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ROTATION-AUTOMORPHIC FUNCTIONS
NEAR THE BOUNDARY

RAUNO AULASKARI

In the paper [4] we defined rotation-automorphic functions with respect to
some Fuchsian group. The function f, meromorphic in the unit disk D, was said
to be rotation-automorphic with respect to a Fuchsian group I acting on D if
it satisfies the equation f(T(z))=S1(f(2)) where Te I' and St is a rotation of
the Riemann sphere. The fundamental domain F of I" was said to be thick if it
satisfies the following condition: There are positive constants r,r’ such that for
any sequence of points (z,) = F there is a sequence of points (z,) for which the
hyperbolic distance d(z,,z,)<r and the hyperbolic disk U(z,,r')=F for each
n=1,2,.... If we suppose that F is thick, we proved the following theorem
(cf. [4], Theorem 5).

THEOREM 1. Let F be a fundamental domain of T and f a rotation-automorphic
function with respect to I'. If F is thick and

TS
M) HF (m) do, < oo,

where da, is the euclidean area element, then f is a normal function in D.

Further, we showed there the existence of a rotation-automorphic function
with at least two rotation axes and obtained a general principle to construct
rotation-automorphic functions. Note that character-automorphic functions
are special cases of rotation-automorphic functions with only one rotation axis
(0oco-axis).

In [2] we constructed a non-normal function which satisfies the condition
(1).

In the paper [5] we restricted I to be a finitely generated Fuchsian group
and obtained the following theorem:

THEOREM 2. Let I be a finitely generated Fuchsian group and f a rotation-
automorphic function with respect to I'. If
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f ( If @) )2 o < 5
F\I+7@1F) % :

then f is a normal function in D.

Here we continue to study rotation-automorphic functions and prove a
theorem which is in a close relation to Theorem 1.

1.

Let D and dD be the unit disk and the unit circle respectively. We shall
denote the hyperbolic distance by d(z,,z,) (z;,z, € D) and the hyperbolic disk
{z | d(z,zg)<r} by Ul(zy,r). The spherical distance is denoted by d*(w,,w,)
(wy,w, € C). Let I be a Fuchsian group acting on D and

n(K,z) = card{IrzNK}, KcD.

Let f be a meromorphic function in D. Then f'is called rotation-automorphic
with respect to I, if

(L.1) f(T@) = $:(f(2), zeD, Terl,

where S7 is a rotation of the Riemann sphere. The meromorphic function f is
said to be normal in D [8], if
| 1)

1.2 sup (1 =|z))——— < 00
(12 i S PR FTET
We note that, for a rotation-automorphic function f with respect to I', the
expression (1—|z|?)|f"(2)l/(1+|f (2)|?) is invariant under the transformations of
r.

Fix the fundamental domain F of I' to be some normal polygon in D.

Just as we defined [1] additive automorphic functions (that is, integral
functions of automorphic forms) of the second kind, we can define rotation-
automorphic functions of the second kind.

1.1. DEFINITION. A rotation-automorphic function f is said to be of the
second kind if there exists a sequence of points (z,) in the closure F such that
the sequence of functions

(1.3) &) = f(szz"c)

tends uniformly to a constant limit in some neighbourhood of {=0.
For proving the main result we need the following lemma (cf. [4, Lemma)).
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1.2. LEMMA. Let (z,)= F be a sequence of points such that lim,_, |z,|]=1,r>0
and R>0. Then T(U(z,,»)NU(0,R)+ & for finitely many Te I' and ne N

only.
1.3. THEOREM. Let I" be a Fuchsian group satisfying the following conditions:

(1.4) T consists of id and hyperbolic transformations. There exists a constant t,
>2 such that

(1.5 |traceT| = t, forall TeTl, T#id.

Let f be a rotation-automorphic function with respect to I' and F a fundamental
domain of T. If

@\
(16) JJ‘F (T;‘l—f(T)lz) dO’z < 0,

then f is normal in D.

Proor. Concerning Theorem 1 we note that if the fundamental domain F of
I is thick, then I satisfies the condition (1.5). Fix r>0 to be small enough (less

than Marden’s constant, cf. [9]). Then there exists a positive integer m such
that

(L7 n(U(z,r,0) = m

for all ze D, { € D. By 1.2. Lemma, (1.6), and (1.7) we can choose R>0 so
large that z € F\ U(0, R) implies

1 e, L
(18) S(r) = 'E jfu(:'r) (w) dO'z < 5 .

Define the transformations

and the functions

frw) = f(TW)) .

