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SHARPNESS OF YOUNG’S INEQUALITY
FOR CONVOLUTION

T. S. QUEK and LEONARD Y. H. YAP

1. Introduction.

One of the most basic results in harmonic analysis is the following
convolution theorem, which is usually referred to as Young’s inequality.

THEOREM. Let G be a unimodular locally compact group. Let p,q be real

numbers such that 1 <p<o0,1<q<oo and 1/p+1/q>1, and let r be defined by
1/r=1/p+1/q—1. Then

(i) L(G)*Ly(G)EL,(G),
(i) for fe L,(G) and g € L,(G), we have
If*gll, = -1/, lgl, -
This result suggests several natural questions. For example, one may ask

(a) when do we have equality in (i)?
(b) for given p and g, is the index r in (i) optimal?
(c) is the constant 1 in (ii) the best possible?

The answer to question (a) is “never” (except for the trivial case when G is
finite). In fact, Yap [14, Theorem 1.1] has proved that the subspace spanned by
L,(G)xL,(G) is a dense subspace of the first category in L,(G) for all infinite
unimodular locally compact groups G. The answer to question (c) is “no”. In
fact, Beckner [1, Theorem 3] has shown that for the n-dimensional Euclidean
space R", n=1,

(iii) If*gl, < (4,4,41 11, lgll,
for all fe L,(R"), g € L, (R"), where
4, = [m'™)/m)"™ 1, Um+1/m = 1.

Moreover, the constant (4,4,4,)" in (iii) is the best possible. (See Fournier [4]
and Brascamp and Lieb [2] for related results.)
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In [8, Theorem 9], Kunze and Stein have shown that if G is the unimodular
group of 2 x 2 real matrices and 1<p<2, then

Ly(G)+L,(G) € Ly(G).

This result, now called the Kunze-Stein Phenomenon, shows that the answer
to (b) is “no” in general. In fact, Cowling [3] has shown that the Kunze-Stein
Phenomenon holds if G is any connected semi-simple Lie group with finite
center. However, the answer to question (b) is “yes” for all locally compact
abelian groups G. More precisely, we have the following result.

THEOREM 1.1. Let G be an infinite locally compact abelian group. Let p,q be
real numbers such that 1 <p<oo, 1 <q<ooand 1/p+1/q> 1, and let r be defined
by 1/r=1/p+1/q—1. Then we have

(i) if G is compact, then
L(G)*L(G) &£ U {L,(G) : r<s};

(i) if G is discrete, then

LG« (G) &£ U {L(G) : s<r};
(iii) if G is neither compact nor discrete, then

L(G)*xL,(G) & U{L,(G) : s+r}.

The method we use in the proof of Theorem 1.1 can also be used to prove
Theorem 1.2 below. Before we state Theorem 1.2 we recall that if G
is any unimodular locally compact group and 1<p<oo, then
L,(G)*L,(G)= Co(G), where 1/p+1/p'=1 and C,(G) denotes the space of all
continuous functions on G which vanish at infinity. In particular, if G is a
compact group and 1<p<o0, then

L,(G)*L,(G) € N {L(G): 1=s<o00}.

THEOREM 1.2. Let G be a non-compact locally compact abelian group, and let
1 <p<oo. Then

L,(G)*L,(G) &£ | {L(G) : 1=5<00}.

The following result of N. Rickert, which complements Young’s inequality
and Theorems 1.1 and 1.2 above, will be useful to us later.

THeoreM 1.3 (Rickert [12]). Let 1<p< 00,1 <g<o00,and 1/p+1/qg<1. Let G
be a non-compact locally compact group and U a neighborhood of the zero
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element of G with compact closure. Then there exist functions fe L,(G) and
g € L,(G) such that fxg(y) is undefined for all y in U.

As an easy consequence of Theorems 1.1, 1.2 and 1.3, we have the following
corollary which shows that the generalized L ,-conjecture (see Rajagopalan
[11]) is true for locally compact abelian groups.

CoROLLARY 1.4. Let G be a locally compact abelian grodp. Let 1<p<oo and
1 <g<oo. Then L (G)xL(G)SL,(G) if and only if G is compact.

Before we state our next corollary, we give a simple definition.

DeFInITION 1.5. For real numbers p, g and s such that 1 <p, q, s <00, we shall

say that (p,q; s) is admissible for the locally compact group G if there exists a
constant C,, such that

If*glls = Cpllflpllgl,

for all fe L,(G) and all g € L,(G).

