ON THE JACOBSTHAL SUM $\varphi_k(a)$ AND
THE RELATED SUM $\psi_k(a)$

S. A. KATRE and A. R. RAJWADE

1. Introduction.

For an odd prime p and a positive integer k, the Jacobsthal sums $\varphi_k(a)$ and
the related sums $\psi_k(a)$, of order k, are defined by

$$\varphi_k(a) = \sum_{x=0}^{p-1} \left(\frac{x}{p} \right) \left(\frac{x^k + a}{p} \right)$$

and

$$\psi_k(a) = \sum_{x=0}^{p-1} \left(\frac{x^k + a}{p} \right),$$

where $\left(. / p \right)$ is the Legendre symbol and $a \in \mathbb{Z}$, the ring of rational integers. The
sums are easily obtained if $a \equiv 0 \pmod{p}$, and if $p \equiv 1 \pmod{k}$, they reduce to sums of lower order. These sums are related by

\[(1.1) \quad \varphi_k(a) = \psi_{2k}(a) - \psi_k(a), \]

and if k is odd and $a \not\equiv 0 \pmod{p}$ we also have

\[(1.2) \quad \varphi_k(a) = -1 + (a/p)\psi_k(\bar{a}), \]

where \bar{a} satisfies $a\bar{a} \equiv 1 \pmod{p}$. $\varphi_2(a)$ was first evaluated by Davenport and
Hasse [2] (1935), $\varphi_3(a)$ and $\varphi_5(a)$ were first evaluated by Rajwade [8] (1969),
[9] (1973), and $\varphi_k(a)$ for all odd primes $k < 23$ by Leonard and Williams [7]
(1978). In all these cases, the corresponding cyclotomic field (that is $\mathbb{Q}(\zeta_k)$ if k

is odd and $\mathbb{Q}(\zeta_{2k})$ if k is even, where \mathbb{Q} is the field of rational numbers and ζ_k

$= \exp(2\pi i / k))$ is of class number 1, and for $p \equiv 1 \pmod{k}$, the result was

obtained in terms of suitable normalized prime factors of p in this field.

As far as the prime power values of k are concerned, the evaluation of $\varphi_4(a)$

has already been accomplished by the present authors [6]. In the present

paper, we shall evaluate $\varphi_9(a)$ and $\psi_9(a)$.

Received March 23, 1982.

Math. Scand. 53 — 13
2. Preliminaries.

In what follows (unless stated otherwise) let p be a prime $\equiv 1 \pmod{9}$, a an integer not divisible by p, $\zeta = \exp(2\pi i/9)$, and $\omega = \exp(2\pi i/3)$. Then ζ and ω satisfy the irreducible equations (over \mathbb{Q}) $\zeta^6 + \zeta^3 + 1 = 0$ and $\omega^2 + \omega + 1 = 0$, $\mathbb{Z}[\zeta]$ and $\mathbb{Z}[\omega]$ are PID’s, $1 - \zeta$ is a prime in $\mathbb{Z}[\zeta]$, and as ideals, $(3) = (1 - \zeta)^6$ and $(1 - \omega) = (1 - \zeta)^3$. Let σ be the automorphism of $\mathbb{Q}(\zeta)$ over \mathbb{Q} such that $\sigma(\zeta) = \zeta^2$. Then

$$\text{Gal}\left(\mathbb{Q}(\zeta)/\mathbb{Q}\right) = \{1, \sigma, \sigma^2, \sigma^3, \sigma^4, \sigma^5\}.$$