By [6, Theorem 6.1.] we have
L/TO) 2
(1) <1+|fr(0)|z>

where x = (¢* — 1)/(e* +1). Suppose now that z € F\ U(0, R). Then, by (1.7),
(1.8), and (1.9), we obtain

IIA

L S(r)
x21-8(r)
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. ’ 2 2
(1.10) ((l—|z|2)—l—%> s 250

_ ﬂ (e )Zd,,
B U(zr) 1+|f(2)|2 §

'@\
s oo ||, (R7) o
Thus
e @
(1.11) S U=l o = @ < o0

Denote the closure of U(0, R) by U(0, R). Then, in the compact set U(0, R), it
holds

|f" ()]
(1.12) sup (1—zP)—L2  — 4 < 0.
L FNOTT T+f@F ~
Connecting (1.11) and (1.12) we have
|f'(z
1.13 1—|z? = ma , < 0
(1.13) sup ( 'Z|)1+|f( T max {a,,a,}

and thus f is normal in D.

1.4. CoROLLARY. By the assumptions of 1.3. Theorem we can prove the
following: For each sequence of points (z,)< F converging to dD it holds

(1.14) lim (1 -|z,,|2)$f'f(z(;)—|)|2 =0.

Proor. Let (z,) = F be any sequence of points converging to dD. Let r>0 be
chosen as in 1.3. Theorem. By (1.10) we must only prove that

. '@ \?
— 1V dg, =0,
lim H Venn (1 + lf(Z)!z) 7

Suppose, on the contrary, that there is a subsequence (z,) of (z,) such that

/' \? _
(1.15) inf _Uum ) (1+lf(z)|2) do, =a>0.

Because of the finiteness of the integral [ (| f'(2)I/(1 +|f (2)|*))* do, we have an
R >0 such that
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1@\ a
(116 J‘J‘F\ U(O,R)<1+|f(z)|2> do < 2m’

By (1.15) and (1.16) there is a positive integer k, such that, for each k 2 k,, there

exists T, € I' such that T,(U(z,,r)) N U(0, R)+ . This contradicts 1.2. Lemma.
The corollary is proved.

2,

In this section we shall consider the existence and non-existence of angular
limits of a rotation-automorphic function f at certain points of the unit circle
aD. Let first Q be the group of all Moebius transformations of D onto itself.
The function f is called normal in D if the family of combined functions
{foT| Te Q) is normal in D (cf. [10]). For these functions a theorem
of Pommerenke [11, Theorem 4] can be written in the following form:

2.1. THEOREM. Let f be a normal rotation-automorphic function with respect
to I'. Then f has an angular limit at the parabolic vertices of the fundamental
domains T(F), TeT.

Related to 1.1 we prove the following theorem:

2.2. THEOREM. Let f be a rotation-automorphic function with respect to I'. If f
has an angular limit at some point of dD, then f is of the second kind.

PROOF. Let f have an angular limit ¢ at {, € dD. Suppose that the sequence
of points (z,)ca (x a Stoltz angle at {,) converges to (. Choose 'the
transformations L, € @, T, e I' such that L,(0)=z, T,(z,)=z,€ F and (T,
oL,)()=({+z,)/(1+Z) for each { e D and n=1,2,.. .. Define the functions

2.1) g.(0) = f(L.(D) -

Since lim f(z)=c for z € U, U(z,, 1), z, — {o, then lim, g,(0)=c uniformly
in U(0,r). Let

(2.2) h(0) = f(TALL©) = ST (La(©)) = St,(8x(0) -

We now prove that there is a subsequence (hy) of (h,) converging uniformly to a
constant in U (0, ). Applying the spherical rotation Sy, to the points g,({) and ¢,
we have d*(g,(0),c)=d*(S1(x(0),Sr,(c)). Choose a subsequence (S,(c) of
(S7,(c)) such that there exists lim,_, o, St,(c)=Co. Then applying the triangle
inequality to (2.2) yields
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(23 d*(m (0, co) < d*(S1,(8()), S7,(0))+d*(S,(c),co) > O

uniformly in U(0,r). Thus the assertion is proved.

Next we consider the behaviour of a rotation-automorphic function in the
neighbourhood of a hyperbolic fixed point.

2.3. THEOREM. Let f be a non-constant rotation-automorphic function with
respect to I'. Then f has no angular limit at a hyperbolic fixed point £ of T.

Proor. Choose z,,z, € F such that f(z,)%f(z,). Let Te I" be a hyperbolic
transformation which has the point ¢ as an attractive fixed point. Then the
sequences of points (z}) = (T"(z,)), (z3)=(T"(z,)) converge in a Stolz angle « to
¢ Now

(24 0 < d*(f(z)), f(zy) = d*(ST"(f(zl))’ST"(f(ZZ)))
= d*(f(T"(z,)), f(T"(22)) = d*(f(}), f(2))
for each n=1,2,.... Hence f has no angular limit at &,

The following theorem is applied for proving the non-existence of non-
constant analytic rotation-automorphic functions with respect to the Fuchsian
group whose fundamental domain is compact.

