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ON CUBIC FACTORS OF CERTAIN TRINOMIALS

HELGE TVERBERG

1. Introduction.

Let f € Z[x] be a trinomial of the form x"+ Ax™+ E, where n>3, n>m>0,
A#+0, and E= + 1. Assume that f has an irreducible cubic factor, g = x>+ ax?
+bx+c € Z[x]. We shall say that f'is special, and in this paper we determine
all special trinomials. A Bremner [1] did this for E =1, stating that his methods
can probably be used also for E=—1. We have used a different method,
however, and thus obtain a (largely) independent verification of his results. He
relies (mostly) on a p-adic method of Skolem, whereas we (mostly) make use of
the properties of the zeros of f.

We refer to [1] for further background.

2. The theorem, and some particular cases of it.

The special trinomials can be normalized in a certain sense. For if g divides f
then —g(—x) divides (—1)"f(—x), cx3g(1/x) divides Ex"f(1/x) and —cx3g(
—1/x) divides (—x)"Ef(—1/x). Consider the following list of special
trinomials, chosen xo that n=>2m and 4>0:

fi = x*+2x+1, fr = xX*+x+1, fi = x"+2x*—1,
=x"+2x3+1, fi = x3+3x3 -1, fy = x'24+1040x* -1,

f4 5 6

fo=xB343x4 =1, fy = xM*+4x3-1, fy = x3¥+67x11+1,

Jro,j = x®+4(* —jx* -1, j=—1,4£2,43,....

Of these, only f is not given in [1].
We can now state our

THEOREM. Every special trinomial is, or becomes after normalization, one of the
trinomials f,,. . ., fo, fio, )

It will be convenient to treat the cases with n<6 or |4| <2 separately. One
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finds easily that f,, f,= (x>~ x>+1)(x*+x+1) and the f,, , with factors
x*+2jx?+2j2x +1, are (up to normalization) all the special trinomials with
n<6. Note that, by normalization, we can always assume n > 2m and we assume
that, and also n>6, from now on. (The other normalizing assumption 4> 0,
which we could make only because it so happens that no special trinomial has
n and m even, A<0 and E=1 will never be used, however.)

If |4] =1 we rely on Ljunggren’s result (Theorem 3 in [3]) which implies that
ffactorizes into x>+ A™E"x?+1 and an irreducible polynomial, with d = (m, n).
The first factor divides x®*—1, but no root of unity has degree 3, so g must
equal the other factor, and hence 3=n—2d, so that d=1 or 3. But d+1, as
n>6, and hence n=9, m=3, which violates Ljunggren’s further condition,
n+m=0 (mod 3d), for factorization.

If |4|=2, we use Schinzel’s result [4]. His Theorem 3 (corrected in [5])
describes explicitly those irreducible factors of a trinomial x" + Ax™ + E which
have no roots of unity as zeros. They are polynomials in x*, of degrees 3k or 4k,
and we obtain the normalized special trinomials

fi=xX"42x2 -1 = (B=x2+1)(xP+x-1)(x+1),
fo=x"+2x3+1 = (C—x2+1)(x* +x3+x2+1).

In what follows we add |A|>2 to our assumptions.

3. Location of the zeros of g.

We prove that g has one zero inside the unit circle and hence two outside (as
lc|=1 and f has no zero on the circle when |A| > 2). To see this let first g(w)=0,
with |w|<1. Then

W™+ A7E] = w4 £ w4t < 147!
so that |w[™<2|4|~! and hence
W™ < [AI7 w417 < 1417 40473
If [w|>1 instead, we get
W™ < W™ = |[A+Ew™™ < |4|+1.
This shows that if g has two zeros inside the unit circle, then (with B=|A))
L =" £ (B"'+4B73?*(B+1) = (1+4B %*(B"'+B7?).

