R" is a union of an increasing sequence (F;) of compact sets, and we have
by [2, Theorem 4.2] '

Co-m(GN Ty = .llTo Coom(FiNfHy}) for yeR™.
Hence the result follows from the monotone convergence theorem.
In the case s=m we have the following inequality:
3.2. THEOREM. There is a constant ¢ depending only on m and n with the

following property: If f: R" — R™ is Lipschitzian, then for any compact set
FcR"

(ICO(Fﬂf"’{y})dY"y>2
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< ¢((1+log, (Lip f)* + 2™ (fF) f Co(FN £~ y})? d$"y+fco(mf“{y})dwy)
x (Lip f)"C(F) .

This can be proved by the same method as Theorem 3.1 when one observes

that all the #™ integrations can be performed over fF. The formula (1) is
replaced by the estimate

j ly—z|™™ d¥™z
fFN\ B@y,n

jw tTmAHm TV (FN{z: [y—z|=t})dt

lIA

r

max{ﬁ(m) r rldt,o}+r A" NFFN{z: ly—z|=})dt
1

IIA

ma(m)log, r '+ Z™(fF).

Although clumsy, Theorem 3.2 is however sufficient for the following:

3.3. COROLLARY. Let m<s<n and let f: R" — R™ be Lipschitzian. If EcR"
and C*(E)=0, then C*_(EN f~'{y})=0 for &™ almost all y € R™.

Proor. If s>m the result is immediate by Theorem 3.1. To settle the case
s=m, we may assume that E is bounded. Then there is a decreasing sequence
of bounded open sets G; containing E such that C,(G;) — 0. As in the proof
of 3.1, the inequality of 3.2 extends to open sets. The integrals on the right

hand side with F replaced by G; form a bounded sequence. Hence

*
j CHENSYyhdg™y < jCo(Geﬂf_‘{Y})dfl"”y -0,
and the result follows.

Norte. Recently A. Sadullaev has proved similar inequalities in the case of an
orthogonal projection in the paper Rational approximation and pluripolar
sets, Mat. Sb. (N.S.) 119 (161) (1982), 96-118 (Russian).
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