TANGENCIES OF GENERIC REAL PROJECTIVE HYPERSURFACES

ALEXANDRU DIMCA

Introduction.

Let P^n denote the real projective n space, R(n,d) the vector space of homogeneous polynomials of degree d in n+1 variables and $D \subset R(n,d)$ the algebraic subset of forms defining singular hypersurfaces.

A hypersurface $\{P=0\} \subset P^n$ is said to have its tangencies in general position if, given a hyperplane H tangent at $\{p_1, \ldots, p_k\} \subset \{P=0\}$, the points p_1, \ldots, p_k are in general position on H.

In a recent paper [1] Bruce showed that in the complex case the set of P whose tangencies are not in general position form a constructible set of codimension ≥ 1 . In the same paper he raised the similar question in the real case and showed that a positive answer will give interesting informations about the duals of generic real hypersurfaces (Remark 2.9).

In the present note we prove the following:

THEOREM. The set of polynomials $P \in R(n,d) \setminus D$ whose tangencies are not in general position form a semialgebraic set of codimension ≥ 1 .

1. A simple result on semialgebraic sets.

We shall use the definition and the properties of semialgebraic sets as presented in [2, Chap. I.].

We will need the following result.

LEMMA 1.1. Let $f: \mathbb{R}^n \to \mathbb{R}^p$ be a polynomial mapping and let $X \subset \mathbb{R}^n$ be a semialgebraic nonsingular subset. Then

$$\dim f(X) \leq \dim X - \min \left\{ \dim f^{-1}(y) \cap X; \ y \in f(X) \right\}.$$

PROOF. Note that Y=f(X) is semialgebraic and if $\sum Y$ is the singular set of Y, then $Y_0 = Y \setminus \sum Y$ is an open dense subset in Y and dim $Y = \dim Y_0$.

Received April 1, 1982; in revised form November 16, 1982.

ì

Let Y_1 be a connected component of Y_0 such that dim $Y_1 = \dim Y$. Then $X_1 = f^{-1}(Y_1)$ is an open subset in X and let $g: X_1 \to Y_1$ be the smooth map induced by f.

By Sard's theorem, there is a regular value $y \in Y_1$ for g and we get

$$\dim Y_1 = \dim (X_1) \text{ at } x - \dim (g^{-1}(y)) \text{ at } x$$

for any $x \in g^{-1}(y) = f^{-1}(y) \cap X$.

And this clearly ends the proof of our lemma.

Remark 1.2. A similar result obviously holds in a global situation i.e. when R^n and R^p are replaced by real algebraic manifolds and f by a real algebraic map.

2. The proof of the Theorem.

For any p = 1, 2, ..., n-1 let us consider the flag manifold

$$F(p, n-1) = \{(E, H); E \subset H \subset P^n, \dim E = p, \dim H = n-1\}.$$

Recall that F(p, n-1) is a real algebraic manifold of dimension $n(p+2) - (p+1)^2$.

Next let us define a semialgebraic subset

$$G_p \subset (P^n)^{p+2} \times F(p, n-1)$$

as follows

$$G_p = \{(a_0, \dots, a_{p+1}, E, H); a_0, \dots, a_p \text{ span } E, a_{p+1} \in E \}$$

and a_{p+1} is not a linear combination of less than $p+1$ points from $a_i, i=0,\dots,p\}$.

Using the second projection, it follows that G_p is a real algebraic manifold of dimension n(p+2)-1.

Let $B = R(n, d) \setminus D$ with the notations from introduction and consider the following semialgebraic set $Z_p \subset B \times G_p$,

$$Z_p = \{(P, a_0, \dots, a_{p+1}, E, H); P(a_i) = 0 \text{ and } T_{a_i}\{P = 0\} = H \text{ for } i = 0, \dots, p+1\}.$$

Let $f: Z_p \to B$ denote the restriction of the first projection to Z_p . The Theorem then follows from

LEMMA 2.1. For any $p=1,\ldots,n-1$, $f(Z_p)$ is a semialgebraic set in B of codimension ≥ 1 .

PROOF. Let $g: Z_p \to G_p$ be the restriction of the second projection to Z_p and note that g is a fiber bundle projection. Change of coordinates shows that we can take as typical fiber $F = g^{-1}(a^0, E^0, H^0)$ with $H^0: x_n = 0, E^0: x_n = \ldots = x_{p+1} = 0$,

$$a^0 = (a_0^0, \dots, a_{p+1}^0),$$
 where $a_0^0 = (1, 0, \dots, 0), \dots,$ $a_p^0 = (0, \dots, 0, \frac{1}{p}, 0, \dots, 0),$ $a_{p+1}^0 = (1, 1, \dots, \frac{1}{p}, 0, \dots, 0).$

We shall write a polynomial $P \in B$ in the form

$$P(x) = x_n P_1(x) + Q(x_0, ..., x_{n-1})$$

and also

$$Q = A(x_0, \ldots, x_p) + \sum_{i=p+1}^{n-1} B_i(x_0, \ldots, x_p) x_i + \sum_{i, j=p+1}^{n-1} C_{i,j}(x_0, \ldots, x_{n-1}) x_i x_j.$$

With these notations it is easy to check that $P \in F$ iff

$$S: \begin{cases} B_i(a_j^0) = 0 & \text{for } i = p+1, \dots, n-1; \ j = 0, \dots, p+1 \\ \frac{\partial A}{\partial x_k}(a_j^0) = 0 & k = 0, \dots, p \end{cases}.$$

This is a system of linear equations in the coefficients of the polynomial P and hence F is the intersection of B with a linear subspace in R(n, d). In particular F (and hence also Z_n) is nonsingular.

