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THE MINIMAL RANGE OF ADDITIVE h-BASES

TORLEIV KLOVE

1. Introduction.

For any two sets A and B of non-negative integers, the sum A + B is defined
by

A+B = {a+b| ae A and be B} .
Further, for h21, hA=A+A+ ...+ A (h times), that is
hA = {aV+a@+ ... +a® | a“ e A for i=1,2,...,h} .
For integers n, and n,,
[ny,n,] = {m| m integer and n, <m<n,} .

All sets considered in this paper will be assumed to contain 0 and 1. We say
that A is an h-base for n if [0,n] = hA. The largest n such that A is an h-base
for n is called the h-range of A and is denoted by n(h,A). Let
A={ay,a,,a,. . .,a,) where ay=0, a; =1<a,<...<a If n(h, A)<a, then a,
does not play any part in representing m € [0,n(h, A)] as m=3"_, a;, and so
n(h,{ag, ay,. . .,ax_})=n(h, A). In this paper our object of study is the h-range.
Therefore, it is a natural restriction to consider only bases A4 such that n(h, 4)
>max A. Such bases are called h-admissible. We denote by « (h, k) the set of h-
admissible bases which contain the integer 0 and k positive integers. Let

n(h,k) = max{n(h,4)| Ae o (hk)},
v(h,k) = min{n(h,A) | A e o (hk}.

The first of these, n(h, k), has been studied extensively, see e.g. [1], [4], [6], [8]
and references given in those papers. In particular n(h,2) and n(h, 3) are known
for all h. The minimum, v(h,k), has been studied only recently. In an
unpublished note [5], Selmer describes some computations by Mossige.
Mossige computed v(h, k) for h=2,k<10; h=3,k<18,h<10, k € [4,8]; h <8,
k € [9,13]; h<6, k € [14,15]. He also computed all bases A in o/ (h, k) with
n(h, A)=v(h, k). The computations by Mossige were prompted by a conjecture
by Redseth (unpublished) that v(h, k)= hk for all h and k. The conjecture has
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been referred to by Selmer [5] and [7] as the minimum-conjecture. The
computations by Mossige showed that v(h, k)=hk for the range of values he
computed. A simple argument proves that v(2, k)= 2k for all k. The proof was
given in [2] and referred to in [5]. It may easily be generalized to prove that
v(h,k)22k+ (h—2) for all h22 and all k, a proof is given below in section 2.
Redne [3] has proved that v(h, k) = hk for k<7 and all h. Despite this mounting
evidence for the truth of the minimum-conjecture, Redseth himself has
expressed doubt about its general validity. A main result in this paper is that
for each h>2 and each £>0 there exists a base A in .« (h, k), for some k, such
that n(h, A) < (2 + ¢)k. In particular, this proves that the minimum-conjecture is
far from true in general. In section 3 we study a class of bases with small range
and in section 4 we show that this class contains bases with the property n(h, A)
<(2+¢)k.

The computations by Mossige showed that the number of bases in .o/ (2,k)
with range v(2, k) is increasing rapidly with k for k < 10. In section 5 we give a
characterization of the bases in (2, k) with range v(2, k). Further we give some
results on the number of such bases. A preliminary version of the results on 2-
bases appeared in the unpublished notes [2].

2. General bounds on v(h, k).

In this section we give upper and lower bounds on v(h, k) valid for all h=>2
and all k.

THEOREM 1. For all h22 and all k=1, 2k+ (h—2)<v(h, k)< hk.

Proor. The upper bound is well known and there are a number of bases that
prove it, see [3] or [5]. The simplest is 4 =[0, k] which belongs to & (h, k) for
all h and has h-range n(h, A)=hk.

Next, let A={a,=0, a,=1,a,,...,a,} be any base in o/ (h, k) and let a=aq,
=max A. By definition of &/ (h, k), [0,a] =hA. Suppose a=2k. Then n(h, A)=a
+(h—1)22k+h—1 since a+l=a+I1-14+(h—1-1)-0 € h4 for 1igh-1.-

Next, suppose a <2k. Let m> a be an integer such that m ¢ 24. Consider the
set of pairs P={(j;m—}) | 0=j=<m}. Each pair contains at most one element
from A since m=j+ (m—j) and m ¢ 24. On the other hand, each element
a; € A appears in exactly two pairs in P, namely (a;,m—a;) and (m—a, a).
Hence

- m+1 = #P 2 284 = 2(k+1)

and so m=2k+ 1. Hence [a+ 1,2k]c2A. In particular, 2k € 24, and so 2k +1
=2k+1-1+(h—2-1)-0 € hA for 1SI<h—2. This proves the lower bound.
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COROLLARY 2. For k=1, v(2,k)=2k.

3. A class of bases with small range.

For a base 4 and integers h and K consider the following condition which
may or may not be true,
*) Vde[0,K+1)(de (h—1)A < K+1—d ¢ 4).

