FUNCTIONS WITH HP HYPERBOLIC DERIVATIVE

SHINJI YAMASHITA

1. Introduction.

Let B be the family of functions f holomorphic and bounded, |f| < 1, in the disk $D = \{|z| < 1\}$. We shall consider properties of f of B under some conditions on the hyperbolic derivative $f^* = |f'|/(1 - |f|^2)$ in terms of harmonic majorants.

The disk D is endowed with the non-Euclidean hyperbolic distance

$$\sigma(z, w) = \tanh^{-1}(|z-w|/|1-\bar{z}w|), \quad z, w \in D;$$

we denote $\sigma(z) = \sigma(z, 0)$, the hyperbolic counterpart of |z|. For $f \in B$ and for $0 the functions <math>f^{*p} = \exp(p \log f^*)$ and $\sigma(f)^p = \exp(p \log \sigma(f))$ both are subharmonic in D because the same is true of $\log f^*$ and $\log \sigma(f)$.

A subharmonic function u in D is said to have a harmonic majorant h in D if h is harmonic and $u \le h$ in D. This is the case if and only if

$$\sup_{0 \le r < 1} \int_T u(re^{it}) dt < \infty, \quad T = [0, 2\pi],$$

see [6, p. 26]. The (parabolic) Hardy class H^p (0 consists of holomorphic functions <math>f in D such that $|f|^p$ have harmonic majorants; the class H^∞ consists of all bounded and holomorphic functions in D. Analogously, the hyperbolic Hardy class H^p_σ $(0 consists of <math>f \in B$ such that $\sigma(f)^p$ has a harmonic majorant in D, while H^∞_σ consists of $f \in H^\infty$ bounded by a constant strictly less than one, or, $\sup {\sigma(f)(z); z \in D} < \infty$.

We shall prove the hyperbolic versions of the following (A) and (B).

- (A) A function f holomorphic in D is continuous on $D \cup \Gamma$, where $\Gamma = \{|z| = 1\}$, and absolutely continuous on Γ if and only if $f' \in H^1$ [1, Theorem 3.11, p. 42].
- (B) If $f' \in H^p$ for some p < 1, then $f \in H^q$ with q = p/(1-p) [1, Theorem 5.12, p. 88]; [3, Theorem 33 with $\alpha = 1$, p. 415].

It is well known that the converse of (B) is false [1, p. 92].

Received January 18, 1982; in revised form July 2, 1982.

THEOREM 1. A function $f \in B$ is continuous on $D \cup \Gamma$ and hyperbolically absolutely continuous on Γ if and only if f^* has a harmonic majorant in D.

More precisely, the part of Theorem 1 before "if and only if" means that f is continuous on $D \cup \Gamma$, $f \in H^{\infty}_{\sigma}$, and further, given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\sum_{j=1}^{n} \sigma(f(\zeta_{2j-1}), f(\zeta_{2j})) < \varepsilon,$$

provided that $(\zeta_{2j-1}\zeta_{2j})^{\hat{}}$ $(1 \leq j \leq n)$ are non-overlapping open subarcs on Γ with

$$\sum_{j=1}^{n} |\arg(\zeta_{2j}\zeta_{2j-1}^{-1})| < \delta.$$

THEOREM 2. If $f \in B$ and if f^{*p} , for some p, 0 , has a harmonic majorant in <math>D, then $f \in H^q_q$ with q = p/(1-p).

Again the converse is not true. Although q in (B) is sharp (see [1, p. 90]), the sharpness of q in Theorem 2 remains open.

Let PL be the family of functions $u \ge 0$ in D such that $\log u$ is subharmonic in D; the notation PL is due to E. F. Beckenbach and T. Radó; see [7, p. 9]. Each $u \in PL$ is subharmonic in D, and further $u^{\alpha} \in PL$ for all $\alpha, 0 < \alpha < \infty$. Let PL^p be the family of $u \in PL$ such that u^p has a harmonic majorant in D (0). If <math>f is holomorphic in D, then $|f| \in PL$, while if $f \in B$, then $\sigma(f)$ is in PL. Therefore, for f holomorphic in D to belong to H^p it is necessary and sufficient that $|f| \in PL^p$, while for $f \in B$ to belong to H^p it is necessary and sufficient that $\sigma(f) \in PL^p$ (0). We shall make use of the following

LEMMA 1. Suppose that $u \in PL^p$ $(0 . Then there exists a zero-free <math>f \in H^p$ such that $u \le |f|$ in D, and further that $u^*(t) = |f^*(t)|$ for a.e. $t \in T$.

Here and elsewhere $g^*(t)$ means the radial limit at e^{it} of Γ of the function g considered. The function f is called a Hardy majorant of u. It is apparent that u^* is then of $L^p(T)$.