Let π_0 be any prime factor of p in $\mathbb{Z}[\zeta]$. Then $p = \pi_0 \pi_1 \pi_2 \pi_3 \pi_4 \pi_5$, where $\pi_i = \sigma^i(\pi_0)$, $0 \leq i \leq 5$. For any prime factor π of p in $\mathbb{Z}[\zeta]$ and for $\alpha \in \mathbb{Z}[\zeta]$, we define the ninth power residue symbol $(\alpha/\pi)_9$ by $(\alpha/\pi)_9 = 0$, if $\alpha^{(p - 1)/9} \equiv 0$, ζ^i (mod π), $0 \leq i \leq 8$, and the eighteenth power residue symbol $(\alpha/\pi)_{18}$ by $(\alpha/\pi)_{18} = 0$, if $\alpha^{(p - 1)/18} \equiv 0$, $\pm \zeta^i$ (mod π), $0 \leq i \leq 8$. Similarly for a prime factor μ of p in $\mathbb{Z}[\omega]$ and for $\alpha \in \mathbb{Z}[\omega]$ we define $(\alpha/\mu)_3 = 0, 1, \omega, \omega^2$ according as $\alpha^{(p - 1)/3} \equiv 0, 1, \omega, \omega^2$ (mod μ) and $(\alpha/\mu)_6 = 0, 1, \pm 1, \pm \omega, \pm \omega^2$ according as $\alpha^{(p - 1)/6} \equiv 0, 1, \pm 1, \pm \omega, \pm \omega^2$ (mod μ). For $b \in \mathbb{Z}$, one can easily prove that

$$\begin{align*}
(b/\lambda \pi)_k &= \lambda(b/\pi)_k, \quad \text{for } k = 9, 18, \lambda \in \text{Gal}\left(\mathbb{Q}(\zeta)/\mathbb{Q}\right), \\
(b/\lambda \mu)_k &= \lambda(b/\mu)_k, \quad \text{for } k = 3, 6, \lambda \in \text{Gal}\left(\mathbb{Q}(\omega)/\mathbb{Q}\right),
\end{align*}$$

and

$$\begin{align*}
(b/p)(b/\pi)_9 &= (b/\sigma \pi)_{18}, \\
(b/p)(b/\mu)_3 &= (b/\bar{\mu})_6,
\end{align*}$$

$\bar{\mu}$ being the complex conjugate of μ.

Let g be a fixed primitive root mod p and, for $m \not\equiv 0 \pmod{p}$, let $\text{ind} m$ denote the index of m mod p to the base g. Define the character χ on \mathbb{Z}_p (integers modulo p) by

$$\chi(m) = \begin{cases}
\zeta^{\text{ind} m} & \text{if } m \not\equiv 0 \pmod{p}, \\
0 & \text{if } m \equiv 0 \pmod{p}.
\end{cases}$$

Note that for $m \not\equiv 0 \pmod{p}$, m is a ninth power mod p if and only if $\chi(m) = 1$.

For $i, j \mod 9$, define the Jacobi sums of order 9 by

$$J(i, j) = \sum_{v=0}^{p-1} \chi^i(v)\chi^j(v+1) = \sum_{v \not\equiv 0, -1} \zeta^{\text{ind} v + j \text{ind} (v+1)}.$$

For $(m, 9) = 1$, we have $J(im, jm) = J(i, j)_{\zeta \to \zeta^m}$. In particular, $J(2, 2) = \sigma J(1, 1)$,
\[J(4, 4) = \sigma^2 J(1, 1), \quad J(9 - i, 9 - j) = J(-i, -j) = J(i, j). \] For \(i, j, i + j \equiv 0 \pmod{9} \), \(J(i, j) \) are nothing but the sums \(R(i, j, \zeta)_9 \). (See [3, p. 396], [1, p. 207]). Hence from [1, Eq. (3.5)] it follows that
\[pJ(3, 3) = J(1, 1)\sigma^2 J(1, 1)\sigma^4 J(1, 1). \]

A relation between \(\psi_9(a) \) and \(J(i, j) \) is obtained as follows:
\[
\psi_9(a) = \sum_{x=0}^{p-1} \left(\frac{x^9 + a}{p} \right)
= \sum_{y=0}^{p-1} \left[1 + \chi(y) + \chi^2(y) + \ldots + \chi^8(y) \right] \left(\frac{y + a}{p} \right).
\]
Note that \(\sum_{y=0}^{p-1} (y + a)/p = 0 \). In the remaining, set \(y = az \). Therefore,
\[
\psi_9(a) = \left(\frac{a}{p} \right) \left[\sum_{z=0}^{p-1} \chi(a)\chi(z) \left(\frac{z+1}{p} \right) + \ldots + \sum_{z=0}^{p-1} \chi^8(a)\chi^8(z) \left(\frac{z+1}{p} \right) \right].
\]

