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ON THE JACOBSTHAL SUM ¢4(a) AND
THE RELATED SUM y,(a)

S. A. KATRE and A. R. RAJWADE

1. Introduction.

For an odd prime p and a positive integer k, the Jacobsthal sums ¢, (a) and
the related sums y,(a), of order k, are defined by

P2l x\[x*+a
oula) = xgo <;>< p )

V(@) = "i (x +a) ,

where (./p) is the Legendre symbol and a € Z, the ring of rational integers. The
sums are easily obtained if a=0 (mod p), and if p%1 (mod k), they reduce to
sums of lower order. These sums are related by

and

(L) e(@) = V(@) —yila),
and if k is odd and a%0 (mod p) we also have
(1.2) ¢la) = —1+(a/p (@) ,

where a satisfies aa=1 (modp). ¢,(a) was first evaluated by Davenport and
Hasse [2] (1935), ¢5(a) and ¢ (a) were first evaluated by Rajwade [8] (1969),
[9] (1973), and ¢,(a) for all odd primes k <23 by Leonard and Williams [7]
(1978). In all these cases, the corresponding cyclotomic field (thatis Q({,) if k is
odd and Q({,,) if k is even, where Q is the field of rational numbers and {,
=exp (2ni/k)) is of class number 1, and for p=1 (modk), the result was
obtained in terms of suitable normalized prime factors of p in this field.

As far as the prime power values of k are concerned, the evaluation of ¢,(a)
has already been accomplished by the present authors [6]. In the present
paper, we shall evaluate @q4(a) and Y4 (a).
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2. Preliminaries.

In what follows (unless stated otherwise) let p be a prime=1 (mod9), a an
integer not divisible by p, {=exp (27i/9), and w=exp (2ni/3). Then { and w
satisfy the irreducible equations (over Q) (®*+{3*+1=0 and w?*+w+1=0,
Z[{] and Z[w] are PID’s, 1 —{ is a prime in Z[{], and as ideals, (3)= (1 —{)®
and (1 —w)= (1-{)>. Let o be the automorphism of Q({) over Q such that ¢({)
=(2. Then

Gal (Q(0)/Q) = {1,0,0% 0> 0% 0%} .

Let n, be any prime factor of p in Z[{]. Then p=mn,n,n,n3n,n5, Where =;
=d'(ny), 0<i<5. For any prime factor 7 of p in Z[{] and for a € Z[{], we
define the ninth power residue symbol (a/n) by (a/n)g=0, ¢ if a?~ V9 =0, ¢
(mod ), 0<i<8, and the eighteenth power residue symbol (a/n),s by (¢/7);5
=0, +{ if a®? D18 =0, 4+{' (mod n), 0<i<8. Similarly for a prime factor u of
p in Z[w] and for a € Z[w] we define (a/u); =0, 1, w, w? according as «P~1/3
=0,1,w,0®> (mody) and (x/we=0, +1, +w, +®* according as P =176
=0, +1, + w, + ®? (mod ). For b € Z, one can easily prove that

(b/Arm), = Ab/m),, for k=9,18, A e Gal (Q({)/Q),
(b/Au), = A(b/u), for k=3,6, Ae Gal(Q(w)/Q),
and ‘
(b/p)(b/m)g = (b/om),s ,
(b/p)(b/u)s = (b/iDs

i being the complex conjugate of pu.

Let g be a fixed primitive root mod p and, for m£0 (mod p), let ind m denote
the index of m mod p to the base g. Define the character x on Z, (integers
modulo p) by

(2.2)

¢ if m$0 (modp),
x(m) = {0 if m=0 (modp).