But this is absurd, as (1+4B~2)*<169/81 and B~!+B~2<4/9 for B>3.
With g having one zero, denote it by ¢, inside the unit circle, there are either
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two more real zeros, u and v, or a conjugate pair z, Z, outside it. We shall now
exclude the first possibility.

Firstly u and v must be of opposite signs. For if, say, 1 <u<uv, then the
equation u"" ™+ Eu~™=¢"""+ Ev™™ (= — A) is inconsistent with the fact that

dldx(x"""+Ex™™) > (n—-m)—m =2 0, for x>1.

Now let u>1 and v< —1. Then |u" ™ —v""™|=|v"™—u"" <2. This implies
that n—m is even, that |u—|v||<2(n—m)~'<1 and that |u®—|v|’|<3-2-(n
—m)~! <2. Note also that the equation u" ™+ Eu "= "=+ E(=1)"v| ™™,
which holds as n—m is even, gives u=|v| for m even, and E(u—|v])<0 for m
odd. ‘

Consider now —a=t+u+v. We find, as O0<|t| <1, that u+v+0. Thus m
(and hence n, too,) is odd, and the inequality E(u — |v]) <0 holds. Furthermore
E=c, which is a consequence of the fact that f/g has only complex zeros, so
that E/c=f(0)/g(0)>0. Namely, if the polynomial f/g has a real zero, it has at
least two (distinct or coincident), since its degree is even. Now (g, f/g)=1, as g
is irreducible and can not divide f”, which has at most two real zeros +0. Thus
two real zeros for f/g would mean at least five real zeros (out of which at most
two are coincident) for f, and hence the impossible number of four distinct real
zeros for f.

We consider —a again. As ¢c=E it can now be written as

u+v—E/uv = E(E(u—[v])+u"'|p|"Y),
which shows that |a|<1,as — 1 <E(u—|v|)<0, and 0<u~!|v| ' <1. Thus a=0
and so

—(+u*+0% = b(t+u+v)+3E = 3E,

which is inconsistent with | +u® + 03| =3+ (® — vP) <1 + 2.
It has thus been shown that the zeros of g are t,z and Z, where —1<t<1,
and |z|=R>1.

4. The case n+3m.

The distinction indicated by this heading seems unmotivated right now, but
its importance will soon become clear.

The equation z""™+ A= —Ez™™ shows that |R""™—|A||<R™™, and we
also have

el 14l < e,

as A+Et™™=—t""" Thus |[R"™™—|t|"™|<R™™+|t|""™, which, as [t{|=R"2,
gives ’
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(*) |Rn—3m__1| é R—3m+R—2n X

For the discussion of (*), it is useful to observe that m>2. For g and f/g have
both at least one zero inside the unit circle, while f has m zeros inside it (as |A4|
>2). Now for m=2, n>7, the LHS of (*) is at least R—1, while for m=3 it is
only at least 1 —R™*. Using this (remember n>2m) one finds that (*) implies
R<1.272. Put 1.272=R,,

The magnitude of a is at most 2R, + R, 2 <3, and hence |a| 2. The integer
a—bc, which equals t !'—t+(z"!—2)+(z"!—z) has magnitude at most
R3—R;*+2(Ry— Ry 1) <1972, as, generally, |w™!—w|=|lw|—|w|"!|. Thus
lac—b|=la—bc|=0 or 1. Furthermore, as g has no real zero outside
(=1,1), we have g(1)=1 and g(—1)< —1, so that —b<a+c=<b. Replacing g
by —g(—x) we can require a=0, too, and then we are left with the
following candidates for g:

X4x+c, XBHx P+ (c+Dx+ce, x34+2x2+3x+1, x3+3x2+4x+1.
When —1<x<0, we have
P+3x2+4x+1 < P+2x243x+1 < x3+x2+2x+1,

and the latter polynomial takes a negative value for x= — Ry 2. Thus any of
these three candidates for g would have 0>t> — Ry ?, that is R>R,, and is
hence excluded.