Now,
\[
\sum_{z=0}^{p-1} \chi(z) \left(\frac{z+1}{p} \right) = \sum_{z+1 \in R} \chi(z) - \sum_{z+1 \in N} \chi(z).
\]
(Here \(R \) denotes the set of quadratic residues and \(N \) denotes the set of quadratic nonresidues mod \(p \).

But,
\[
0 = \sum_{z+1 \in R} \chi(z) + \sum_{z+1 \in N} \chi(z) + \chi(-1).
\]
Adding,
\[
\sum_{z=0}^{p-1} \chi(z) \left(\frac{z+1}{p} \right) = 2 \sum_{z+1 \in R} \chi(z) + \chi(-1) = \sum_{u=0}^{p-1} \chi(u^2 - 1)
= \sum_{v=0}^{p-1} \chi(4)\chi(v)\chi(v + 1), \quad \text{setting } u = 2v + 1
= \chi(4)J(1, 1).
\]

Similarly,
\[
\sum_{z=0}^{p-1} \chi^i(z) \left(\frac{z+1}{p} \right) = \chi^i(4)J(i, i) \quad \text{for } i = 2, 3, \ldots, 8.
\]

This gives,
\[
(2.3) \quad \psi_9(a) = \left(\frac{a}{p} \right) \sum_{i=1}^{8} \chi^i(4a)J(i, i).
\]
3. Cyclotomy and the congruence for $J(1, 1)$.

For a prime $p \equiv 1 \pmod{3}$ and $i, j \pmod{3}$, Gauss defined the cyclotomic numbers $(i, j)_3$, of order 3, by

$$(i, j)_3 = \text{the number of } v \pmod{p}$$

such that $\text{ind } v \equiv i \pmod{3}$ and $\text{ind } (v + 1) \equiv j \pmod{3}$.

For $p \equiv 1 \pmod{3}$, there are only two integral solutions $(L, \pm M)$ of the equations

$$4p = L^2 + 27M^2, \quad L \equiv 1 \pmod{3},$$

and Gauss showed that $L = 9(1, 2)_3 - p - 1$, whereas M can be taken to be $M = (0, 1)_3 - (0, 2)_3$. For this M, he also proved that $18 (0, 1)_3 = 2p - 4 - L + 9M$. (See [3, p. 397]).

Let now, as before, $p \equiv 1 \pmod{9}$. For $i, j \pmod{9}$, the cyclotomic numbers $(i, j)_9$ are defined by

$$(i, j)_9 = \text{the number of } v \pmod{p}$$

such that $\text{ind } v \equiv i \pmod{9}$ and $\text{ind } (v + 1) \equiv j \pmod{9}$.

Following Dickson [5, p. 189], let

$$J(1, 1) = \sum_{i=0}^{5} c_i s_i^i, \quad c_i \in \mathbb{Z}.$$

Dickson [5, Eq. 25] showed that

$$c_0 \equiv -1, \quad c_1 \equiv c_2 \equiv -c_4 \equiv -c_5, \quad c_3 \equiv 0 \pmod{3}.$$ (3.1)

K. S. Williams [10, Lemma 1] proved that

$$c_1 \equiv 0 \pmod{3} \quad \text{if } M \equiv 0 \pmod{3}.$$

Slightly more generally we have the following

Lemma 1. $c_1 \equiv \text{ind } 3 \pmod{3}$.