Note that for m#0 (mod p), m is a ninth power mod p if and only if y(m)=1.
For i,j mod 9, define the Jacobi sums of order 9 by

J G, j)

I

p-1 .
ZO 1O w+1)

z Ciindv+jind (v+1)
v¥0, -1

For (m,9)=1, we have J(im,jm)=J(i,j);_, ~ In particular, J(2,2)=0J(1,1),
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J@4,4=02J(1,1), JO-i,9—j)=J(—i, —j)=J(,j). For iji+j£0 (mod9),
J(i,j) are nothing but the sums R(i,j,{)o. (See [3, p. 396], [1, p. 207]). Hence
from [1, Eq. (3.5)] it follows that

pJ(3,3) = J(1,1)e2J(1,1)e*J (1, 1) .

A relation between y4(a) and J(i,j) is obtained as follows:

p—1 9
Vo@ = ¥ (" +“)

x=0 p

P! +a

y [1+x(y)+x2(y)+...+x8(y>](y-—>.

) ‘ y=0 p

Note that Z;’;g (v+4a)/p)=0. In the remaining, set y=az. Therefore,

-1 p—1
Vola) = (5)["2 x(a)x(z)(z—f—l—>+ LAY (a)x“(z)(f—ﬂ)].
P z=0 P z=0 p

\

Now,

p z+1e +le

(Here R denotes the set of quadratic residues and N denotes the set of
quadratic nonresidues mod p.)

» 1
5 x(z)(” )= Y x@- Y 26.
z=0 R z N ’

But,
0= Y x@+ Y x@+x(=1.
z+1eR z+1eN
Adding,
r-l z+1 el
> x(Z)( >= 2 Y x@+x(=) =Y x@-1
z=0 p z+1eR u=0
p—1
= Y x@rxw+1), setting u=2v+1
v=0
= x4J(1,1).
Similarly,
p—1
y x"(z)(if“p—l> = Y@JGi for i=2,3,....8.
z=0

This gives,

8
(2.3) Vs(a) = (a/p) 'Zl 2 (@4a)J i,d) .
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3. Cyclotomy and the congruence for J(1,1).

For a prime p=1 (mod 3) and i,j (mod 3), Gauss defined the cyclotomic
numbers (i, j);, of order 3, by

(i,j); = the number of v (mod p)

such that indv=i .(mod 3) and ind (v+1)=j (mod 3).
For p=1 (mod 3), there are only two integral solutions (L, + M) of the
equations

4p = L*+27TM?, L=1 (mod3),

and Gauss showed that L=9(1,2); —p—1, whereas M can be taken to be M
=(0,1); — (0,2);. For this M, he also proved that 18 (0,1);=2p—4—-L+9M.
(See [3, p. 397)).

Let now, as before, p=1 (mod 9). For i,j mod 9, the cyclotomic numbers (i, j),
are defined by

(i,j)o = the number of v (mod p)

such that indv=i (mod9) and ind (v+1)=j (mod9).
Following Dickson [5, p. 189], let

5
J) = Y ¢, ceZ.

i=0
Dickson [5, Eq. 25] showed thaf
3.1) co=—1,¢;=¢,= —c4 = —cs, ¢c3 =0 (mod3).
K. S. Williams [10, Lemma 1] proved that
¢; =0 (mod3) if M =0 (mod3).

Slightly more generally we have the following
LEMMA 1. ¢, =ind 3 (mod 3).

Proor. By Dickson’s work [5, p. 189], we have mod 3,
¢, = (0,1)g + (0,4)—2(0,7) +2(1,3)g —4(1,6)5 +2(2,5)9
= (0,1)g + (0,4)9 + (0,7)9 +2(1,3)9 +2(1,6)9 +2(2,5)s
= (0,1)g+ (0,4)g + (0,7)9 + (3,1)g + (3,4)g + (3,7)g +
+(6,1)g + (6,4)9 + (6,7)
0,1);,
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since

2
)y = Y, (i+3rj+3s),
r,s=0
by [5, Eq. 2].
But as p=1 (mod9), L=7 (mod9), and in this case, Baumert and
Fredricksen proved that M = —ind 3 (mod 3). (See 1, Eq. (3.6)].) Let p=1+9n,
L=749m, so that,

18¢,

18 (0,1); (mod27)
=2p—4-L+IM
2+18n—4—7-9m—9ind 3 (mod 27)