Our reason for considering (*) is that all known h-bases A of minimal range
satisfy (*) with K =n(h, A). Moreover, for h=2, this characterizes the bases
with minimal range; we prove this in section 5. On the other hand, for h=3
there exist bases A which satisfy (*) with K=n(h, A) but which do not have
minimal range. We shall use the following notations.

NortaTions. (i) For B a base such that B<[0,%] and n(h, B) 2 x, let
B, = {x—d| de[0,x] and d ¢ (h—1)B} .
B,=BU{x+1+p| BeB,}.

(il) A base B is called restricted for h if n(h, B)=h-max B; the set of such
bases is denoted by %,

(iti) For B € #,, let ng=n(h,B), Ng=n(h,B)+1.

(iv) Let

R, = {Be R, l B,,B satisfies (*) with K=2np} .
(v) For B,C € &,, let
BoC = {cNg+b| ceC and be B} .

Remarks. (i) The sets B, and B, depend on B and x. In this section we write
just B and B when x=np.

(i) For a discussion of restricted bases, see [8].
LEMMaA 3. If B, satisfies (*) with K =2x, then n(h, B,)=2x.

ProoF. First we note that if m € [0, %], then m<n(h, B) and so m € hB<hB,,
Next we show by induction on m that x+m € hﬁ,, for 0Sm< x. For m=0 this
was shown above. :

Let O0<m<x Then 0<2m—1Zx+m—1<x+m. By the induction
hypothesis, 2m—1=a+b where ac B, and be (h—1)B,. If x+m—ae (h
—1)B,, then x+m=a+ (x+m—a) € hB, and the induction step is complete.
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On the other hand, if x+m—a¢ (h—1)B,, then by (), 2%x+1—(x+m
—a) € B,. But

241-(x+m—a) = x+m—(2m—1—-aq)
= x+m—>b.

Hence x+m=(x+m—b)+b € hB, which completes the induction step.
The induction proves that [0,2x] = hB,. Finally, by (*),if b € B, then 2x+1
—b ¢ (h—1)B,. Hence 2x+1 ¢ hB, and so n(h, B,)=2x.

COROLLARY 4. If B € A, then n(h, B)=2n(h, B).
Next we give a couple of properties of restricted bases.

LeMMA S. Let B € R,. Then
(i) $B=$#B+4#B,
(i) [0, (max B)—1]<B.

Proor. (i) follows directly from the definition of B. (i) Let b=max B. Clearly
(h—1)B<[0, (h—1)b]. Hence if d e [0,b— 1], then hb—d ¢ (h—1)B and so
deB.

LEMMA 6. Let B,C € #,. Then

(i) BoC € &,
(i) #(BoC)=4B-4C,
(iii) n(h, BoC)+1=(n(h, B)+1)(n(h,C)+1).
PRrOOF. In this and later proofs in this section we use the notations
B = {by=0,b,,...,b,}, b,=maxB,
C = {c=0,cy...,¢}, c¢=maxC,

D = BoC.

Note that max D=c,Np+b,=hcb, +c,+b,. Further
hD = {yNp+x | y € hC and x € hB)
= {yNp+x| ye[0,hc] and x e [0,hb,]}
= [0,hc)Ng+hb,] = [0,h-max D] .
Hence D € #, and 4
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ND = hC,NB+hbk+1 = NB'NC N
which proves (i) and (iii). Finally, (ii) follows directly from the definition of
BoC.

We now study #, in some detail. First we give two alternative
characterizations which are easier to apply than the definition itself. Next we
give some subclasses of ®,. Finally we show that &, is closed under o.

LEMMA 7. The following three conditions are equivalent for B € R,

(i) Be R,
(i) (Vx e[0,ng])(x e B+(h—2)B <> ng—x ¢ B)

(i) (Vxe[(h—1)b,hb])(x e {feB| p=b}+(h—2)B < nz—x ¢ B),
where b=max B.

ProoF. First we show that (i) implies (ii). Let B € &, and let x € [0, ngl.
Then

xe B+ (h—-2)B
< ng+l+xe{ng+1+p| peB}+(h—2)B
< ng+1+xe (h—1)B
< ng—x = 2ng+1)—(ng+1+x) ¢ B
< ng—x¢B.

