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TANGENCIES OF GENERIC REAL
PROJECTIVE HYPERSURFACES

ALEXANDRU DIMCA

Introduction.

Let P" denote the real projective n space, R(n,d) the vector space of
homogeneous polynomials of degree d in n+1 variables and D < R(n,d) the
algebraic subset of forms defining singular hypersurfaces.

A hypersurface {P=0} = P" is said to have its tangencies in general position
if, given a hyperplane H tangent at {p,,...,p,} ={P=0}, the points p,,...,p,
are in general position on H.

In a recent paper [1] Bruce showed that in the complex case the set of P
whose tangencies are not in general position form a constructible set of
codimension = 1. In the same paper he raised the similar question in the real
case and showed that a positive answer will give interesting informations about
the duals of generic real hypersurfaces (Remark 2.9).

In the present note we prove the following:

THEOREM. The set of polynomials P € R(n,d)\ D whose tangencies are not in
general position form a semialgebraic set of codimension = 1.

1. A simple result on semialgebraic sets.

We shall use the definition and the properties of semialgebraic sets as
presented in [2, Chap. L].
We will need the following result.

LEMMA 1.1. Let f: R* — R? be a polynomial mapping and let X —R" be a
semialgebraic nonsingular subset. Then

dim f(X) £ dim X —min {dim f"'(y) N X; y € f(X)} .

ProoF. Note that Y=f(X) is semialgebraic and if }" Y is the singular set of Y,
then Yo=Y\ Y Y is an open dense subset in Y and dim Y=dim Y,,.

Received April 1, 1982; in revised form November 16, 1982.



TANGENCIES OF GENERIC REAL PROJECTIVE HYPERSURFACES 217

Let Y, be a connected component of Y, such that dim Y, =dim Y. Then X,
=f"!(Y,) is an open subset in X and let g: X, — Y, be the smooth map
induced by f. A

By Sard’s theorem, there is a regular value y € Y, for g and we get

dimY, = dim(X,) at x—dim (g~'())) at x

for any x e g"'(y)=f"' (N X.
And this clearly ends the proof of our lemma.

REMARK 1.2. A similar result obviously holds in a global situation i.e. when
R" and R? are replaced by real algebraic manifolds and f by a real algebraic
map.

2. The proof of the Theorem.

For any p=1,2,...,n—1 let us consider the flag manifold
F(p,n—1) = {(E,H); EcH<P", dimE=p, dimH=n—-1} .

Recall that F(p,n—1) is a real algebraic manifold of dimension n(p+2)—
(p+ 12
Next let us define a semialgebraic subset

G, = (PY**xF(p,n—1)
as follows
G, = {(ao,...,a,.+1,E,H); a,. . .,a,spanE, a,,, € E
and a,,, is not a linear combination of less than
p+1 points from a;, i=0,...,p} .
Using the second projection, it follows that G, is a real algebraic manifold of
dimension n(p+2)— 1.
Let B=R(n,d)\ D with the notations from introduction and consider the
following semialgebraic set Z,cBx G,
Zp - {(P,ao,. . -aap+l’E’H); P(a,)=0 and Tm{P=0}=H
for i=0,...,p+1}.

Let f: Z, — B denote the restriction of the first projection to Z,.
The Theorem then follows from

LEmMMA 2.1. For any p=1,...,n—1, f(Z)) is a semialgebraic set in B of
codimension >1.
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Proor. Let g: Z, — G, be the restriction of the second projection to Z, and
note that g is a fiber bundle projection. Change of coordinates shows that we
can take as typical fiber F=g~'(a% E° H®) with H®: x,=0, E®: x,=...=x,,,
=0,

a® = (ag,....,d5,,), where ad=(1,0,...,0),...,

@ = (0,..,0,1,0,..,0, a9 = (L,1...,1,0,...,0).