We note that (p,q; 2) is admissible for G if and only if (1/p, 1/q) belongs to
the indicator diagram 4(G), where 4(G) is as defined in Lipsman [9, Section 2].
It is easy to see that Theorem 3 of Lipsman [9] follows from Corollary 1.6
below.

COROLLARY 1.6. Let G be an infinite locally compact abelian group and let p, q
and s be real numbers such that 1 <p,q,s <o0o. Then we have:

(i) If G is compact, then (p,q; s) is admissible if and only if 1/p+1/q—1=1/s.

(ii) If G is discrete, then (p,q; s) is admissible if and only if 1/p+1/q—121/s.

(iii) If G is neither compact nor discrete, then (p,q; s) is admissible if and only
if 1/p+1/g—1=1/s.

2. Preliminary Results.
DerFmniTiON 2.1. Let G denote a locally compact abelian group with Haar
measure A. Let f be a measurable function defined on (G, A). For y =0, we define

m(f,y) = MxeG: |f(x)|>y}.
For x>0, we define

f*(x)

inf{y : y>0 and m(f,y)=x}

sup{y : y>0and m(f,y)>x},

with the conventions inf @ =00 and sup J=0. For x>0, we define
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% %k _._l * *
f (x)-xjof(t)dt.

We also define

) 00 dx e
1o = [j (x”"f"‘(x))"—;] , (0<p<o00,0<g<o0)
(V]
1A o) = sulgx“"f*(x), (O<p<o0)

L(p,)(G) = {f: I f1Eq<00} -

It is quite easy to see that we have

f " pdx = f (P dA)
0 G

and hence L,(G)=L(p, p)(G). We shall write L(p,q) instead of L(p,q)(G) when
the underlying group G is understood.

If we replace f*(x) by f**(x) in the definition of | ¢ ., the resulting
number will be denoted by || fll,.4- For 1 <p<oo,0<g=00, it is known (see
Yap [15, Lemma 3.2] or O’Neil [10, (6.8)]) that

116 = 1 flpe = CUANG

where C is a constant (depending only on p and q).

In the sequel the symbol C will be used to denote a generic constant, which
need not be the same at different occurrences.
The following proposition is taken from Lemma 4.4 and its proof in Hunt

[71.

PROPOSITION 2.2. Let 1 <r<oo and 1 <q<00. Suppose f(t) is non-negative,
locally integrable and an even function of t, — 0o <t < 0o. Further, suppose f (t) is
non-increasing on (0,00) and f(t) — 0 as t — 0o. Then the function f*, defined
by

f(x) = Jw f(Hycos xtdt ,
0 .

is in L(r,q) if and only if fis in L(r',q). Moreover, there exists a constant C such
that

IFFeal = CA/XD/**(1/1xD,  x#0;

and

1 le.a £ ClS e
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for all fe L(r,q).

PROPOSITION 2.3. Let p,q be real numbers such that 1 <p<o0, 1 <q<o0 and
1/p+1/q>1. Let H be a compact subgroup of a locally compact abelian group G,
and let n be the natural homomorphism of G onto G/H. Suppose that f € L,(G/H)
and g € L,(G/H). Then fon € L,(G) and gon € L,(G). Moreover, for sz 1, we
have fxg € L(G/H) if and only if (fon)*(gon) € L,(G).

Proor. Let the Haar measure on H be normalized. Let A and A, be,
respectively, the Haar measures on G and G/H such that Hewitt and Roos
[6, (28.54 (iv)] can be applied. It is now easy to see that fon € L,(G) and
gon € L,(G). By Young’s inequality f+g is well-defined on G/H and thus, by
Hewitt and Ross [6, (28.55 (iii))], f*g € L,(G/H) if and only if (f*g)on € L (G).