Next we show that (ii) implies (i). Let B € &, satisfy (ii). If d € [0, ng], then

de (h—1)B
< de (h-1)B
<> nB—d¢ B

< 2ng+1—d = (ng+1)+(ng—d) ¢ B.
If d e [ng+1, 2ng+1], then
de (h—1)B
< de{ng+1+p| pe B+ (h—2)B
< d—nz—1e€B+(h-2)B
< 2ng+1—d = ng—(d—ng—1)¢ B
< 2ng+1-d¢ B

Math. Scand. 53 — 11
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since 2ng+1—d <np+ 1. Hence B satisfies (*) and so B € ®,. Further we show
that (ii) and (iii) are equivalent. Let B € #,. By Lemma 5 (ii), B=[0,b— 1JUE,
where E={f ¢ B ‘ B=b}. Consider x € [0, (h—1)b—1]. On the one hand, hb
—x>b and so hb—x ¢ B. On the other hand, x=gb+r where g € [0,h—2],
r € [0,b—1]. Hence x € gB+ B< B+ (h—2)B. Therefore

(Vx € [0,hb])(x € B+ (h—2)B <> ny—x ¢ B)
< (Vx & [(h—1b,hb])(x € B+ (h—2)B <> ny—x ¢ B)
< (Vx e [(h—1)b,hb])(x € E+ (1—2)B <> ny—x ¢ B)
since [0,b— 1]+ (h—2)B<[0, (h—1)b—1].

PROPOSITION 8. The following classes of bases belong to R,

(i) B=[0,d], d>0; $B=d.
(i) B={0,dh+2} U {jh+1| je [0,d]}, d=0; $B=2dh—d +2.
(i) B={jI' +id| je[0,s] and i € [0,r]} :

U {jr+id+1| je[0,s] and i€ [0,r]}

U{ir+id+1| je[0,s—1] and i€ [r+1,rh—1]}

where r=1, s21, A=h+1, F=rh(h+1)+1;
#B = 2h’rs+hr(Qr+s)—rs+s+1.

Proor. (i). Since (h—1)B=[0, (h—1)d] and ng=hd we have B=[0,d—1].
Hence B+ (h—2)B=[0,(h—~1)d—1]. By Lemma 7, B e R,
(i) Let A=hd+1. For l e [1,h], i € [0,1], j € [0,d—1], let

S, = [id,ia+1],
T(,i,j) = [id+jh+1, id+jh+1] .

First we prove by induction that, for | € [1,h],

I-1d-1

IB = L‘JS(l,i)U U U TWij.
i=0 i=0 j=1
It is true for [=1. Letl € [1,h—1]. Then for i € [0,1], i € [0,1],],j € [1,d—1]
SELY+S, 1) = S(+1,i+1),
Tl )+S(,17)y = SELY+T,i,j) = T(I+1,i+i.j),
T(+1,i+7,j+)) for 2<j+jsd-1,

TLi)+T1,i,j) ey SI+1,i+i+1) for j+j=d
TU+1,i+i+1,j+j—d) for d<j+j<2d-2.
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This proves the induction step.
In particular hB=[0, h(dh+2)] and so B € #,. Further,

h-2 d-1

(h—1)B = U Lid, tA+h-—1]UlU U [id+jh+1,id+jh+h—1] .
Hence
[0,ng]\ (h—1)B = {id+jh| ie[0,h—2],j € [1,d]}
‘ U [(h—1)4+h, ng]
and so, since ng=h(4+1)=(h—1)4+(d+1)h+1,
B =1[0,4]1U{(h—1—i)d+d+1—jh+1| ie[0,h—2], je[1,d]}
= [0,4]1U {yd+xh+1| ye[1,h—1], x € [1,d]} .

In particular #B=4+1+ (h—1)d=2hd—d+2. Next we will show that B
satisfy the condition of Lemma 7 (iii). Let U(y,x)=[y4d+xh+1, yA+xh+h
—1]. Then

yd+xh+1)+Sh-2,i) = Uy+i,x)

and
. Upy+i,x+)) for x+j=<d,
A+xh+1)+ T(h—2,i, .
(A +xh+1)+T( hj) < {U(y+i+1,x+j-—d) for x+j>d.
Hence
2h—-3
{BeB| pza+1}+(h-2B= | U [yd+xh+1,yA+xh+ (h—1)] .
y=1 x=1

Let z € [(h—1)(4+1),h(4+1)]. Then
ze{feB| p=z4+1}+(h—2)B
< ze[(h—1D)A+xh+1, (h—1)A+xh+h—1] for some x € [1,d]
< h(dh+2)—z¢B.

By Lemma 7, B e R,
(iii). The proof of (iii) is similar to the proof of (ii) so we only sketch the
proof. First we prove by induction on [ that for ! € [1,h] we have

Is Ir

= U [ir +id,jr +id +1]
ji=0i=

Is-1 rh-1

Uy U Ur+id+1,jr+ia+1.

Jj=0 i=lr+1
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In particular hB=[0,h(s["+r4+1)] and so B € &,.
Looking at (h—1)B we get
B = [0,sI +rA] U {(jr+id—1| je [s+1,sh], ie[1,r]}
U{jr+id| jels+1,sh], ie[1,hr]}
U{sF+id | ie[r+1,hr]}.

