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FUNCTIONS WITH H? HYPERBOLIC DERIVATIVE

SHINJI YAMASHITA

1. Introduction.

Let B be the family of functions f holomorphic and bounded, |f|<1, in the
disk D= {|z|<1}. We shall consider properties of f of B under some conditions
on the hyperbolic derivative f*=|f’|/(1 —|f]?) in terms of harmonic majorants.

The disk D is endowed with the non-Euclidean hyperbolic distance

o(z,w) = tanh™! (z—wl|/|l—2w]), z,we D;

we denote o(z)=0(z,0), the hyperbolic counterpart of |z|. For fe B and for
0 < p < oo the functions f*? =exp (plog f*) and o (f)? =exp (plog o (f)) both are
subharmonic in D because the same is true of log f* and loga(f).

A subharmonic function u in D is said to have a harmonic majorant 4 in D if
h is harmonic and u<h in D. This is the case if and only if

sup j u(re"ydt < oo, T = [0,2n],
0=sr<1 T

see [6, p. 26]. The (parabolic) Hardy class H? (0<p<oo) consists of
holomorphic functions fin D such that | f|? have harmonic majorants; the class
H® consists of all bounded and holomorphic functions in D. Analogously, the
hyperbolic Hardy class H? (0 <p <o0) consists of f € B such that ¢(f)” has a
harmonic majorant in D, while HY consists of f € H® bounded by a constant
strictly less than one, or, sup {6 (f)(2); z € D} <oo.

We shall prove the hyperbolic versions of the following (A) and (B).

(A) A function f holomorphic in D is continuous on DUT, where I' ={|z| =1},
and absolutely continuous on I if and only if f' € H* [1, Theorem 3.11, p. 42].

(B) If f' € HP? for some p<1, then f € H? with q=p/(1—p) [1, Theorem 5.12,
p. 881; [3, Theorem 33 with a=1, p. 415].

It is well known that the converse of (B) is false [1, p. 92].
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THEOREM 1. A function fe B is continuous on DU and hyperbolically
absolutely continuous on I' if and only if f* has a harmonic majorant in D.

More precisely, the part of Theorem 1 before “if and only if” means that f'is

continuous on DUT, fe H®, and further, given ¢>0 there exists >0 such
that

_;1 a(f(-1), f(C2)) < &,

J
provided that ({,;_,{,;)" (1 <j<n) are non-overlapping open subarcs on I" with

Y Jarg (o5t )l < 9.
i=1

THEOREM 2. If '€ B and if f*?, for some p, 0<p <1, has a harmonic majorant
in D, then f e H% with q=p/(1—p). )

Again the converse is not true. Although g in (B) is sharp (see [1, p. 90]), the
sharpness of g in Theorem 2 remains open.

Let PL be the family of functions 420 in D such that logu is subharmonic
in D; the notation PL is due to E. F. Beckenbach and T. Rad6; see [7, p. 9].
Each u € PL is subharmonic in D, and further u* € PL for all , 0 <a <o00. Let
PL” be the family of u € PL such that u? has a harmonic majorant in D (0<p
< 00). If fis holomorphic in D, then |f| € PL, while if f € B, then ¢(f) is in PL.
Therefore, for f holomorphic in D to belong to H? it is necessary and sufficient
that | f| € PLP, while for f € B to belong to H it is necessary and sufficient that
o(f) € PL? (0<p<o0). We shall make use of the following

LEMMA 1. Suppose that u € PL? (0<p<o0). Then there exists a zero-free
fe HP such that u<|f| in D, and further that u*(t)=|f*(t)| for ae. te T.

Here and elsewhere g*(f) means the radial limit at e of I' of the function g
considered. The function fis called a Hardy majorant of u. It is apparent that
u* is then of L?(T).

2. Proof of Lemma 1.

Suppose for the moment that Lemma 1 is valid for p=1, and let u € PL” (0
<p< o). Since u? € PL!, there exists a Hardy majorant g € H' of uP. Since g
has no zero in D, we may consider a branch f of g!?in D. Then fe HP is a
Hardy majorant of u.
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To prove Lemma 1 for p=1 we set v=1logu for u € PL!, and we set ¢(x)=¢*,
—00=x < +00. Then ¢(v)=u has a harmonic majorant in D. By a theorem of
E. D. Solomentsev [8] (see [2] also), the least harmonic majorant v~ of v exists,
and is expressed by the Poisson integral,

v'(2) = (1/2n)j (1—lzl*)e" —z|"2du(t)  (z € D)
T

of the signed measure
du(t) = v*()dt+dug(t) on T,

where dug(t)<0 on T (and dpug(t) is singular with respect to dt). Furthermore,
o*)=u*¢e L*(T) and v* € L'(T).

Letting h be the Poisson integral of the function v* on T, one observes the
inequality v<h in D. Let f=€"** where k is a conjugate of h in D. The Jensen
inequality then reads | f| =e" < U, where U is the Poisson integral of ¢(v*)=u*.
Therefore, f € H! and u=e"<e"=|f| with e"‘=|f*|=e”'=u"‘, or, fis a Hardy
majorant of u in D.