We now show that (f*g)on={(fon)+(gon) A-ae. Since fon € L,(G) and
gon € L (G), it follows from the proof of Hewitt and Ross [5, (20.18)] that
(fon)(gom* € L,(G) for A-almost all x, where (gon)*(y)=g(x —y+ H). It is easy
to see that (fon)(gon* = (fg¥, pon. Thus for A-almost all x, we have (fg%, p)
one L,(G). It follows from Hewitt and Ross [6, (28.55 (iii)))] that
fe*, y € L,(G/H). Following Hewitt and Ross [6, p. 96], we have

»

(fo)* (gom)(x) . (fom () (gon)(x —y) dA(y)

r

= . (fg¥+ won(y) dA(y)

~

= (fg:+H)(Y+H)d}~1(.V+H)
J G/H

(by Hewitt and Ross [6, (28.54 (iv))])
= j fy+Hg(x+H—(y+H)dA (y+H)
G/H
= (f*g)(x+H)
= (f*g)on(x) .
Thus fxg € L (G/H) if and only if (f*g)on € L (G).
We now gather some basic facts about infinite, compact, 0-dimensional,
abelian groups. Let G be such a group for the remainder of this section. By
Hewitt and Ross [5, (7.7)] there exists a neighborhood basis {G,},¢; of the zero

element in G consisting of compact open subgroups of G such that lim A(G,)

Math. Scand. 53 — 15
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=0. Let G, =G and choose a sequence {G,}X., from {G,},.; such that {G,} is
strictly decreasing.

For n20, let X, be the annihilator of G,. By Hewitt and Ross [5, (23.29)], X,
is a finite group. Let m, be the number of elements in X,. Since X, is strictly
increasing, we can write

Xo = {Xo X1« s dm—1y» Nn=0,1,2,...,

where y, is the identity character of G.
By Hewitt and Ross [5, (23.19)], we have

M &, = MGy,

where &g denotes the characteristic function of E.
By Plancherel’s theorem we have

m)*AG,) = 1&g ll2 = &g ll. = AG)*,
and so
2 AG,) = Um,.
Now define D, on G by

n—1
D,(0 = Y .
i=0
It follows from Hewitt and Ross [5, (23.19)] and (1) that

1 .

D,, =& = 1‘(6—")60,-

Since D,, is a continuous function and G, is open, we have

1
Om = TG Fo
It follows from (2) that
m, iftegG,,
3 Do, () = {o ifréG,;
and
4 IDpll, = (M)'"?, 1=<p<oo.

The following two simple lemmas are stated here for easy reference. We omit
the simple proofs. " '
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LEMMA 2.4. Let 1 <p <00 and let m, n be two positive integers such that 1 <2m
<n+1. Then

An?"' < ¥ kP2 < BnPTt,
k=m"
where A and B are constants depending only on p.

LeMMA 2.5. Let m,n be two positive integers such that 1 <m<n. Then 1/m
—1l/n<t/m*+...+1/(n—1)>2

The next lemma is similar to Lemma 6.6 in Zygmund [16, Chapter XII]. All
notation not explained in this lemma and its proof are as described above.

LEMMA 2.6. Let G be an infinite, compact, O-dimensional, abelian group. Let
l1<t<oo and let {a};>, be a non-increasing sequence of positive numbers
tending to zero such that

W an =0au+ = ... =a,,-, n=012...,

and

(i) f; (@)k'~2 < 0.

k=1

Then the function f, defined on G by f=3;%, ayxs, is in L,(G).

Proor. For each k=1, let A,=a,+...+a,. For xe G,\G,,(, n21, we
have

m,—1

flx) = Z a(x)+ Z ayx(x)

k=1 k=m,
m,—1 oc

= Z ak+ Z amj(iju(x)_Dm;(x))
k=1 j=n

m,—1

= Y a-ma, (since D, (x)=0 for j>n)

IIA
b

mp

Hence we have

J Lf ()" dA(x)
G
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= j | £ I dA(x) + f J |f ()| dA(x)
Go\ G, n=1 JG,\G

n+1

< AL+ i (Am) dA(x)

n=1 JG,\G,,,

A S (A ) (my—1my )

n=1

HA

< AL+ i (A ) (/MY + ... +1/(my,,—1?)  (by Lemma 2.5)
n=1

[o.¢]

S Ai+ ) (4K
k=1

< 00,

where the last inequality follows from an argument similar to that in Zygmund
[16, p. 129].

3. Proof of Theorem 1.1, Part (i).

Let G be an infinite compact abelian group. We consider the following two
cases.

Caskt L. Suppose that G is not 0-dimensional. By Rudin [13, Theorem 2.5.6
(a)], the character group X of G has an element of infinite order. Therefore X
contains Z (the group of integers) as a closed subgroup. Let H be the
annihilator of this subgroup. Since H is a closed subgroup of G and G is
compact, H is sompact. Moreover, the character group of G/H is isomorphic to
Z and hence G/H is isomorphic to the circle group. By Proposition 2.3, we may
assume that G is the circle group.