—9-91—9m—9ind 3 (mod27),

implying that
¢; = 1+n+m+ind3 (mod3).
Now from Table 2, p. 206 [1], we get,

I p+1+L if ind3=0 (mod3),
p+1+L+27c if ind3=1 (mod3),

81(3,6) =
1 p+1+L+27¢g—27c; if ind3=-1 (mod3).
In any case, p+1+L=0 (mod27). Since p+1+L=9(1+n+m), this gives

¢, = ind3 (mod 3), proving the lemma .
A useful congruence for J(1,1) is obtained in the following
Lemma 2. J(1,1)= — M3 (mod (1-0)%).
Proor. By (3.1),
J(L,) = —1+el+e, = *—cy® (mod3)
—l+el+e P~ (P +-1)-

—¢; (3 4+ 1) (mod (1-0)%)
—1-¢;(1—w) (mod3).

Thus by Lemma 1,
J(1,1) = —1—(ind 3)(1 —w) (mod (1 -0%

= —w M3 (mod3).

1]
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This proves the lemma.
REMARK. For k>2,i,jmod k, and a prime p=1 modk, if we define

1
J(i,j)k — pz Ciindv+jind(v+l),

v=0

then
J(1,1); = —1mod (1—w)* (See e.g. [8, p. 64]),
and
J(1,1), = —1mod (1-{)* for primes k>3 (See footnote, [4, p. 365]) .

Our Lemma 2 gives the analogue of this to the composite case k=9,

4. Statement and proof of the main result.
THEOREM. Let p be a rational prime=1 (mod9), a be an integer £0 (mod p),

ad=1 (mod p), and g be a fixed primitive root mod p. Let ny be a prime factor of p

in Z[{] satisfying (g/my)o =, and let for the automorphism a: { — {2 of Q({)/Q,
n;=0'(ny), 0Si<5. Assume that m, is further normalized by the condition

4.1 oMy, = —1, —w, —w? (mod (1-0)Y),
according as ind3=0, —1,1 (mod 3). Let u denote the prime factor myR,m, of
p in Q(w). Then

4a 4a
(4-2) (pg (a) = - 1 + (_“> noﬁlﬁz + (_—> ﬁonlnz +
9 To/9

To

and
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4.3) Yola) = (ff) noﬁ‘ftz-{-(?—) oM M, +
18 18

m, Ty

+(4a) _+<4a> I
— ) mm 7 — ) #,7,m
1, ) et 7 ) Tolima
o(5) o+ () fora s
— ) mgmm — ] R,AT
71'0 l8()12 7!0 18012
(4a> <4a>_
+Hl—=—)put+l{— ).

HJe HJje

(Note that in (4.2), —1+ (4a/u),u+ (4a/p)sfi=@;(a), and similarly in (4.3),
(4a/fp)ep + (4a/p)sit =Y 3(a).)

Proor. (I) We first show that the above normalization of =, is possible,
where =, satisfies (g/ng)e ="{.

We have,

J(L,1)

p—-1
Y @+l
v=0

1
) (;f—) (”:0 )9, since (/g =
v 0/9

=Y o® V2 + 1)V (mod n,)

-1
= 2:‘ v“"”’9<1 +£—9——v+ . +v(‘”“’9)
= 0 (modp), since ) v'=0 (modp) unless (p—1)|i,i=1.