Finally we determine {$ € B I B=b}+ (h—2)B and use Lemma 7 to conclude
that B € &,. For this base,

#¥B = 1+sT+rd+ (sh—s)(r+hr)+ (hr—71)
= 2h*rs+hr(s+2r)—rs+s+1.

To prove that &, is closed under o we need another lemma.

LEMMA 9. Let B,C € ®,. Then
@) ﬁ={yNB+x ] y € [0,nc], x € [0,ng]), and
(v e C or x € B)},
(i) (BoC + (h—2)(BoC)) N [0, np.c]=
={yNp+x | ye[0,nc], x€[0,nz] and (y e C+(h—2)C
or x € B+ (h—2B)}
(iii) npoc+1—4BoC = (ng+1—4B)(nc+1—4#C).

Proor. (i) By Lemma 6 (iii), n,=ncNg+ ng. Further,
(h—1)D = {yNp+x | ye (h—1)C and x € (h—1)B} .
Hence
D = {(nc—y)Np+(ng—x) | y € [0,nc], x € [0,ng], and
(y & (h—1)C or x ¢ (h—1)B)}
= {yNg+x ] y€[0,nc], x € [0,ng], and (ye C or x € B)}.

(ii). Let x € [0,ng]. Then z=yNg+x € [0, ﬁD] if and only if y € [0,nc]. We
have to show that z € D+ (h—2)D if and only if y € C+ (h—2)C or x € B+ (h
—2)B. We first show the if-part. If x € B+ (h—2)B, then x =+ ¥"27 b, and so

h-2
z = (yNg+p)+ (0'N5+b,-j)€D+(h—2)D;

i=1

similarly, if y e C+ (h—2)C.
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For the only-if-part, let z € D+ (h—2)D. Then

h-2
z = (}’NB"‘ﬁ)"‘AZ (c;;Ng+b;)

ji=1
where y € C or B € B, and ¢;, € C, b;, € B. Define q and r by

h-2
ﬁ+z bl!=qNB+r’ 0§r<NB.
i=1

J

Then r=x. If g=0, then

and so y € C+ (h—2)C or x € B+ (h—2)B. Next, suppose that ¢>0. Let J be
the least integer such that ﬂ+2{=, b;,ZqNp and let

J
B =B+ b,—qNg.
j=1

By definition of J. #'=0. On the other hand, B+ 372 b <Npgandso f'<qNg
+b;,—qNp<b, Hence, by Lemma 5 (i), §' € B, and so

h—2

x=p+ Y b,eB+(h-2)B.

j=J+1

(iii) follows directly from (i) and Lemma 6 (iii).
ProposiTioN 10. If B,C € &,, then BoC € R,

ProoF. We use Lemma 7 to prove the proposition
Let z € [(h—1)d, hd]. Then z=yNg+x where x € [0,ng]. Then, by Lemma 9,
ze{deD| 62d}+(h-2)D
< zeD+(h-2)D
< yeC+(h-2)C or xe B+(h—2)B
< nc—yé¢Corng—x¢B
< np—z = (nc—y)Np+(np—x) ¢ D .
Hence, by Lemma 7, D € &,

Using Propositions 8 and 10 we can genefate a very large class of bases that
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belong to #,. In this paper we will not use the full strength of this class. In fact
we use only bases generated from Propositions 8 (i) and 10. .

Finally, in this section we give a lemma which shows that besides B there are
other bases of small range that may be constructed from B in Q,,.

LeMMA 11. Let C € &, and let D=[0,d]oC. Further let

D* = DU {np+1} U {np+(h—1)d+2+6| 6 € D}.
Then
$D* = #D+1,
n(h,D*) = n(h,D)+ (h—1)d+1 .

Proor. First we show that [0,2np+ (h—1)d+1]<hD*. .‘We have [0, nD]

=hDchD*,
[nD+1,nD+1+(h——1)d] < {np+1} U (h—1)[0,d] = hD*,
and
[np+ (h—1d+2,2np+ (h—1)d+1] <
c {np+(h—1)d+2+6| 6 e D}+(h—1)D = hD*,
since
[np+1,2np] = {np+1+5| &€ D}
by Corollary 4. Next, suppose 2np+ (h—1)d+2 € hD*. Since
(np+(h—1)d+2+38)+ (np+1) > 2np+ (h-— 1)d+2

for 620, the possible representations are '

() 2np+(h—1d+2 = (np+(h—1)d+2+8)+n’

where 6 € D and n’ € (h—1)D, or
(i) 2np+(h—1)d+2 = lnp+1)+n"

where | € [0,h] and n” € (h—])D.

However, (i) implies that 2np+1=(np+1+6)+n’ € hD which contradicts
n(h, D)=2np. Next, consider (ii). We get [(np+1)<2np+hd—d+2<3(np+1).
Hence /2.