Proof. By Dickson's work [5, p. 189], we have mod 3,

$$c_1 = (0, 1)_9 + (0, 4)_9 - 2(0, 7)_9 + 2(1, 3)_9 - 4(1, 6)_9 + 2(2, 5)_9$$

$$\equiv (0, 1)_9 + (0, 4)_9 + (0, 7)_9 + 2(1, 3)_9 + 2(1, 6)_9 + 2(2, 5)_9$$

$$= (0, 1)_9 + (0, 4)_9 + (0, 7)_9 + (3, 1)_9 + (3, 4)_9 + (3, 7)_9 +$$

$$+ (6, 1)_9 + (6, 4)_9 + (6, 7)_9$$

$$= (0, 1)_3.$$
since
\[(i,j)_3 = \sum_{r,s=0}^{2} (i + 3r, j + 3s),\]

by [5, Eq. 2].

But as \(p \equiv 1 \pmod{9}\), \(L \equiv 7 \pmod{9}\), and in this case, Baumert and Fredricksen proved that \(M \equiv - \text{ind } 3 \pmod{3}\). (See 1, Eq. (3.6)].) Let \(p = 1 + 9n, L = 7 + 9m\), so that,
\[
18c_1 \equiv 18 (0,1)_3 \pmod{27} \\
= 2p - 4 - L + 9M \\
\equiv 2 + 18n - 4 - 7 - 9m - 9 \text{ ind } 3 \pmod{27} \\
\equiv -9 - 9n - 9m - 9 \text{ ind } 3 \pmod{27},
\]

implying that
\[
c_1 \equiv 1 + n + m + \text{ind } 3 \pmod{3}.
\]

Now from Table 2, p. 206 [1], we get,
\[
81(3,6) = \begin{cases}
 p + 1 + L & \text{if } \text{ind } 3 \equiv 0 \pmod{3}, \\
 p + 1 + L + 27c_0 & \text{if } \text{ind } 3 \equiv 1 \pmod{3}, \\
 p + 1 + L + 27c_0 - 27c_3 & \text{if } \text{ind } 3 \equiv -1 \pmod{3}.
\end{cases}
\]

In any case, \(p + 1 + L \equiv 0 \pmod{27}\). Since \(p + 1 + L = 9(1 + n + m)\), this gives
\[
c_1 \equiv \text{ind } 3 \pmod{3}, \text{ proving the lemma}.
\]

A useful congruence for \(J(1,1)\) is obtained in the following

Lemma 2. \(J(1,1) \equiv -\omega^{-\text{ind } 3} \pmod{(1 - \zeta)^4}\).

Proof. By (3.1),
\[
J(1,1) \equiv -1 + c_1\zeta + c_1\zeta^2 - c_1\zeta^4 - c_4\zeta^5 \pmod{3} \\
\equiv -1 + c_1\zeta + c_1\zeta^2 - c_1(\zeta^3 + \zeta - 1) - \\
- c_1(\zeta^3 + \zeta^2 - 1) \pmod{(1 - \zeta)^4} \\
\equiv -1 - c_1(1 - \omega) \pmod{3}.
\]

Thus by Lemma 1,
\[
J(1,1) \equiv -1 - (\text{ind } 3)(1 - \omega) \pmod{(1 - \zeta)^4} \\
\equiv -\omega^{-\text{ind } 3} \pmod{3}.
\]
This proves the lemma.

Remark. For \(k > 2, i, j \mod k \), and a prime \(p \equiv 1 \mod k \), if we define
\[
J(i, j)_k = \sum_{v=0}^{p-1} r_i \text{ind}_k v + j \text{ind}_k (v+1),
\]
then
\[
J(1, 1)_3 \equiv -1 \mod (1 - \omega)^2 \quad \text{(See e.g. [8, p. 64])},
\]
and
\[
J(1, 1)_k \equiv -1 \mod (1 - \zeta_k)^3 \quad \text{for primes } k > 3 \text{ (See footnote, [4, p. 365])}.
\]

Our Lemma 2 gives the analogue of this to the composite case \(k = 9 \).