3. Proof of Theorem 1.

We may suppose that fis nonconstant. To prove the “if” part we first notice
that f € H' because |f|<f* and f* € PL!. By (A) f is then continuous on
D U T and absolutely continuous on I'. It now suffices to show that

r=max{|f(e"; teT} < 1.

In effect, the hyperbolic absolute continuity of f on I' then follows from the
inequality

o(wy,wy) = Klwy—w,|, |wjl =1, j=12,
where K>0 is a constant, say,
K= (1+H1-r)"12r Ylog[Q+r/(1-7].
We now set
3.1 A = sup I fHae")dt < 0o .
0ga<1 JT

For each fixed z+0 of D we consider the function u(w)=1*(zw) of w € D. Since
u € PL!, a Hardy majorant g of u exists, where

Ig* () = u*(t) = f*(ze") forae teT.
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By the theorem of L. Fejér and F. Riesz (see [1, p. 46]), together with (3.1), one
observes that

1 .
j lg(x)dx < (I/Z)j‘ lg* (0 dt = (1/2)j fHzeMdt < A2
-1 T T

Therefore, setting {=zx for 0<x=1, one obtains the following chain of

inequalities:

z 1
a(f(2), f(0) = j A = j fH@x)|zldx
0 0o

1 1
S j u(x)dx = j lglx)ldx = A/2.
1

0

Since z is arbitrary, the proof of the “if” part is herewith complete.

The “only if” part is immediate. Since |z—w| <o (z, w) for z,w € D, it follows
that f is absolutely continuous on I'. It then follows from (A) that " e H !
Since fe HY, we have

r = max{|f(2)|; ze DUT} < 1.
Therefore it follows from f*<|f’|/(1 —r?) that f* € PL".

4. A lemma.
In the proof of Theorem 2 in Section 5 we shall make use of the following
LEMMA 2. Let u e PL? (0<p<00), and set
U(t) = sup{u(re") ; 0sr<1}, teT.
Then

j U@yrdt < Cj u*(t)Pde
T T
where C>0 is a constant independent of u.

This maximal theorem for PL? is a consequence of the celebrated G. H.
Hardy and J. E. Littlewood maximal theorem (see [1, p. 12]) applied to a
Hardy majorant e H? of u. Since

U(t) < sup{lf(re"); 0=r<1}, teT,

the inequality in Lemma 2 follows.
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An obvious application of Lemma 2 is the maximal theorem for f € H? (0<p
< 00) on considering u=o(f). Namely,

J U,(rdt < C‘[ o(f@)Pdr,
T T

where
U,(t) = sup{a(f*)(re"); 0sr<1}.

A merit of Lemma 2 is the estimate of U(t) in the case p<1.

S. Proof of Theorem 2.
We may assume that f(0)=0. Otherwise we consider

g = [f~fO1/[1-f(0)f]
for which g*=f* and

lo(f)—a(@l £ a(f(0),
so that fe H? if and only if g € H2
Let u=f*. Then, by Lemma 2, applied to u € PL!, we know that
U(t) = sup{u(re"); 0<r<l1}, teT,

is in L'(T). On the other hand, the Schwarz and Pick lemma (see [4, p. 226])
teaches that f*(se”)< (1 —s%)"! for all 0<s<1 and all t € T, so that

1
I u(se)ds < k; < oo forall teT;
0

hereafter k; (j=1,2) are constants. Therefore, for t € T, and for 0SR <1,

R
oRe 5 [ utseras < kUM

0
or
a(f)(Re") < kU(1)
because q(1/p—1)=1. We now obtain that, for all 0 R <1,

J' o(f)(Re")dt < kzj U@t)dt < oo
T T

because U € L!(T). This shows that ¢(f) € PL? or fe Hi.
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REMARK. In the proof of (B) [1, p. 88ff.] a deep theorem [1, Theorem 5.11, p.
871, which we shall call Theorem D, is used. Thanks to the Schwarz and Pick
lemma, the proof of Theorem 2 is easier than that of (B). Combining Lemma 1
with Theorem D, one can easily prove the PL version of Theorem D, namely, if
O<p<q=<oo,ue PLP, AZp, and a=1/p—1/q, then

1
jo (1=r**"p,(r,u)tdr < o0,

where

1 . l/q
Po(r,u) = [E—f u(re“)"dt] , ifg<oo,
T

w

= supu(re”), if g=00.
teT

Finally we must prove, as was promised in Section 1, that the converse of
Theorem 2 is false. A. J. Lohwater, G. Piranian and W. Rudin [5, Theorem]
proved the existence of a continuous function fon D U I" which is holomorphic
in D, yet |f’| has no radial limit at a.e. point of I". In particular,

limsup|f'(re”)) = o0 ae.
r—1

On dividing f by a suitable constant we may consider that fe H®. Then f*
does not belong to PL? for any p, 0<p<oo. For, otherwise, /* has a finite
radial limit f**(¢) for a.e. t € T. This is not the case because |f(e")| <1, and
|f'|*(t) does not exist.

I wish to express my cordial thanks to the referee for her/his valuable
remarks.
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