2. Proof of Lemma 1.

Suppose for the moment that Lemma 1 is valid for p = 1, and let $u \in PL^p$ (0 $). Since <math>u^p \in PL^1$, there exists a Hardy majorant $g \in H^1$ of u^p . Since g has no zero in D, we may consider a branch f of $g^{1/p}$ in D. Then $f \in H^p$ is a Hardy majorant of u.

To prove Lemma 1 for p=1 we set $v=\log u$ for $u\in PL^1$, and we set $\varphi(x)=e^x$, $-\infty \le x < +\infty$. Then $\varphi(v)=u$ has a harmonic majorant in D. By a theorem of E. D. Solomentsev [8] (see [2] also), the least harmonic majorant v of v exists, and is expressed by the Poisson integral,

$$\hat{v}(z) = (1/2\pi) \int_{T} (1-|z|^{2})|e^{it}-z|^{-2} d\mu(t) \qquad (z \in D)$$

of the signed measure

$$d\mu(t) = v^*(t)dt + d\mu_s(t)$$
 on T,

where $d\mu_S(t) \leq 0$ on T (and $d\mu_S(t)$ is singular with respect to dt). Furthermore, $\varphi(v^*) = u^* \in L^1(T)$ and $v^* \in L^1(T)$.

Letting h be the Poisson integral of the function v^* on T, one observes the inequality $v \le h$ in D. Let $f = e^{h+ik}$, where k is a conjugate of h in D. The Jensen inequality then reads $|f| = e^h \le U$, where U is the Poisson integral of $\varphi(v^*) = u^*$. Therefore, $f \in H^1$ and $u = e^v \le e^h = |f|$ with $e^{h^*} = |f^*| = e^{v^*} = u^*$, or, f is a Hardy majorant of u in D.

3. Proof of Theorem 1.

We may suppose that f is nonconstant. To prove the "if" part we first notice that $f' \in H^1$ because $|f'| \le f^*$ and $f^* \in PL^1$. By (A) f is then continuous on $D \cup \Gamma$ and absolutely continuous on Γ . It now suffices to show that

$$r = \max\{|f(e^{it})|; t \in T\} < 1$$
.

In effect, the hyperbolic absolute continuity of f on Γ then follows from the inequality

$$\sigma(w_1, w_2) \le K|w_1 - w_2|, \quad |w_j| \le r, \ j = 1, 2 \ ,$$

where K > 0 is a constant, say,

$$K = (1+r^2)(1-r^2)^{-1}(2r)^{-1}\log[(1+r)/(1-r)].$$

We now set

$$A = \sup_{0 \leq a < 1} \int_T f^*(ae^{it}) dt < \infty.$$

For each fixed $z \neq 0$ of D we consider the function $u(w) = f^*(zw)$ of $w \in D$. Since $u \in PL^1$, a Hardy majorant g of u exists, where

$$|g^*(t)| = u^*(t) = f^*(ze^{it})$$
 for a.e. $t \in T$.

By the theorem of L. Fejér and F. Riesz (see [1, p. 46]), together with (3.1), one observes that

$$\int_{-1}^{1} |g(x)| dx \leq (1/2) \int_{T} |g^{*}(t)| dt = (1/2) \int_{T} f^{*}(ze^{it}) dt \leq A/2.$$

Therefore, setting $\zeta = zx$ for $0 \le x \le 1$, one obtains the following chain of inequalities:

$$\sigma(f(z), f(0)) \leq \int_0^z f^*(\zeta) |d\zeta| = \int_0^1 f^*(zx) |z| dx$$

$$\leq \int_0^1 u(x) dx \leq \int_{-1}^1 |g(x)| dx \leq A/2.$$

Since z is arbitrary, the proof of the "if" part is herewith complete.

The "only if" part is immediate. Since $|z-w| \le \sigma(z,w)$ for $z,w \in D$, it follows that f is absolutely continuous on Γ . It then follows from (A) that $f' \in H^1$. Since $f \in H^{\infty}_{\sigma}$, we have

$$r = \max\{|f(z)| ; z \in D \cup \Gamma\} < 1.$$

Therefore it follows from $f^* \leq |f'|/(1-r^2)$ that $f^* \in PL^1$.

4. A lemma.

In the proof of Theorem 2 in Section 5 we shall make use of the following

LEMMA 2. Let $u \in PL^p$ (0 , and set

$$U(t) = \sup \{ u(re^{it}) ; 0 \le r < 1 \}, t \in T.$$

Then

$$\int_T U(t)^p dt \leq C \int_T u^*(t)^p dt ,$$

where C > 0 is a constant independent of u.

This maximal theorem for PL^p is a consequence of the celebrated G. H. Hardy and J. E. Littlewood maximal theorem (see [1, p. 12]) applied to a Hardy majorant $f \in H^p$ of u. Since

$$U(t) \le \sup\{|f(re^{it})|; \ 0 \le r < 1\}, \quad t \in T,$$

the inequality in Lemma 2 follows.