Define two sequence {a,}s=, and {b,};>, by

a = 27" ()P " < k < 2" n=0,1,2,...;
by =27y~ 2" <k < 2" n=0,1,2,....

Define two functions f and g on G by
fx) =Y ae™™, gx) = Y bet*.
k=1 k=1
By Lemma 2.4, both 3%, (a,)?k?~% and Y, (b))%~ ? are finite.

Hence, by Zygmund [16, Chapter XII, Lemma 6.6], we have f e L,(G) and
g € L,(G). It is easy to see that
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oc

(f*)(x) = Y abe™.

k=1

By Lemma 2.4, 32, (a,b)’k* ?=00 for all s>r. Hence, by Zygmund [16,
Chapter XII, Lemma 6.6], we have fxg ¢ L (G). Thus fe€ L,(G) and g € L,(G),
but fxg ¢ L (G) for all s>r.

Cask 1I. Suppose that G is 0-dimensional. Let {y,}%, and {m,}%, be as in
Section 2. Define two sequences {a,};>; and {b,};>, by

a = (M) Y (n+ )", m,<k<m,,,, n=0,1,2,...;
by = m,,)) Y (n+ )", m,<k<m,,,, n=0,1,2,....

Define two functions f and g on G by

f= Z Al 8 = z bixy -
k=1 k=1

We have, by Lemma 2.4, >, (a,)’°k? 2 <oc and ¥, (b)%?~ % <o0. Hence
by Lemma 2.6, we have fe L,(G) and g € L,(G). It is easy to see that

00

fxg = Z aybyxy - .

k=1
Let {G,}o%o and {D,, }>, be as in Section 2. For x € G,\ G, where n21,
we have

o

(f+g)(x) = Z agby 2 (x)

k=1
= ":i: axby+ i O (Dpmy., (X) = Dy (X))
= ji=n
= "'"Z“ ab,— (ay b, )(m,) (since D, (x)=0 for j>n)
k=1
= (m,—1)(m,) " VP~ ()" 2P 2y (m,, )P T (n 4 1) 2R 2
i ]

2 C(m,)! ~VP N ()P0 (since 2m, S, y)
= C(m)'(m) =20

Hence for all s>r, we have

J‘G |(f*xg)(x)I* dA(x)
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f (f+ Q)P dA+ 3 f [(f* ) (I dA(x)
Go\ G, n=1 JG,\G,,,

v

n=1

cy f (" (n)~ 2919~ 254 43x)
G\ G,y

o °z°: (m")SIr(l/mn — l/m,,+ 1)(")— 2s/p—2s/q

n=1

oC
C Y (m)r~'(my~2?P~22  (since 2m,<m,,,)

n=1

v

= 00 (since m,=2" and s>r).

Thus fe L,(G) and g € L (G), but fxg ¢ L,(G) for all s>r.

4. Proof of Theorem 1.1, Part (ii).

Let G be an infinite discrete abelian group. Applying Rudin [13, Theorem
2.5.6 (a)] to the character group of G, we know that either G has an element of
infinite order or its character group is a 0-dimensional compact abelian group.
Thus it is sufficient to consider the following two cases.

Cask L. Suppose that G has an element a of infinite order. Define f and g on
G by

1) = (n+D~Yr(log(n+2)~2" if x=na, n=0,1,2,. ..,
0 otherwise;

x) = (n+1)"Y(log(n+2)~*1 if x=na, n=0,1,2,...,
g 0 otherwise .

Clearly f € 1,(G) and g € I,(G). For each k=0, we have

k
(f*g)ka) = 3 f(na)g((k—n)a)
n=0
_ 5 1
TS (n+DYP(k—n+ 1) (log (n+2))**(log (k —n+2))*
k
1

= ,,;, (k+1D)VP(k+1)"4(log (k +2))*/P(log (k +2))*/
= (k+1)!~YP-Va(log (k+2))~¥P= 2
= (k+1)"""(log (k+2))~%/P~2/a
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It is now easy to see that f«g ¢ [(G) for all s<r. Thus f € [,(G) and g € 1,(G),
but fxg ¢ I,(G) for all s<r.

