ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, II

ERNST S. SELMER and ARNE RÖDNE

The present paper is an immediate continuation of Selmer [8]. With one exception for Theorems 10.4–5 below, all references to theorems and formulas from section 1–10 are automatically to [8].—Incidentally, note also the completed references [4] and [7].

In section 4, we left the open question whether we always have

$$n_h(k) > g_h(k), \quad h \ge 2, k \ge 3$$
.

This has now been proved by Rossbach [5]. We mention this here since [5] is not easily accessible.

10. Some inequalities for $n_h(A_3)$ (continued).

For use below, we shall need other upper bounds for η and ϑ of (10.9). With f=1, it follows from (10.16) that

$$\eta \le a_3 - r - 1 = a_2 - 1 ,$$

with equality for instance in the case (10.10). For general f, we can only prove the slightly weaker

THEOREM 10.4. For a non-pleasant basis A_3 , we always have

$$(10.17) \eta \le a_2 - f + 1.$$

We note that the bound $a_2 - f + 1 \ge r + 2 \ge 3$. There is equality in (10.17) for instance if h_0 is even, $a_2 = \frac{1}{2}h_0 + 2$, $f = \frac{1}{2}h_0$, r = 1, when $\eta = 3$ by (2.28).

The proof runs exactly as for Theorem 10.2. In both cases 1 and 2, we need the inequality

$$Q_{v+1} \ge Q_f = (f-1)q_f - (f-2) \ge 3(f-1) - (f-2) = 2f-1$$
,

 \cdot cf. the comments to (7.14-15).

We can also give another upper bound for 9:

Received September 21, 1982.

THEOREM 10.5. We always have

$$(10.18) 9 \leq a_2 + 1.$$

If f > 1, we even have

$$(10.19) 9 \leq a_2,$$

except in the pleasant cases with s=1.

In the proof of Theorem 10.2, it was pointed out that $\theta_1 \le a_2 + 1$, while the possibility $\theta_2 = a_2 + 2$ was considered separately. However, this can be excluded immediately by the contradiction

$$\vartheta_2 = a_2 + 2 \Rightarrow Q_{v+1} = s_{v+1} \leq Q_v$$
.

We then turn to the inequality $9 \le a_2$. If A_3 is pleasant, 9 = r + 2 by (2.11), and the only exception clearly occurs for $r = a_2 - 1$. We may therefore assume A_3 non-pleasant.

Since $s_{v+1} < s_v$ and $Q_{v+1} > Q_v$, $\vartheta_1 \le a_2$ follows immediately. To prove that $\vartheta_2 \le a_2$, we must show that $s_{v+1} \le Q_{v+1} - 2$. The only exception to this would be for

$$(10.20) s_{n+1} = Q_m Q_{n+1} = Q_n + 1.$$

Again, we use that $v \ge f-1$ and $q_f > 2$. We have $Q_1 = Q_0 + 1$, even if $q_1 > 2$. For f > 1, however, it follows from the recursion $Q_{i+1} = q_{i+1}Q_i - Q_{i-1}$ that

$$q_f > 2 \Rightarrow Q_f > Q_{f-1} + 1 \Rightarrow Q_{i+1} > Q_i + 1, \quad i \ge f - 1$$

showing that (10.20) is impossible.

We can characterize equality in (10.18) by

(10.21)
$$f = 1 : \vartheta = a_2 + 1 \Leftrightarrow (\varrho + 1) | (r + 1) .$$

As in (8.4), we have put $h_0 = \tau r + \varrho$, $0 \le \varrho < r$.

From the above proof, it follows that we can have $\theta = a_2 + 1$ only if (10.20) holds. Now,

$$Q_{v+1} = Q_v + 1 \Rightarrow q_i = 2, \quad i \in \{2, 3, ..., v+1\} \text{ (empty if } v = 0).$$

Then $Q_i = i$ for $i \le v + 1$, and the division algorithm (2.20) gives

$$(10.22) s_{v+1} = (v+1)s_1 - vs_0.$$

We are applying Theorem 6.2, hence

$$a = a_3 - 1 = a_2 + r - 1 = h_0 + r = (\tau + 1)r + \varrho, \quad s_0 = a_3 - a_2 = r.$$

If $\varrho = 0$, then $(\varrho + 1) | (r + 1)$. If $\varrho > 0$, we can write

$$a = (\tau + 2)r - (r - \varrho) \Rightarrow q_1 = \tau + 2, \quad s_1 = r - \varrho$$

Substituting $s_0 = r$, $s_1 = r - \varrho$ in (10.22), and using $s_{v+1} = Q_v = v$, we get the relation $r+1 = (v+1)(\varrho+1)$, and \Rightarrow in (10.21) follows. To show \Leftarrow , we note that $(\varrho+1)|(r+1)$ implies (8.2), and $\vartheta = a_2 + 1$ is then an easy consequence of (8.3).