An obvious application of Lemma 2 is the maximal theorem for $f \in H^p_\sigma$ $(0 on considering <math>u = \sigma(f)$. Namely,

$$\int_T U_{\sigma}(t)^p dt \leq C \int_T \sigma(f(t))^p dt ,$$

where

$$U_{\sigma}(t) = \sup \left\{ \sigma(f^*)(re^{it}); \ 0 \leq r < 1 \right\}.$$

A merit of Lemma 2 is the estimate of U(t) in the case p < 1.

5. Proof of Theorem 2.

We may assume that f(0) = 0. Otherwise we consider

$$g = [f-f(0)]/[1-\overline{f(0)}f]$$

for which $g^* = f^*$ and

$$|\sigma(f) - \sigma(g)| \leq \sigma(f(0))$$
,

so that $f \in H^q_\sigma$ if and only if $g \in H^q_\sigma$.

Let $u=f^{*p}$. Then, by Lemma 2, applied to $u \in PL^1$, we know that

$$U(t) = \sup \{u(re^{it}); 0 \le r < 1\}, t \in T,$$

is in $L^1(T)$. On the other hand, the Schwarz and Pick lemma (see [4, p. 226]) teaches that $f^*(se^{it}) \le (1-s^2)^{-1}$ for all $0 \le s < 1$ and all $t \in T$, so that

$$\int_0^1 u(se^{it}) ds \le k_1 < \infty \quad \text{for all } t \in T;$$

hereafter k_i (j=1,2) are constants. Therefore, for $t \in T$, and for $0 \le R < 1$,

$$\sigma(f)(Re^{it}) \leq \int_0^R u(se^{it})^{1/p} ds \leq k_1 U(t)^{1/p-1},$$

or

$$\sigma(f)(Re^{it})^q \leq k_2 U(t)$$

because q(1/p-1)=1. We now obtain that, for all $0 \le R < 1$,

$$\int_{T} \sigma(f) (Re^{it})^{q} dt \leq k_{2} \int_{T} U(t) dt < \infty$$

because $U \in L^1(T)$. This shows that $\sigma(f) \in PL^q$ or $f \in H^q_{\sigma}$.

REMARK. In the proof of (B) [1, p. 88ff.] a deep theorem [1, Theorem 5.11, p. 87], which we shall call Theorem D, is used. Thanks to the Schwarz and Pick lemma, the proof of Theorem 2 is easier than that of (B). Combining Lemma 1 with Theorem D, one can easily prove the PL version of Theorem D, namely, if $0 , <math>u \in PL^p$, $\lambda \ge p$, and $\alpha = 1/p - 1/q$, then

$$\int_0^1 (1-r)^{\lambda\alpha-1} \mu_q(r,u)^{\lambda} dr < \infty ,$$

where

$$\mu_q(r,u) = \left[\frac{1}{2\pi} \int_T u(re^{it})^q dt\right]^{1/q}, \quad \text{if } q < \infty ,$$

$$= \sup_{t \in T} u(re^{it}), \quad \text{if } q = \infty .$$

Finally we must prove, as was promised in Section 1, that the converse of Theorem 2 is false. A. J. Lohwater, G. Piranian and W. Rudin [5, Theorem] proved the existence of a continuous function f on $D \cup \Gamma$ which is holomorphic in D, yet |f'| has no radial limit at a.e. point of Γ . In particular,

$$\limsup_{r\to 1} |f'(re^{it})| = \infty \quad \text{a.e.}$$

On dividing f by a suitable constant we may consider that $f \in H_{\sigma}^{\infty}$. Then f^* does not belong to PL^p for any p, $0 . For, otherwise, <math>f^*$ has a finite radial limit $f^{**}(t)$ for a.e. $t \in T$. This is not the case because $|f(e^{it})| < 1$, and $|f'|^*(t)$ does not exist.

I wish to express my cordial thanks to the referee for her/his valuable remarks.

REFERENCES

- P. L. Duren, Theory of H^p spaces (Pure and Appl. Math. 38), Academic Press, New York -London, 1970.
- L. Gårding and L. Hörmander, Strongly subharmonic functions, Math. Scand. 15 (1964), 93-96;
 Correction, ibid., 18 (1966), 183.
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403–439.
- M. Heins, Complex function theory (Pure and Appl. Math. 28), Academic Press, New York -London, 1968.
- 5. A. J. Lohwater, G. Piranian, and W. Rudin, *The derivative of a schlicht function*, Math. Scand. 3 (1955), 103-106.

- 6. I. I. Priwalow, Randeigenschaften analytischer Funktionen (Hochschulbücher für Mathematik 25). VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.
- 7. T. Radó, Subharmonic functions (Ergeb. Math. Grenzgeb. 5), Springer-Verlag, Berlin Göttingen Heidelberg, 1937.
- 8. E. E. Solomentsev, On some classes of subharmonic functions, Izv. Akad. Nauk SSSR 516 (1938), 571-582.

DEPARTMENT OF MATHEMATICS
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA
TOKYO 158
JAPAN