2.4. THEOREM. Let I" be a Fuchsian group having the fundamental domain F
with a finite number of sides and f a non-constant rotation-automorphic function
with respect to I'. If the radius L=0¢, |E|=1, intersects infinitely many
Sfundamental domains T(F), Te I, then f has no angular limit at &.

ProoF. By the assumptions, ¢ is a limit point of I” and not a parabolic vertex
of any T(F), Te I'. Suppose, on the contrary, that f has an angular limit c at ¢&.
By [7, V, 5G, Theorem] one can find a sequence of points (z,) < L tending to ¢
such that I'-images z,=T,(z,) lie in {z | |z|<R} for some R<1and T, e I'. We
may suppose, without loss of generality, that there exists z,=lim,_ z, €
{z I lzZl<R}. It suffices to show that f is constant in any hyperbolic disk
U(zo,r). Let r>0 and choose a w € U(zg, r). We may suppose that z, € U(zp, ),

n=1,2,.... Denote w,=T, *(w). Consider the functions
{+w,
2.3) 8.(0) = f(l +W.,C> .

Since d(z,, w,)=d(z,, w) <2r, the sequence (g,({)) converges to ¢ uniformly on
every compact subset of D. Hence :
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g, (0)| Lf (wy)l

2.6 el - (1=lw]H) L
29 g oF ~ ¢ T 7O
as n — 00. By the invariance under the transformations of I

BT N T
&0 R E Ty R F T
and thus

ey S
2.8) (=P 7o = O
Since 1 —|w|?+0, we have
LS (W)

29 EEAL A MACA T
@2 T+17 0P

Hence f is a constant in U(zp,r) and as a meromorphic function in D. The
theorem follows.

2.5. THEOREM. Let I' be a Fuchsian group and f an analytic rotation-
automorphic function with respect to I'. If the fundamental domain F of I is
compact, then f is a constant in D.

PRrROOF. Suppose, on the contrary, that fis not a constant in D. Since the
expression (1 —|z|%)|f"(2)l/(1 +|f (2)|*) is invariant under the transformations of
I, fis a normal function in D. Let ¢ € 0D be an arbitrary point. Then the
radius L =0¢ intersects infinitely many fundamental domains T(F), Te I'. By
2.4 the function f has no angular limit at £. On the other hand, an analytic
normal function f has at least one angular limit on dD. This contradiction
shows that fis a constant in D.

2.6. REMARK. If the fundamental domain F of I' is compact, then there exist
always non-constant meromorphic rotation-automorphic functions with
respect to I (for example, automorphic functions).

Finally we prove the non-existence of angular limits at transitive boundary
points. Therefore let A be a hyperbolic ray. Then 4 crosses a finite or infinite
number of fundamental domains, the images of the fundamental domain F.
Each point of A has a I'-equivalent point in F. If the set of these points is
everywhere dense in F, then A is said to be transitive (under I'). A point & € 6D
is called transitive if every hyperbolic ray through ¢ is transitive.
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2.7. THEOREM. Let f be a non-constant rotation-automorphic function with
respect to I'. Then f has no angular limit at a transitive point & € dD.

ProoF. Suppose, on the contrary, that fhas an angular limit ¢ at £ The radius
L =0¢ intersects infinitely many fundamental domains F,=T,(F), T,eTI’, and
the arcs T, '(L N F,) have, by the transitivity, an accumulation continuum C in
F. Choose two different points x’, y’ of C. Let x}, y; € T, '(LNF,), x; +}, be
the points such that lim, , ,, x; =x" and lim, , ., y, =)'. Denoting x, =T, (x};) and
V=T, () we have lim, .., f(x)=lim,,, f()=c. Now

(2.10) d*(f(x), f0) = Jim d *(f (<, £ 03)

lim d *(S7,(f () ST (S OW)

lim d*(f(T,,(x)), £(T,,0)

k=00

= limd*(f(x), fv) = 0.

k- o0

Hence f(x')=f(y'). Thus f is a constant on the nondegenerate continuum C
which contradicts the assumption that f is a non-constant meromorphic
function. The theorem is proved.

2.8. REMARK. In fact, in 2.7, we have proved that f has no radial limit at &.
Further, for proving the assertion of 2.7. Theorem we need only suppose that
some hyperbolic ray is transitive.

2.9. ReMark. In [3, 2.3. Theorem] we obtained the following theorem: If
W(T(2))=W(z)+ Ay, A7=%0, for a hyperbolic transformation Te I', then the
additive automorphic function W has the angular limit oo at the fixed points of
T. The complex number A4 is known as the period of W with respect to T'in I'.
If A;=0, it is easy to see that W has no angular limit at the fixed points of T.
In [3] we proved a slightly weaker version of 2.7. Theorem for additive
automorphic functions; namely, an additive automorphic function can have no
finite angular limit at a transitive point.
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