4. Statement and proof of the main result.

Theorem. Let \(p \) be a rational prime \(\equiv 1 \mod 9 \), \(a \) be an integer \(\equiv 0 \mod p \), \(a\tilde{a} \equiv 1 \mod p \), and \(g \) be a fixed primitive root \(\mod p \). Let \(\pi_0 \) be a prime factor of \(p \) in \(\mathbb{Z}[\zeta] \) satisfying \(g/\pi_0)_9 = \zeta \), and let for the automorphism \(\sigma : \zeta \to \zeta^2 \) of \(\mathbb{Q}(\zeta)/\mathbb{Q} \), \(\pi_i = \sigma^i(\pi_0), \ 0 \leq i \leq 5 \). Assume that \(\pi_0 \) is further normalized by the condition
\[
(4.1) \quad \pi_0 \pi_1 \pi_2 \equiv -1, -\omega, -\omega^2 \mod (1 - \zeta^4),
\]
according as \(\text{ind } 3 \equiv 0, -1, 1 \mod 3 \). Let \(\mu \) denote the prime factor \(\pi_0 \pi_1 \pi_2 \) of \(p \) in \(\mathbb{Q}(\omega) \). Then
\[
(4.2) \quad \varphi_9(a) = -1 + \left(\frac{4\tilde{a}}{\pi_0} \right)_9 \pi_0 \pi_1 \pi_2 + \left(\frac{4\tilde{a}}{\pi_1} \right)_9 \pi_0 \pi_1 \pi_2 + \left(\frac{4\tilde{a}}{\pi_2} \right)_9 \pi_0 \pi_1 \pi_2 + \left(\frac{4\tilde{a}}{\mu} \right)_3 \mu + \left(\frac{4\tilde{a}}{\bar{\mu}} \right)_3 \bar{\mu}
\]

and
ON THE JACOBSHAL SUM $\varphi_9(a)$ AND THE RELATED SUM $\psi_9(a)$

(4.3) \[
\psi_9(a) = \left(\frac{4a}{\pi_1}\right)_{18} \pi_0 \pi_1 \pi_2 + \left(\frac{4a}{\pi_1}\right)_{18} \pi_0 \pi_1 \pi_2 + \]
\[
+ \left(\frac{4a}{\pi_2}\right)_{18} \pi_0 \pi_1 \pi_2 + \left(\frac{4a}{\pi_2}\right)_{18} \pi_0 \pi_1 \pi_2 + \]
\[
+ \left(\frac{4a}{\pi_0}\right)_{18} \pi_0 \pi_1 \pi_2 + \left(\frac{4a}{\pi_0}\right)_{18} \pi_0 \pi_1 \pi_2 + \]
\[
+ \left(\frac{4a}{\bar{\mu}}\right)_{6} \mu + \left(\frac{4a}{\mu}\right)_{6} \bar{\mu}.
\]

(Note that in (4.2), $-1 + (4a/\mu)_3 \mu + (4a/\bar{\mu})_3 \bar{\mu} = \varphi_3(a)$, and similarly in (4.3), $(4a/\bar{\mu})_6 \mu + (4a/\mu)_6 \bar{\mu} = \psi_3(a)$.)

PROOF. (I) We first show that the above normalization of π_0 is possible, where π_0 satisfies $(g/\pi_0)_9 = \zeta$.

We have,

\[
J(1,1) = \sum_{v=0}^{p-1} \chi(v) \chi(v+1)
\]
\[
= \sum_{v} \left(\frac{v}{\pi_0}\right)_{9} \left(\frac{v+1}{\pi_0}\right)_{9}, \quad \text{since } (g/\pi_0)_9 = \zeta
\]
\[
\equiv \sum_{v} v^{(p-1)/9} (v+1)^{(p-1)/9} \pmod{\pi_0}
\]
\[
\equiv \sum_{v} v^{(p-1)/9} \left(1 + \frac{p-1}{9} v + \ldots + v^{(p-1)/9}\right)
\]
\[
\equiv 0 \pmod{p}, \quad \text{since } \sum_{v} v^{i} \equiv 0 \pmod{p} \text{ unless } (p-1) | i, i \geq 1.
\]

Thus $\pi_0 | J(1,1)$. Similarly, $\pi_4, \pi_5 | J(1,1)$. Hence $\pi_0 \pi_4 \pi_5 | J(1,1)$, that is $\pi_0 \pi_1 \pi_2 | J(1,1)$. (Note that $\pi_0 = \pi_3$, $\pi_1 = \pi_4$, $\pi_2 = \pi_5$.)