The system S consists of n(p+2) equations which can be written explicitly due to the special form of the points a_i^0 .

In the case d=2 the proof of (2.1) is trivial. Indeed, the hypersurface $\{P=0\}$ is then a smooth quadric and any hyperplane is tangent to it at no more than one point, and hence the sets Z_p are empty.

When $d \ge 3$ the equations of the system S are linearly independent apart from the following "degenerate" cases:

$$(d, p) = (3, 1), (3, 2)$$
 and $(4, 1)$.

To see this, note that the equations involving the polynomials B_i are always independent, while the equations involving the polynomial A are independent iff the following (p+1) equations are independent.

$$E_k: \sum_{\alpha} \alpha_k a_{\alpha} = 0 \qquad k = 0, 1, \ldots, p$$

where $\alpha = (\alpha_0, \dots, \alpha_p)$, $|\alpha| = d$, $\max \alpha_i < d - 1$ and a_α indeterminates.

Suppose now d=3, $p \ge 3$ and $\sum \lambda_k E_k = 0$ for some $\lambda_i \in C$. Using the multiindex

$$\alpha = (0 \dots 1_i \dots 0 \dots 1_i \dots 0 \dots 1_k \dots 0)$$

we get $\lambda_i + \lambda_j + \lambda_k = 0$ for any $0 \le i < j < k \le p$.

Geometrically this means that any triangle (proper or degenerate) in the complex plane with vertexes in the set $\{\lambda_i\}$ has baricenter 0, which is possible only if $\lambda_i = 0$ for any i.

For $d \ge 4$ we can use the multiindex

$$\alpha = (0 \ldots d - 2 \ldots 0 \ldots 2 \ldots 0)$$

and get $(d-2)\lambda_i + 2\lambda_i = 0$ for any $i \neq j$.

If d > 4 this already gives $\lambda_i = 0$ for any i by symmetry in i and j. For d = 4 we only get $\lambda_i + \lambda_j = 0$ for any $i \neq j$ and if p > 1 we find again as above $\lambda_i = 0$ for any i.

Therefore, apart from the special cases, codim F in B = n(p+2) and hence $\dim Z_p \le \dim B - 1$ which gives the result. Finally we treat the degenerate cases one by one:

i)
$$(d, p) = (3, 1)$$
.

In this case the system S implies

$$A = B_2 = \ldots = B_{n-1} = 0$$
.

Hence the line E^0 is contained in the hypersurface $\{P=0\}$ and, if $P \notin D$, for any point $x \in E^0$ we have $T_x\{P=0\} = H^0$. It follows that

$$\dim f^{-1}(P) \ge 3.$$

In this case $\operatorname{rk} S = 3n - 2$ and hence $\dim Z_p = \dim B + 1$. Our result (1.1) then gives $\dim f(Z_p) < \dim B$.

ii) (d, p) = (3, 2).

In this case the system S implies

$$A = 0$$
 and $B_i(x_0, x_1, x_2) = b_i x_0 x_1 + c_i x_1 x_2 + d_i x_0 x_2$

with $b_i + c_i + d_i = 0$ for i = 3, ..., n-1. In particular rk S = 4n-2 and hence dim $Z_n = \dim B + 1$.

Let us denote by s the composition

$$P^2 = E^0 \hookrightarrow \{P=0\} \xrightarrow{\check{d}} \check{P}^n, \quad \check{d} = (\partial P/\partial x_0, \ldots, \partial P/\partial x_n).$$

Note that $H \in S(P^2)$ implies $H \supset E^0$.

If dim $s(P^2) < 2$ then it follows that there is a hyperplane $H \in \check{P}^n$ such that dim $s^{-1}(H) > 0$ (use 3.3 in [2, p. 29]).

And a similar argument to that in i) ends the proof in this case.

If $\dim s(P^2)=2$, the it is easy to show that for any hyperplane H in a neighbourhood in image s of H^0 , $s^{-1}(H)$ contains one point in each neighbourhood of the points $a_i^0, j=0,\ldots,3$ and hence $\dim f^{-1}(P) \ge 2$.

As above, (1.1) gives the result.

iii)
$$(d, p) = (4, 1)$$
.

In this case the system S gives:

$$A = 0$$
 and $B_i(x_0, x_1) = b_i x_0^2 x_1 + c_i x_0 x_1^2$

with $b_i + c_i = 0$ for i = 2, ..., n-1. In particular rk S = 3n-1 and hence dim $Z_p = \dim B$.

We consider the composition

$$t: P^1 = E^0 \hookrightarrow \{P=0\} \xrightarrow{\check{d}} \check{P}^n$$

and a completely similar argument with case ii) shows that dim $f^{-1}(P) \ge 1$ which gives the result.

REMARK 2.2. The proof of the Theorem given here works equally well over any algebraically closed field of zero characteristic since then (1.1) is a standard result.

REFERENCES

- 1. J. W. Bruce, The duals of generic hypersurfaces, Math. Scand. 49 (1981), 36-60.
- C. G. Gibson, K. Wirthmüller, A. A. du Plessis, and E. J. N. Looijenga, Topological stability of smooth mappings (Lecture Notes in Math. 552), Springer-Verlag, Berlin - Heidelberg - New York, 1976.

DEPARTMENT OF MATHEMATICS
THE NATIONAL INSTITUTE FOR SCIENTITIC AND TECHNICAL CREATION
BDUL PĂCII 220
79622 BUCHAREST
ROMANIA