For x®>+x—1 we have R>1.21, as 1.217541.2172>1. Then (*) can hold
only for m=2, n=7, and for m=3, n=9+1. As t’ has a unique expression as
an integral combination of 1, ¢, %, the only possibility for f'is, in the first case,
fs. Expressing t® and t'° in terms of 1, %, and ¢* we find also

fo = x343x3—1 = (C+x-DE*—x>+x7+x+1).

The candidate x>+ x+ 1 has been covered, too. *

The final candidate for g is x>+ x?>—1 with R>1.15. Now (*) shows that m
<6 and that m=2 = n<8, m=3 = ngll, m=4 = n<13, and m=5=n
<16. Expressing t" in the basis 1, t, t2(¢%,¢*) for n < 8(11,13), and in the basis 1,
t2, t3 for n< 16 we rediscover f,, f; and f, and also get the new specimens f, and

fs

5. The case n=3m.

Let d be a divisor in m. Then f,,,=x>"+ Ax™?+E will also have an
irreducible cubsic factor. For f;,(t%)=0, while the polynomial (x —t%)(x —z%)(x
— 2% is in Z[x] and is clearly irreducible, as |t| <1 <|z|. This means that we can
in the first instance concentrate on finding those f’s for which m is a prime. We
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already know the case m=2 and we shall see further below that the only other
case is m=11. Then

f=fo=xP+6Tx"+1, g=x +x+1.

This shows that the only possible values for m are powers of 2, or 11, as m=22,
say, would require + A to be 67 and to have the form 4(j* —j). We start with the
powers of 2.

If fis x'? + Ax* + E, then f, = x° + Ax? + E must be one of the f,, ;, that is A
=4(j*—j). Furthermore (x —t?)(x —z%)(x —2?), dividing f,, must be x>—2jx?
+2j2x—1. Then

(=) =z (x2—7%) = —g(x)g(—x) = x®—2jx*+2/2x*—1,

which requires 2b—a®= —2j, b —2ac =2/ that is b=a®+ (a*/2 — 2ac)*.

The expression for b shows that a is even, a =2k, and that 2k* — kc must be a.
square. Now (k,2k*—c)=1,and so k= +r2, 2k’ —c= +s2, withr,s € Z*. Thus
2r8=s%+1 or 2r®=s—1.

The equation 2r® =5+ 1 has the solution r=s=1in Z*. This gives a= +2,
b=6,c=+1,j=—4,and a= +2, b=2, c=+1, j=0. But f,, , is not special.
We get

Jo = fri0,-a(x?) = (x> +2x2 +6x+ 1)(x> —2x* + 6x — 1)(x® —8x2 +32x + 1) .

There are no further solutions, as the Diophantine equation 2r3 =s?+1 has
no solution with r#1. For this equation gives s+i= (1 +i)s,, s—i=(1=i)5,,
where the Gaussian integer s, is relatively prime to its conjugate s; (note that
(s+i,s—1i) divides 1+i). Thus s, = (p+ig)?, and so

Im(s+i) = 1 = (p—q)(p*+4pg+4?),

which implies p=1, ¢g=0, s=1 or p=0, g=—1, s=—1.

The equation 2r® =s* — 1 has the solution r=0, s=1in Z*. This gives a non-
special f. Euler [2] proved around 1782 (but for a false lemma) that 1+42r3 is
not the square of a rational, when r is a non-zero rational. As is well known,
and easy to see by arithmetic in Z[((—3)* + 1)/2] his lemma becomes correct,
and useful in the context, if the assumption (x,y)=1=x+y (mod 2) is added to
it. This finishes the case m=4.

Finally m cannot be 8 (or a higher power of 2). For if m=8 we find, as above,
that (x*+ax?+bx+c)(x®—ax?+bx —c) must equal x®—2x*+6x2—1. This
implies the impossibility 2b—a?= —2, b>—2ac=6.