Let $J(1,1) = \pi_0 \pi_1 \pi_2 u$, where $u \in \mathbb{Z}[\zeta]$. So,

\[
\overline{J(1,1)J(1,1)} = \pi_0 \pi_1 \pi_2 \overline{\pi_0 \pi_1 \pi_2 u \bar{u}},
\]
\[
= pu \bar{u},
\]

giving $u \bar{u} = 1$, as $|J(1,1)| = \sqrt{p}$ by [3, Eq. 28]. Hence u is a root of unity.

By Lemma 2, $J(1,1) \equiv -\omega^{-\text{ind}^3} (\mod (1-\zeta)^4)$, showing that there exists α among $\pm 1, \pm \zeta, \ldots, \pm \zeta^8$ such that $\pi_0 \pi_1 \pi_2 \equiv \alpha (\mod (1-\zeta)^4)$. This α is unique because $\pm 1, \pm \zeta, \ldots, \pm \zeta^8$ are incongruent modulo $(1-\zeta)^4$. Thus from the
chosen value of π_0 find such an α. Then u is fixed uniquely by $u = (-\omega^{-\text{ind }3})\alpha^{-1}$.

Now

\[J(1,1) = \pi_0\sigma^4(\pi_0)\sigma^5(\pi_0)u \]
\[= \pi_0\sigma^4(\pi_0)\sigma^5(\pi_0)u^7\sigma^4(u^7) \sigma^5(u^7) \]
\[= (\pi_0u^7)\sigma^4(\pi_0u^7)\sigma^5(\pi_0u^7). \]

Calling π_0u^7 as new π_0 we get

\[J(1,1) = \pi_0\bar{\pi}_1\bar{\pi}_2. \]

Thus we have obtained a prime factor π_0 of p in $\mathbb{Z}[^{\zeta}]$ such that $(g/\pi_0) = \zeta$ and $\pi_0\bar{\pi}_1\bar{\pi}_2 \equiv -\omega^{-\text{ind }3} \pmod{(1 - \zeta)^4}$. This shows that the required normalization of π_0 is possible.

(II) Assume that π_0 is normalized by (4.1). Then in the above, $\alpha = -\omega^{-\text{ind }3}$, $u=1$ and so

\[J(1,1) = \pi_0\bar{\pi}_1\bar{\pi}_2. \]

From § 2,

\[J(2,2) = \sigma J(1,1) = \sigma(\pi_0\pi_4\pi_5) = \pi_1\pi_5\pi_0 = \pi_0\pi_1\bar{\pi}_2, \]
\[J(4,4) = \sigma^2 J(1,1) = \pi_0\pi_1\pi_2. \]

Also, $pJ(3,3) = J(1,1) \cdot \sigma^2 J(1,1) \cdot \sigma^4 J(1,1)$, giving

\[\pi_0\pi_1\pi_2\pi_3\pi_4\pi_5 J(3,3) = (\pi_0\pi_4\pi_5)(\pi_2\pi_0\pi_1)(\pi_4\pi_2\pi_3). \]

Thus $J(3,3) = \pi_0\pi_2\pi_4$. Denote

\[\mu = J(3,3) = \pi_0\pi_2\pi_4 = \pi_0\bar{\pi}_1\bar{\pi}_2. \]

μ is invariant under σ^2, so $\mu \in \mathbb{Z}[\omega]$.