Cask I1. Suppose that the character group of G is a 0-dimensional group. It
follows from Section 2 that there exist a strictly increasing sequence {m,}3, of
positive integers with my=1 and a sequence {x,}3%, in G such that x, is the
zero element in G and G,={x,,..., X, -} is a subgroup of G.

Define f and g on G by

1) = m,. )" P+ 1" if xe G,,,\G,, n=0,1,2,...,
0 otherwise;

) = My )" Yin+1"% if xe G,,4\G,, n=0,1,2,...,
g\ = 0 otherwise .

Clearly f € [,(G) and g € [,(G). For positive integers j such that m,<j<m,.,,
we have

(f*g)(x,-) = Z f(xk)g(xj—xk)
k=0

My =1
2 Z S (x0g(x;—x,)

k=m,

mys1—1
= Y (mu) P+ )T (m,, )" (0 1)
k=m,

(since X; € Gy, Xj— Xk € Gpyy if X € Gy y\Gy)
= (Mysy—my)(m,, )" P~ VA(n+1)"2P7 20
2 (1/2(m,,)' " VP~ (n+ )P4 (since 2m,<m,,,)
= (1/2(m, )" (n+ ) 72P720

Now for s<r, we have

00  my+1—1

YX U
n=0

Jj=my

]

PIRICETI[EATY
k=0

[\

CY (Myyy =My y) (1) 2~ 250
n=0

C Z (my, 4 1)1 _‘"(n+ 1)'2=/p—2s/q
n=0

[\
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00
2 C Y 2mrhu-sing g 1)=2s/p=25  (gipce 2"<m,)
n=0

= 00 (since s<r).

Thus f€ [,(G) and g € [ (G), but f+g ¢ I,(G) for all s<r.

5. Proof of Theorem 1.1, Part (iii).

Theorem 1.1 (iii) will be deduced from a series of lemmas and the structure
theorem for locally compact abelian groups. We begin with two important
lemmas concerning the real line R.

LEMMA 5.1. Let p, q, and r be as in Young’s inequality. Then
L,(R)xL,(R) & U {Li(R) : s<r}.

Proor. Let B=1/p+1/q and let n, be a positive integer such that n,
>max {e?# e*?}. For k=n,, we define

Uy = [=1/k, = 1/(k+ 1D))U(1/(k+1), 1/k];
ay = (k+1)V"(log (k+1))"7,
b, = (k+1)""(log (k+1))~*.

Define f and h on R by

o

f= Z a,‘CUk, h = Z bkéUk'
k=ng k=ng
By a calculation similar to that in the proof of Yap [14, Theorem 2.7], we have
fe Ly(RINL(p,p)(R) and h e L,(RYNL(q, q)(R).
For nzn, we define

n

S = kz aly, h, = kz bily, -
Clearly | f—fullpr,y = 0 and [|h—h,|lg. o — O.

Let f* be defined as in Proposition 2.2. Then, since f, f, € L,(R)N L(p’, p)(R)
and hh,e Liy(R\NL(q,q)(R), it follows from Proposition 2.2 that
S5 Sne L(RNL,(R), bk} € L,(RINL,(R), and there exists a constant C
such that

I =fal, £ Clf=fllgry = O

and
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Ih*=hall, £ Clh—hyllg.g— 0.
Now, since {||h;l,} is bounded,
&) 15 h* —faxhall, < IS5 IRF —REl,+ 1 F* =Rl IR, — O .

Hence, without loss of generality, we may assume that f*xh? — f*«h* ae.
Since fh, — fh and fhe L,(R), we have (fh,) — (fh)* ae. Since
fwho€ Ly(R) and 2f%*=f, and 2h*=h, we have 4(f*+h")=f, «h,=(fh,)
=2(f,h,)". Thus 2(f*«h*)=(fh)* a.e. Now we have

i (k+ 1)/P*14 (log (k+ 1)~ %&y, (x)

k=ngo

(f(x)

S (k+ 117 (log (k + 1) ~E, (4

k=ng

By a calculation similar to that in the proof of Yap [14, Theorem 2.7], we have
fh ¢ L(s,5)(R) for all s<r. Hence, by Proposition 2.2, we have (fh)* ¢ L (R).
Thus f*«h* ¢ L(R) for all s<r.

LEMMA 5.2. Let p, q, r be as in Young’s inequality. Then
L,(R)xL,(R) & U{L,R) : r<s}.