Now let m be an odd prime p. The polynomial g, = (x — tP)(x — z?) (x — z) has
integral coefficients, and zeros in common with f; ,=x*+ Ax+E, which is
irreducible. Thus f;,,=g, and, in particular, t”+2?+2?=0. This equation
shows that z+Z= —a—t is a unit, and so is —a—z and —a—2z. Thus
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(—a—t)(—a—z2)(—a-2) = (—a®)+a(—a’+b(—a)+c = —ab+c = 1.

Replacing g by —g(— x) we may assume that c=1. Then ab=0 or ab=2. The
latter case is excluded, as t +z+Z=t"+ z” + z? (mod p) implies —a=0 (mod p).
Hence ab=0.

If b=0, g(1)=a+2. But then a> —2, as otherwise g would have a zero in
[1,00), and similarly g(—1)=a<0. Thus a= —1, which contradicts a=0
(mod p). Hence b#0 and a=0. ]

Now g=x>+bx+1. Put sp=t*+z*+7* k=0,1,..., and note that s,=3,
5, =0, s;= —2b, s3=—3, 5,=2b% and ss=>5b, while s,=0. This shows that
p>5, and then E=1, as s;,=s; (mod p) implies —3E= -3 (mod p).

We first eliminate the case |b|> 1. Inspired by Bremner (p. 146 of [ 1]), we put
— 3= (1+bt) etc.. Then

—S$3, = Sot+ (ﬁ)bs,-+ ... +bPs,

or, equivalently,

Pp-1)2 = 2(2)b3+5<§)b3+(2)b3s6+...+(i>b"“3sk+... .

This equation shows that (b,p)=1 and that b divides (p—1)/2. Let q be a
prime dividing b and let Q be the power of g dividing (p—1)/2. Then gQ clearly
divides 2(8)b?, and 5(2)b>. If gQ does not divide (§)b*~>s,, for some k= 6, then
q*~3 must divide k(k—1), as

P\ _ p—2
<k> = p(p—l)(k_2>/k(k—1)-

But then 2% 73 < ¢*~3 <k, contradicting k 2 6. Thus gQ divides only the RHS of
our equation.

We are left with g=x3+x+1 (as x> —x +1 has a zero in (— 0o, —1)). Then,
as observed by Bremner, g divides x*¢ —47(77x?+ 13x —27)— 1. This means
that, with

p = 46k+r, 0 < r < 46,
we have

k
0=s,= (14470772 +13t =27t +... = 5.+ Y 47"(’:)Ai
Coi=1

where the A, are rational integers. Thus s, =0 (mod 47), which (one calculates)
happens only for r=11, with s,, =0. This gives the special trinomial f;.
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To see that 546,41, %0 for k>0, observe that A, =77s,+ 135, —27s,= — 73,
and that (§)=(}Z{)k/i for i> 1. This shows that 47 divides 47/(%)4, to a higher
power than it does 47kA,, as 47~ ! does not divide i for i> 1.

It remains to prove that m cannot be 121 (or a higher power of 11). Assume f
to be, say, x3¢3+67x!2! + 1. Then

g = (x—t"M(x—z")(x—2'")
is a cubic factor in x*?+67x'! + 1, and hence equals x*+ x+ 1. But g divides
go(x') = x¥+x!+1,

which is, however, not a special trinomial.

REMARK. The result of this section, in the case of odd m, can also be
expressed as follows: The Fermat equation X™+ Y™+ Z™=0 has a solution
(x,y,2), with x, y, and z conjugate cubic units, only in the case m=11. This
closeness to the Fermat problem also shows up in the fact that the Fermat
quotient (3'®—1)/112 is integral, which can be shown to be related to the
solvability just mentioned. These quotients are important in the Fermat
problem. Also if we modify our problem, asking for three linear factors x —a,
x—b, and x—c, where abc+0, and not requiring |E| to be 1, we get the
Fermat problem in the case n=23m, with m odd.
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