$\mu\bar{\mu} = p$ shows that μ is a prime factor of p in $\mathbb{Z}[\omega]$. Hence by (2.3),

\[(4.4) \quad \psi_9(a) = (a/p)[\chi(4a)\pi_0\bar{\pi}_1\bar{\pi}_2 + \bar{\chi}(4a)\bar{\pi}_0\pi_1\pi_2 + \]
\[+ \chi^2(4a)\pi_0\pi_1\bar{\pi}_2 + \bar{\chi}^2(4a)\bar{\pi}_0\bar{\pi}_1\pi_2 + \]
\[+ \chi^4(4a)\pi_0\pi_1\pi_2 + \bar{\chi}^4(4a)\bar{\pi}_0\pi_1\pi_2 + \]
\[+ \chi^3(4a)\mu + \bar{\chi}^3(4a)\bar{\mu}] . \]

But since $(g/\pi_0)_9 = \zeta$, it follows that

\[\chi(4a) = (4a/\pi_0)_9 , \]
and by (2.1),
\[\bar{\chi}(4a) = (4a/\pi_0)_0 \]
\[\chi^2(4a) = (4a/\pi_1)_0, \quad \bar{\chi}^2(4a) = (4a/\pi_1)_0 \]
\[\chi^4(4a) = (4a/\pi_2)_0, \quad \bar{\chi}^4(4a) = (4a/\pi_2)_0. \]

Finally it is straightforward to check that
\[\chi^3(4a) = (4a/\mu)_3, \quad \bar{\chi}^3(4a) = (4a/\bar{\mu})_3. \]

Then, (1.2) and (4.4) prove (4.2), and (2.2) and (4.4) prove (4.3).

This proves the theorem.

Remark 1. In the statement of the theorem, instead of defining \(\mu = \pi_0 \pi_1 \pi_2 \),
we could have alternatively defined \(\mu \) to be the prime factor of \(p \) in \(\mathbb{Z} [\omega] \)
determined uniquely by the conditions \(g/\mu_3 = \omega, \mu \equiv -1 \pmod{3} \). This follows
from the work of Rajwade [8], because
\[J(3,3) = \sum_{v=0,-1} \omega^{\text{ind} v + \text{ind} (v+1)} = J(1,1)_3 \]
\[= \emptyset \text{ defined in [8].} \]

Remark 2. The number of solutions of the congruence \(y^2 \equiv x^9 + a \pmod{p} \),
can be obtained from the relation
\[N_9(a) = p + \psi_9(a). \]

Remark 3. If \(p \) is a prime \(\equiv 4,7 \pmod{9} \), then \(\psi_9(a) = \psi_3(a) \), and this is found
in [7] or [6]. If \(p \equiv 2,5,8 \pmod{9} \) \((p \neq 2) \), then \(\psi_9(a) = \psi_1(a) = 0 \). Thus one gets
\(\psi_9(a), \varphi_9(a) \) and \(N_9(a) \) in these cases also.

Remark 4. One can check that on multiplication by exactly one of
\(\pm \zeta^i (1+\zeta)^j \), \(0 \leq i \leq 8, 0 \leq j \leq 2 \), \(\pi_0 \) itself can be made to satisfy the condition
\[\text{(4.5)} \quad \pi_0 \equiv -\omega^{-\text{ind} 3} (\mod{1-\zeta^4}). \]
This condition implies the normalization (4.1) of the theorem, and hence the
conclusions (4.2) and (4.3). However the normalization (4.1) is simpler in the
sense that one needs multiply \(\pi_0 \) just by one of \(\pm \zeta^i \), \(0 \leq i \leq 8 \), to obtain it.

Remark 5. In the proof of our Lemma 1, to prove that \(1+n+m \equiv 0 \pmod{3} \),
the use of the formulae for \(81(3,6) \) can be avoided. One can get this result
directly from \(4p = L^2 + 27M^2 \), \(p = 1+9n \), \(L = 7+9m \). Similar remark holds for
the proof of Lemma 1 of K. S. Williams in [10].
REFERENCES

6. S. A. Katre and A. R. Rajwade, *On the Jacobsthal sum $\varphi_k(a)$ and the related sum $\psi_k(a)$*, to appear.

CENTRE FOR ADVANCED STUDY IN MATHEMATICS
PANJAB UNIVERSITY
CHANDIGARH 160014
INDIA