Proor. Let f=1/p+1/q. For k=0, we define
Vi, =[—-k—-1,-k U (k,k+1],
a, = (k+1)"""(log (k+2)7*,
b, = (k+1)"Y¥(log (k+2)~".
Define f and h on R by

oc

fx) =Y alyx), hx =} by, .
k=0 k=0
By a calculation similar to that in the proof of Yap [14, Theorem 2.7], we have
fe L(p,p(RINL_(R)and h € L(q,9)(R)N L (R). By Proposition 2.2, we have
f*e L, (R)for all p, € (1,p], and h* € L, (R) for all g, € (1,4].
For n=0, define

n

L) = T an k) = Y b,
k=0

k=0

Since
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n+1

fix) = fmf,,(t)cosxtdt = J f(t)cos xtdt ,
o

0

we have f% — f* ae. Similarly, we have h} — h* a.e. and (f,h,)* — (fh)* ae.
We now show that f} € L,(R) and || f;—f*|l, — 0. By Proposition 2.2, there
exists a constant C ‘such that

Ifa0l = CA/xDf**(1/1x])

for x+0. Now f¥ is an even function and so

I

J ) Ifax)Pdx = 2 r LfE ()P dx
0

oo /1 71\ \?
CJO k;f"*\;)) dx

C jw (t”"'f**(t))"%i

0

WA

< oo (since fe L(p',p)(R) .

Thus f} e L,(R) and C(1/|x]) f**(1/Ix) € L,(R). By Lebesgue’s dominated
convergence theorem, we have | f]l, — |l f*ll,- But this and the fact that f
— f* ae. imply that | f;— f*||, — 0. Similarly, ||h;—h*||, — O.

Next we show that f*xh* ¢ L (R) for all s>r. Arguing as in (5) of Lemma
5.1, we have || f¥«hi—f*+h*||, — 0. Thus, without loss of generality, we may
assume that ff«h® — f*xh* ae. Since f,h, € L,(R), 2f%=f, 2hi=h, and
2(f,h) = (f,h,), we have

4(frah}) = fuxhy, = (fh) = 20,1
But (f,h,)* — (fh)* ae., and so 2(f**h*)=(fh)* a.e. Since

fh= i (k+1)"YP' =14 (log (k+2)) "¢y, ,
k=0

it follows that fh ¢ L(s',s)(R) for all s>r (the calculation is similar to that in
the proof of Yap [14, Theorem 2.7]). By Proposition 2.2, (fh)* ¢ L,(R) for all
s>r. Hence f*«h* ¢ L (R) for all s>r.

REMARK 5.3. (i) The proof of Lemma 5.1 shows that there exist functions ¢,
and ¥, with ¢, € L, (R)for all p, € [p, oo] and ¥, € L, (R) for all g, € [g,00],
and @, *¥, ¢ L,(R) for all t<r.

(ii) The proof of Lemma 5.2 shows that there exist functions ¢, and ¥, with
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@, €L, (R) for all p,e(l,p] and y, € L, (R) for all g, € (1,9], and
@, *Y, ¢ L(R) for all t>r.

LEMMA 5.4. Let p, q, and r be as in Young’s inequality. Then

L,R)«L,(R) & | {L,(R) : s%r}.

PRrOOF. Let ¢,,¥,; ¢, and ¥, have the properties stated in Remark 5.3. Then
@, *V, ¢ L,(R) for all t<r and ¢@,*y, ¢ L,(R) for all t>r. By Young’s
inequality we can find a number ¢ such that O<e<r, and ¢, *V,,
@, *¥, € L,_,(R)NL,,,(R). It is now easy to see that '

(6) (@1 + @) * (Y, +V,) ¢ L,(R)

for all t € [r—¢r)U (r,r+¢&]. Next we suppose that there exists s € (—oo,r
—g)U (r+¢,00) such that (¢, +¢,)* (J; +V¥,) € Ly(R). By Young’s inequality
we have (¢, +@,)* (¥, +V,) € L,(R). Hence, by applying Holder’s inequality,
we have (@, +@,)* (W, +¥,) € L,(R) for all t € [r—¢r)U(r,r+¢]. But this
contradicts (6). Hence (¢, +¢@,)* (¥, +V,) ¢ L(R) for all s*r.