On the other hand, n”" <nj and so

2np+ 1)+ h—1d+1 £ (+1)(np+1).
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Hence [+1>2, and so l;Z,lthat is 1=2. However, this implies that (h— 1)d
=n" € (h—2)D. Since D=[0,d]oC, [0,hd]ND=[0,d]. Hence n" < (h—2)d
which contradicts n” = (h—1)d.

4. Bases with range close to 2k.
In this section we show that %, contains bases with range close to 2k.

Nortartion. For B € &,, let B,,=BoBo...oB (m factors).

PROPOSITION 12. Let B € ®,. Then
n(h,B,) = 2(n(h, B)+1)" -2,
$B, = (#B)"+ (n(h, B)+1)"—(n(h,B)+1—#B)",
and

n(h, B,)
o
B —1

2 when m— .

Proor. By Corollary 4 and Lemma 6 (iii),
n(h,B,) = 2n(h,B,) = 2(n(h,B)+1)"—2.
By Lemma 6 (ii), #B,,= (#B)", and by Lemma 9 (iii)
#B,, = n(h,B,)+1—(n(h,B)+1— $B)" .
Hence, by Lemma 5 (i),
#B, = (#B)"+ (n(h,B)+1)"— (n(h,B)+1—%B)".
Since #B<n(h, B)+1 and n(h,B)+1—#%B<n(h, B)+1 we get

n(h, Bm) N

%5 —1 2 whenmaoo.

m

As a corollary of Proposition 12 we get the next theorem.

THEOREM 13. For each h=2 and each £>0, there exists a k such that
v(h,k) < 2+e)k .
ExampLE. If we choose B={0,1], then n(h, B)+I=h‘+l and #B=1. Hence
n(h,B,) = 2(h+1)"-2 and #B, = 2"+ (h+1)"—h".
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In fact

B, = {mf gh+1) | ¢ e {0,1}}

i=

m-—1
U {(h+1)’"+ Y di(h+1) | d; € [0,h] and (Bj)(dj=0)}.
i=0

Let
. n(h, B,,)
o = 3B,-1
Then ¢, =h, and g,=h. On the other hand
_ 2h’+6h*+6h

- Ao+ 6k 2.
® = Sty <N for k>

E.g. for h=3, B, is a base with 44 positive elements and range 126. Also, the
construction of Lemma 11 gives B¥ with 45 positive elements and range 129.

Given Theorem 13 it is natural to ask how frequent are the ks such that
v(h, k)< (2 + k.

NortaTiON. For h22 and y>2, let

1
L(h,y) = liminf;#{kgx[ v(h k)<yk} .

X =00

We are going to show that L(h,y)>0 for all h and y>2. First we prove
another lemma.
LEMMA 14. Let d,,d,,. . .,d, be positive integers, and let
D(d,,d,,. . .,d,) = [0,d,]°[0,d,]o. . .0[0,d,]
and

_ n(h,ﬁ(d1,d2,~ . wdr))
- #D(diadz" . "dr)—l '

old,,d,,....d,)
Then ¢(d,,d,,...,d) is a non-increasing function in d; for each i € [1,r].

Proor. By Prop. 8, Lemma 6, and Lemma 9 we get, by induction, that

n(h,D) = 2{f] (hd,.+1)—1},

i=1
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= ﬁ (hd,-+1)—[r] (hd,.+1—d,-)+]:[ d;+1).
i=1 i=1 i=1

Both are symmetric functions in d,,d,,. . .,d,. Therefore, it is enough to prove
that o(d,,d,,. ..,d,_,,d) is non-increasing in d. By definition,

sd+t

= ,dy. . .nd,_,d) = s
o(d) e(dy,d, 1,d) wd + o

where s=2h[]:2) (hd;+ 1), t=2TTiZ] (hd;+1) =2,

- r—1 r—1
[] (hd;+1)— (h—=1) T] (hd;+1—d)+ ] di+1),
i= i=1 i=1

r—1 r—1 r-1
v=]] (hd;+ -] (hdi+1—d,-)+n d;+1)—-1.
i=1 i=1 i=1

Hence, g(d)=o(d+1) if and only if tu=sv. Let

r—1 r—1

r—1
a =[] (hdi+1), B= IT (hd;+1-d), and =y = I=_11 (d; +1)

i=1 i=1

Then s=ha, t=20—2, u=ha—(h—-1)p+y, v=a—f+y—1. Hence tu—sv
=2a(B+y—hy)+2hB—2B—2y. If r=1, r=2, or h=2, then tu—sv=0. Next
consider h=3 and r=3. Then

(hd; +1—d))(hd; +1—=d;) = (d,+1)(d,+1)(h-1).
Hence

r—1

B = (hdy+1—d\)(hd,+1—d;) [] (di+1) 2 (h—1)
i=3

and so tu—sv=2a((h— 1)y —y—hy)+2(h—1)*y —2y=2h(h—2)y>0. This pro-
ves that g(d +1) = e(d).