We shall write a polynomial P € B in the form

P(x) = anl(x)+Q(x0a~ . -sxn-—l)

and also
n—1 n—1
Q = A(Xq,. ., X))+ Y Bilxr.. X )x;+ Y Ci i(Xose .o, Xgo XX -
i=p+1 ij=p+1

With these notations it is easy to check that P € F iff

B(a?)=0 for i=p+1,...,n—1; j=0,...,p+1

0A

a—g(aﬁ.’)=0 k=0,...,p.
This is a system of linear equations in the coefficients of the polynomial P and
hence F is the intersection of B with a linear subspace in R(n, d). In particular F
(and hence also Z,) is nonsingular.

The system S consists of n(p+2) equations which can be written explicitly
due to the special form of the points af.

In the case d =2 the proof of (2.1) is trivial. Indeed, the hypersurface { P =0}
is then a smooth quadric and any hyperplane is tangent to it at no more than
one point, and hence the sets Z, are empty.

When d=3 the equations of the system S are linearly independent apart
from the following “degenerate” cases:

d,p) = 3,1), (3,2) and (4,1).

To see this, note that the equations involving the polynomials B; are always
independent, while the equations involving the polynomial 4 are independent
iff the following (p+ 1) equations are independent.

Ek . Zakaa = 0 k=0,1,.-.,p
-3
where a= (a,...,a,), |a|=d, maxa;<d—1 and a, indeterminates.

Suppose now d=3, p=23 and Y ALE,=0 for some 4 e C. Using the
multiindex
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a=0...1...0...1...0...1...0
i Jj k
we get 4, +4;+4,=0 for any 0<i<j<k=p.

Geometrically this means that any triangle (proper or degenerate) in the
complex plane with vertexes in the set {4} has baricenter 0, which is possible
only if 4;=0 for any i.

For d=4 we can use the multiindex

o= (0...dT2...0...%...O)

and get (d—2)4;+24;=0 for any i%j.

If d > 4 this already gives 4,=0 for any i by symmetry in i and j. For d=4 we
only get A;+A;=0 for any i=+j and if p> 1 we find again as above 4;=0 for any
i

Therefore, apart from the special cases, codim F in B=n(p+2) and hence
dim Z,<dim B —1 which gives the result. Finally we treat the degenerate cases
one by one:

i) d,p)=(3,1).
In this case the system S implies

A=B,=..=B,_,=0.

Hence the line E° is contained in the hypersurface {P =0} and, if P ¢ D, for any
point x € E° we have T,{P=0}=H°. It follows that

dimf~'(P) 2 3.

N

In this case rk S=3n—2 and hence dim Z,=dim B+ 1. Our result (1.1) then
gives dim f(Z,) <dim B.

ii) (d,p)=(3,2).
In this case the system S implies

A =0 and B(xpXx;,X;) = biXoXy+¢xix; +dixoXx,
with b,+¢;+d;=0 for i=3,...,n—1. In particular rkS=4n—2 and hence

dimZ,=dimB+1.
Let us denote by s the composition

P? = E° = {P=0} -1 P, d = (3P/dxo,...0P/Ox,).

Note that H € S(P?) implies H > E°.

If dim s(P?) <2 then it follows that there is a hyperplane H € P" such that
dims~!(H)>0 (use 3.3 in [2, p. 29]).

And a similar argument to that in i) ends the proof in this case.
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If dims(P?)=2, the it is easy to show that for any hyperplane H in a
neighbourhood in image s of H° s~ !(H) contains one point in each
neighbourhood of the points af, j=0,...,3 and hence dim f~!(P)=2.

As above, (1.1) gives the result.

iii) (d,p)=(4,1).
In this case the system S gives:

A =0 and Bixg,Xx,) = bx2x;+cxex?

with b;+¢;=0 for i=2,.. . ,n—1. In particular rk §=3n—1 and hence dim Z,,
=dim B.
We consider the composition

t: P'= E° = {P=0} 4, pr

and a completely similar argument with case ii) shows that dim f~!(P)>1
which gives the result.

REMARK 2.2. The proof of the Theorem given here works equally well over
any algebraically closed field of zero characteristic since then (1.1) is a standard
result.
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