Proor oF THEOREM 1.1 (iii). Suppose that G is neither compact nor discrete.
By the structure theorem for locally compact abelian groups (see Rudin [13,
Theorem 2.4.1]), G has an open subgroup R"x F where n20 and F is a
compact abelian group. We consider the following two cases.

Cask 1. Suppose that n>0. Let ¢,,¥,; @, and ¥, have the properties stated
in Remark 5.3. Define ¢ on R""! x F by

o = ot xrO) -
Let o =g, +¢, and Y=y, +,. Define fand g on R"x F by
f(xy) = e(x)0), (xeR, yeR"™!IxF)
g(x,y) = ¥(xe(®), (xeR, yeR""!IxF).
Then fe L,(R"xF), g € L,(R"x F). By Fubini’s theorem,
(f*(x,)) = (@*)(x)(e*a)(y) -

By Lemma 5.4, ¢ «t ¢ L,(R) for all s#r. Since g+¢ has a compact support of
positive measure, it follows that fxg ¢ L,(R" x F) for all s+r. Now define f; and
go on G by

) = f(z) if ze R"xF,
Jolo) = 0 otherwise;
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@) = g(z) if ze R"xF,
Bol2) = 0 otherwise .

Since R" x F is an open subgroup of G, we have f, € L,(G) and g, € L,(G), but
Sfoxgo & Ly(G) for all s#r.

Caske I1. Suppose that n=0. Since F is compact, there exist functions ¢ and y
on F with ¢ € L,(F), ¥ € L,(F)and ¢ *y ¢ L (F)for all s>r. Define ¢, and y,
on G by

©o =@ Cr Yo=Y lp.

Since F is a compact open subgroup of G, it follows that ¢, € L, (G) for all
Po € [1,p]), Yo € L, (G) for all g, € [1,4] and @ *Y, ¢ Ly(G) for all s>r.

Since G is non-compact and F is a compact open subgroup of G, G/F is an
infinite discrete group. Thus there exist functions ¢, and y, on G/F with
¢, € I,(G/F) and ¥, € I,(G/F), but ¢,*y, ¢ [,(G/F) for all s<r. Let n be
the natural homomorphism of G onto G/F. Then, by Proposition 2.3,
@ion € L, (G) for all p, € [p,00), yyone L, (G) for all g, € [g,00), but
(@10m) % (Y1om) & L,(G) for all s<r. ,

Now let f=¢,+¢,on and g=y,+y,on. By an argument similar to that in
the proof of Lemma 5.4 we have fxg ¢ L (G) for all s4r. This completes the
proof of Theorem 1.1 (iii).

6. Proofs of Theorem 1.2 and of Corollaries 1.4 and 1.6.

As noted in Section 1, the proof of Theorem 1.1 can be easily adjusted to give
us a proof of Theorem 1.2.

ProoF oF COROLLARY 1.4. Let 1 <p<oo and 1 <g<oo. If G is compact, then
clearly L,(G)*L,(G)< L,(G). Conversely, let G be non-compact. We consider
the three cases

1) 1/p+1/g>1, () 1/p+l/g=1 () 1/p+1/g <1

.and observe that case (j), j=1,2,3, follows from Theorem 1.j immediately.

Proor oF COROLLARY 1.6. If p>1,g9>1 and 1/p+1/g> 1, then the assertions
in (i)-(iii) follow immediately from Theorem 1.1 and Young’s inequality.

If p=1 and g=1, then the assertions in (i)-(iii) follow from Young’s
inequality and the fact that L,(G)*L,(G)=L,(G). (Note that for G compact,
L,(G) |SL,(G)if and only if s> g; for G discrete, l;(G)$I,(G) ifand only if s<gq;
for G neither compact nor discrete, L (G) £ L,(G) if g#s.)
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Next we consider the remaining possibility (i.e., when 1/p+1/q<1) for each
of the cases (i)—(iii).

(i) Suppose that 1/p+1/g<1 and G is compact. Then (p,q;s) is admissible
for all s=1, and the condition 1/s=1/p+1/q—1 is satisfied for all s=1.

(i) Suppose that 1/p+1/q<1 and G is discrete. Then, by Theorems 1.2 and
1.3, (p, q; s) is not admissible for any s> 1, and the condition 1/s<1/p+1/q—1
is not satisfied by any s21.

(iii) Suppose that 1/p+1/g<1 and G is neither compact nor discrete, then
the assertion follows as in case (ii).
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