THEOREM 15. For all h22 and all y>2, L(h,y)>0.

PRrOOF. Let d;=1 for all i= 1. By Proposition 12, ¢(dy,dy,. . .,d,) = 2 when
r— 0co. Choose r such that o(d;,dy,...,d)<y. By Lemma 14,
0(dy,d,,...,d._,,d)<y for all d21. In the proof of Lemma 14 we showed that
#D(d,,d,,...,d,_,,d)— 1 =ud+v where
u=hh+1y " '—h-=D 1'+27"* and v=(h+1)y 1 =h"1420"11,

Hence L(h,y)=1/u>0.
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THEOREM 16. For all hz 3, L(h,h)=1.

ProoF. We consider bases of the form D and D* where D=D(a, b, c). First
we note that

#D(a,b,c)—1 = (ha+1)(hb+1)(hc+1)— (ha+1—a)(hb+1—Db)(hc+1—c)

+@+)b+c+1)-1
= 2{{(3(h*=h)/2+1)a+h}b+ (ha+1}c+2{(ha+1)b+a} .
Hence #D(a, b,c)— 1 is always even. Choose a such that ha+ 1 is a prime. Then
2a{(3(h*—h)/2+ 1)a+h} = 3h%*a®>—3ha®+2a*+2ha

3+3a+42a%-2 = (a+1)Q2a+1)
£ Omod (ha+1).

]

]

Hence ged((3(h*—h)/2+1)a+h,ha+1)=1 and so there exist infinitely many
b’s such that p,={(3(h*—h)/2+1)a+h}b+ (ha+ 1) is a prime. Let B denote the
set of such b’s.

Since g(1,1,1)<h, g(a,b,c)<h for all a,b,c= 1. Further, since

#D(a,b,c)—1 = 2p,c+2{(ha+1)b+a},

if k=2p,c+2{(ha+1)b+a} for some b € B and some c21, then v(h,k)<hk.
Hence

1> lim inf%-#{kgx | k even and v(h, k) <hk}
2 1= a-ve} = 4.
. beB

Therefore, ;lc-ﬂ{k <x | k even and v(h,k)<hk} — 4 when x — oo.

Next we consider k odd. We have #D*=#D+1, and so #D*—1 is always
odd. Moreover, g(a,b,c)<e(1,1,1)<h and so

n(h,D*) = n(h,D)+ (h—1)a+1
g oL, L,HED 1)+ (h—1a+1
< h(#D*-1)

for b fixed and c sufficiently large. Hence

%'#{k§x| k odd and v(h,k)<hk} — 4 = when x — oo
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also. Therefore L(h,h)=%+3i=1.

Theorem 16 says that for fixed h, the minimum conjecture fails for almost all
k. A number of questions are left open:

Is v(h,k)<hk for all large k?
Is L(h,y)=1 for all y>2?
Is it perhaps even true that for all y>2, v(h,k)<yk for all large k?

We note that #D(1,1,1)—1=(h+1)>—h*>+23—1=3h?+3h+8 and this is our
smallest counter example to the minimum conjecture.

Is there a k <3h®+3h+8 such that v(h,k)<hk?

5. 2-bases with minimal range.
In this section we characterize the 2-bases with minimal range and we give

estimates for the number of such bases.
NortaTions. For k=1 and u € [0,k], let
MK) = {Ae A 2,k)| n2 A)=2k},
F(k,u) = {Be L(2,u)| B<[0,k], n(2,B)2k},
T (k,u) = {Be ¥ (ku)| n2,B)=k},
m(k) = #.4(k),
s(k,u) = $&L(k,u), s(=1,-1) =1,
tk,u) = #7 (k,u) .
For B € & (k,u),
B=B,={k—d| de[0,k] and d ¢ B},
BU{k+1+B| BeBy}.

I

(>3

= B,
We note that s(k,0)=0.

THEOREM 17. For all k21,

M (k) = C)l (B| Be &(ku)}.

ProOF. Let A € # (k). Let B=AN[0,k]. Then n(2, B)=k and so B € £ (k,u)
for some u € [1,k]. We show that A=B. Let d € [0,2k+1]. If d & [0,k], then
de Aif and only if d € B. If d € [k+1,2k+1], the 2k+1—d € [0,k] and so
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de A < 2k+1-d¢ A < 2k+1-dé¢ B < k—(2k+1-d)e B
< d=k+1+k—(2k+1-d)eB.

Hence A=Be Ut_o{B| Be &k u).
To show the converse, let B € & (k,u) for some u € [0, k]. First we show that
B satisfies condition (*). If d € [0, k], then

deB < deB < k—-dé¢B < 2k+1-dé¢B.