Thus my|J(1,1). Similarly, =m,,7ms|J(1,1). Hence momyns|J(1,1), that is
noﬁ1ﬁ2|-](1,l). (NOtC that ﬁ0=ﬂ3, 11'1 =Ty, 7—[2=1[5.)
Let J(1,1)=mnyf,%,u, where u € Z[{]. So,

J(I,I)J(l,l) = nonlﬂzﬁoﬁlﬁzua ’
= pui,
giving ui=1, as |J (1,1)|=[/; by [3, Eq. 28]. Hence u is a root of unity.
By Lemma 2, J(1,1)= —w~™3 (mod (1 —{)*), showing that there exists a
among +1, +{,..., +{® such that my#, 7, =a (mod (1—{)*). This « is unique
because +1,+¢,..., +¢® are incongruent modulo (1=0* Thus from the
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chosen value of =, find such an « Then u is fixed uniquely by u=
(_w—-ind3)a—l.
Now

J(1,1) = my0*(ny)a® (no)u

= 1y0*(ng)a’ (o)’ c* (u")a® (u”)

(mou”)o* (mou")a® (mou”) .
Calling mou’ as new m, we get
J(L,1) = nt, 7, .

Thus we have obtained a prime factor n, of p in Z[{] such that (g/n,)={ and
Moft 7ty = — ™3 (mod (1—¢)*). This shows that the required normalization
of m, is possible.

’

(IT) Assume that noiis normalized by (4.1). Then in the above, o= — ¢ ~ind3
u=1 and so '

J(L1D) = w7, .

From § 2,

J(2,2) = 0J(1,1) = a(nyn,ns) = mymsny = Moy 7A,

J(4,4) = ¢?J(1,1) = nymy7, .
Also, pJ(3,3)=J(1,1)-6*J(1,1)- 6*J (1,1), giving

MMy MaMamyns) (3,3) = (7‘07‘4”5)(7127107‘4)(”47‘2”3) .
Thus J(3,3)=n,n,n,. Denote
u = JG33) = non,my = Aoy, .

u is invariant under 62, so u € Z[w].
uji=p shows that y is a prime factor of p in Z[w]. Hence by (2.3),

4.4) Yol(a) = (a/p)x(4a)nom 7, + f(4a)Tom,m, +
+x* daymgm 7, + 32 (da)Rom 7, +
+ x*(da)mgm,m,y + 1% (da)Ro T, 7T, +
+2*@au+ 7 (4a)] .

But since (g/my)o =, it follows that

x(4a) = (4a/ny) ,
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and by (2.1),
X(4a) = (4a/7,)

X’da) = (4a/my)e,  72(4a) = (4a/7,),

1*da) = (da/my)e,  7*(4a) = (da/fiy)s .
Finally it is straightforward to check that

1’da) = (4a/p)s,  7(4a) = (4a/i); .
Then, (1.2) and (4.4) prove (4.2), and (2.2) and (4.4) prove (4.3).

This proves the theorem.

REMARK 1. In the statement of the theorem, instead of defining u=ny7t,n,,
we could have alternatively defined u to be the prime factor of p in Z[w]
determined uniquely by the conditions (g/u);=w, u= —1 (mod 3). This follows
from the work of Rajwade [8], because

1(3,3) — Z windv+ind(v+1) — J(1,1)3

v=0,-1

S  defined in [8] .

REMARK 2. The number of solutions of the congruence y?>=x’+a (mod p),
can be obtained from the relation

No(a) = p+iy(a).

REMARK 3. If p is a prime=4,7 (mod 9), then Yy (a)=y;(a), and this is found
in [7] or [6]. If p=2,5,8 (mod9) (p=+2), then Yq(a)=y,(a)=0. Thus one gets
Yo(a), pg(a) and Ny(a) in these cases also.

REMARK 4. One can check that on multiplication by exactly one of
+{(1+0), 05i<8, 05 <2, n, itself can be made to satisfy the condition

(4.5) o = —0 ™3 (mod (1-0)%).

This condition implies the normalization (4.1) of the theorem, and hence the
conclusions (4.2) and (4.3). However the normalization (4.1) is simpler in the
sense that one needs multiply 7, just by one of +{’, 0<i<8, to obtain it.

REMARK 5. In the proof of our Lemma 1, to prove that 1 +n+m=0 (mod 3),
the use of the formulae for 81(3,6) can be avoided. One can get this result
directly from 4p=L2+427M? p=1+9n, L=7+9m. Similar remark holds for
the proof of Lemma 1 of K. S. Williams in [10]. -
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