If d e [k+1,2k+1], then

deB <« de{k+1+B| peB} & d—(k+1)eB < 2k+1-d¢B

< 2k+1-d¢B.

Hence B satisfies (*) with % =k and, by Lemma 3, n(2, B)=2k. Since B satisfies
(*), $B—1=k and so B e .4 (k).

LEmMa 18.

() m(k) =34, s(k,u),

(ii) s(k+1,u)=s(k,u)y+s(k,u—1)—t(k,u) for u=1.

Proor. (i) follows directly from Theorem 17. To prove (ii) we prove that

Lk+1Lu) = (Lk,uy\T (k,u) U {BU {k+1} ] B e Z(k,u)} .

Let Ce $(k+1,u). If k+1 ¢ C, then C € L (k,u)\ J (k,u). If k+1 € C, then
C=BU{k+1} where B € &(k,u). This shows that & (k+ 1,u) is included in
the right set. The inclusion of the right set in & (k+ 1,u) is similar. Therefore
s(tk+1,u)=s(k,u)—t(k,u)+s(k,u—1).

LeMMA 19. Let k=1 and sk<u<k. Then
(ke 2p k—2r
k,u) = - —1,r=1).
s(k,u) 'Zjo{(u_r) (u—r+1)}s(2' Lr—1)

ProoF. We prove this by induction on k. First we note that by Corollary 2,
t(k,u)=0 for $k <u<k. First consider k=1. Then u=1 and the sum has one

term,
1-0\ [ 1-0
{(1—0)‘(1—0+1>}s("l"1) =1=s@1.

Next, let k> 1. We consider k odd and k even separately. First consider k odd.
Ifu2 3k, then u24(k+1) and so u—124(k—1). Hence t(k — 1,u)=0 and by the
induction hypothesis
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stk,u) = s(k—1,u)+stk—1,u—1)

B (k—1-2r k—1-2r k—1-2r k—1-=2r
= ) - + -
/=0 u—r u—r+1 u—1-r u—r

s@r—1,r—1)

Ge (/k—2r k—2r
= rgo {( u—r>_(u—r+ 1)}5(27’—- 1,r—1)
since [$k]=[3(k—1)].

Next consider k even. If u>1k, then u=4k+1 and so u—124k. As for k odd
we get, using the induction hypothesis,

s(k, u)

stk—1,u)+sk—1Lu-1)

Qe (/f—2r k—2r
- 2r—1,r—1).
5 () (e
In this case [1k]=[4(k—1)]+ 1. However the term for r =}k is zero so we get

the expression of Lemma 19 also in this case. Finally,

s(k,3k) = s(k—1,3k—1)+s(k—1,5k)

GO ((k1-2F\ (k—1-2r
—1,ik—1 - 2r—1,r—1
sh=Lk=D+ 3 {( %k—r) (%k—m)}s" =
ot (/] 2r k—2r
—1 i) — — - —
stk—1,%k 1)—+-r§:0 {(%k-—r) (%k—r+l>}s(2r 1,r—1)

1k k—2r k—2r
- —1.r—
Z {Qk—r) (%k—m)}s‘z’ v

since for all %=1,

-5 -3

.

THEOREM 20. For k=1,

411 k Bk k—or
m(k) = ..; S(k’u)+([}z'k])+r§1 (E%k]_r)s(Zr——l,r-—l)

Proor. Let x=[4k]. By Lemmata 18 and 19,

x—1 k

mk)— Y, stku) = Y s(k,u)

u=1 u=x
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k  [4k] _ —_
-3y {(’; er>_<uk ri’ )}S(Zr—l,r—-l)
u=xr=0 - -
(4 k—2 k—2
T ) ()

¥ s@r-1, r—l)(k 2:) ;

r=0

]

It

Theorem 20 proves in particular that

k
2 () ~ 2

Hence m(k) is growing exponentially. Numerical data suggest that m(k)~c-2*

for some ¢ >0. We describe these data next. Using a FORTRAN program on a

NORD-10 at the University of Bergen we first generated all bases 4 € &/(2, u)

where u<14 and A<[0,30]. This gave s(k,u) for u<14 and k=<30. Using

Lemma 19 we found s(k, u) for all u <30 and k<30, and using Theorem 20 we

found m(k) for k<30. In Table 1 we give m(k) and (k)= m(k)2~* for k < 30.
Let

ak,v) = {s(k,5(k—v))+s(k, 3 (k+0)}/ {Z(L(kk_ v)>} ’
. 2

where v=k(mod 2). For reasons that will become apparent below, it is more
convenient for work with g (k,v) rather than with s(k,u). In Table 2 we give
a(k,v) for k<29, v=1,3,5,7. :

Table 1.

k m(k) a(k) k m(k) a(k)

1 1 0.50000 16 16194 0.24710
2 2 0.50000 17 32058 0.24458
3 3 0.37500 18 63910 0.24380
4 6 . 037500 19 126932 0.24210
5 10 0.31250 20 253252 0.24152
6 20 0.31250 21 503933 0.24029
7 37 0.28906 22 1006056 0.23986
8 73 0.28516 .23 2004838 0.23900
9 139 0.27148 24 4004124 0.23866
10 275 0.26855 25 7937149 0.23804
11 533 0.26025 26 15957964 0.23779
12 1059 0.25854 27 31854676 0.23734
13 2075 0.25330 28 63660327 0.23715
14 4126 0.25183 29 127141415 0.23682
15 8134 0.24823 30 254136782 0.23668 .
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Table 2.

k a(k,1) a(k,3) a(k,5) a(k,7)

1 0.5000

3 0.3333 0.5000

5 0.2500 0.4000 0.5000

7 0.2286 0.3333 0.4286 0.5000

9 0.2183 0.2857 0.3750 0.4444
11 0.2165 0.2545 0.3333 0.4000
13 0.2159 0.2397 0.3014 0.3636
1S 0.2167 0.2313 0.2769 0.3341
17 0.2175 0.2272 0.2596 0.3099
19 0.2185 0.2256 0.2487 0.2901
21 0.2194 0.2250 0.2418 0.2746
23 0.2204 0.2249 0.2377 0.2631
25 0.2212 0.2251 0.2352 0.2550
27 0.2220 0.2254 0.2336 0.2493
29 0.2227 0.2257 0.2327 0.2454

Lemma 21 (i) For k=1, a(k+1)<a(k).
(i1) a(o0)= lim a(k) exists and 0= a(00) <0.2367.
k= oo .

Proor. (i) By Lemma 18

k+1 k+1 k+1 k+1

mk+1) = Y stk+lu) = Y stkw+ Y stku—1)—3 t(ku)
u=1 u=1

u=1 u=1
< m(k)+m(k) = 2m(k) .

Hence a(k+ 1) <a(k).

(ii) The existence of a(00) follows from (i). Further a(00)<a(30)~0.2367.

Looking at Table 2 and similar tables for other values of v, it appears that
a(k,v) satisfies the following conditions:

(o1) a(k,v+2)>0a(k,v) for 0SvSk—2.

(62) For a fixed v, a(k, v) is first decreasing, then increasing for increasing k.

We have not been able to prove (o1) or (62). However, we shall consider some
of their consequences.

ProposiTION 22. If (61) is true and (02) is true for v=1, then a(00)>0.
Proor. By Lemma 18, since s(2k+1,0)=0,

mQ2k+1) = zk; {s(2k+1,3(2k+1— Qo+ 1)+ 5(2k+ 1,32k + 1+ Qv+ 1))}
v=0
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I

k
Y 200k+1, 20+1)(2k+1>

iv

S 20(2k+1, 1)<2k+vl) by (o1)

v=0
o(2k+1,1)2* > 0(13,1)2* by (62) and Table 2.
Hence a(2k+1)2a(13,1)>0.

ProvrosITION 23. If (a1) and (02) are true, then

o(oo,v) = lim a(k,v)
k— o0
exists and
(i) a(oo,v+2)=a(00,v) for all v=0,
(ii) a(o0)=0a(00,v) for all v=0.

Proor. The existence of (00, v) follows from (62) and (i) then follows from
(o1). To prove (ii), suppose there exists a u such that ¢ (00, 2u+ 1) >« (00). Let ¢
be defined by 2¢=06(00,2u+ 1)—a(00). Then there exists a K such that o(2k
+1,2u+1)>a(oc0)+¢ for all k=K. Let k=K. For v=2u,

o(2k+1,2v+1) 2 6(2k+1,2v+1) > a(c0)+¢.

Hence
m(Zk+1) = i 20(2k +1, 2u+1)<2k+1>
2 i Z{a(oo)+s}(2k+l)
= {a(00)+e}- {22“1 Z 2(2:+01>}
2 {“(°°)+8}‘22"“'{1—u-2-<2k:1>2-(2k+n}_
Hence

2k+1

a(2k+1) 2 a(oo)+s—u< K

)2"2"+"{a(oo)+e} .

Let k — 00. Then we get a(00)= a(00)+¢ which is-a contradiction. Slmllarly
we prove a(00)=a(0o,v) for even v.
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COROLLARY 24. If (61) and (02) are true, then

a(00) > (29,3) ~ 0.22572 .

ProoF. Since 0(25,3)>0(23,3), 6(2k+1,3) is increasing for 2k+1=23 by
(62). By Proposition 23,

a(00) = a(00,3) > a(29,3).

Extrapolation from the values of «(k) given in Table 1 indicates that the true
value of a(o0) is approximately 0.2355.
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