11. The sequence of h_0 -ranges.

Let the positive integer n have the regular representation

$$(11.1) n = e_3 a_3 + e_2 a_2 + e_1; e_1 \le a_2 - 1, e_1 + e_2 a_2 \le a_3 - 1.$$

We may in some cases reduce the coefficient sum Σ by using what we will call " a_3 -transfers", a technique closely related to the "s-Stellen" of Hofmeister [2]. Assuming A_3 non-pleasant, hence $q \le s$, we may replace one a_3 in (11.1) by $qa_2 - s$:

(11.2)
$$n = (e_3 - 1)a_3 + (e_2 + q)a_2 + e_1 - s.$$

If $e_3 \ge 1$ and $e_1 \ge s$, this is a (non-regular) representation where Σ has been reduced with at least one unit compared to (11.1).

If $e_3 \ge 2$, the process can be repeated. To recover a non-negative constant term, it may sometimes be necessary to use substitutions $a_3 = fa_2 + r$ instead of $a_3 = qa_2 - s$.

To determine $n_{h_0}(A_3)$, we must construct a consequtive string of integers n with $\Sigma \le h_0 = a_2 + f - 2$. We begin with $e_3 = 0$ in (11.1):

$$n = e_2 a_2 + e_1;$$
 $e_1 \le a_2 - 1, e_2 \le f - 1$
 $n = f a_2 + e_1;$ $e_1 \le r - 1 \le a_2 - 2.$

With $n = fa_2 + r = a_3$, we start a new sequence with $e_3 = 1$:

$$n = a_3 + e_2 a_2 + 1_1;$$
 $e_1 \le a_2 - 1, e_2 \le f - 2$
 $n = a_3 + (f - 1)a_2 + e_1;$ $e_1 \le a_2 - 2.$

If A_3 is *pleasant*, we cannot get further, since an a_3 -transfer does not reduce Σ . In this case, the h_0 -range is consequently given by (2.11):

$$(11.3) n_{h_0}(A_3) = a_3 + (f-1)a_2 + a_2 - 2 = 2a_3 - (r+2).$$

If A_3 is non-pleasant, however, the a_3 -transfer of (11.2) works for the next n:

$$n = a_3 + (f-1)a_2 + a_2 - 1 = 2fa_2 + r - 1$$
,

where $\Sigma \leq h_0$ since

$$(11.4) 1 \le r \le a_2 - f - 1 \le a_2 - 2$$

by (4.3). Using (2.9) and (2.13), we have thus given a very simple proof of the inequality (2.12).

In what follows, we assume that A_3 is non-pleasant, hence (11.4) satisfied. The string of h_0 -representable integers n then continues with

$$n = a_3 + fa_2 + e_1;$$
 $e_1 \le r - 1$
 $n = 2a_3 + e_2a_2 + e_1;$ $e_1 \le a_2 - 1, e_2 \le f - 3$
 $n = 2a_3 + (f - 2)a_2 + e_1;$ $e_1 \le a_2 - 2.$

The next n, with $e_1 = a_2 - 1$, can be "saved" with one a_3 -transfer (11.2), and we enter a new sequence

$$n = 2a_3 + (f-1)a_2 + e_1; \quad e_1 \le a_2 - 3.$$

In particular, we have shown that

$$(11.5) n_{h_0}(A_3) \ge 2a_3 + (f-1)a_2 + a_2 - 3 = 3a_3 - (r+3)$$

for non-pleasant A_3 .

The next n, with $e_1 = a_2 - 2$, cannot be saved by (11.2) if $s = a_2 - 1$, hence r = 1. But using one more a_3 -transfer, now in the form $a_3 = fa_2 + 1$, we get $n = 3fa_2$ with $\Sigma = 3f \le h_0$ if $a_2 \ge 2q$. Hence (11.5) holds with equality if and only if r = 1, $a_2 < 2q$.

It is clear how these arguments may be continued. Details are found in Rödne [6], from which we quote the following

Theorem 11.1. Let A_3 be non-pleasant. We then have the following sequence of h_0 -ranges:

$$(11.6) n_{h_0}(A_3) = 3a_3 - (r+3) \Leftrightarrow r = 1, q > \frac{1}{2}a_2$$

$$(11.7) n_{h_0}(A_3) = 3a_3 - (r+2) \Leftrightarrow \frac{1}{2}(a_2 - 1) < s = q < a_2 - 1$$

$$(11.8) n_{h_0}(A_3) = 4a_3 - (r+4) \Leftrightarrow r = 2, \frac{1}{2}(a_2 - 2) < q < a_2 - 2 \text{ or}$$

$$r = 1, \frac{1}{2}(a_2 + 1) < q < \frac{1}{2}(a_2 + 1)$$

(11.9)
$$n_{h_0}(A_3) = 4a_3 - (r+3) \Leftrightarrow s = q = \frac{1}{2}(a_2 - 1)$$

(11.10)
$$n_{h_0}(A_3) = 4a_3 - (r+2) \Leftrightarrow \frac{1}{2}(a_2 - 1) < s = q+1 < a_2 - 2 \text{ or } \frac{1}{3}(a_2 - 1) < s = q < \frac{1}{2}(a_2 - 1)$$
.

It is apparant that the number of possible forms of $n_{h_0}(A_3)$ is restricted. This fact is expressed by the following

THEOREM 11.2. The regular representation of $n_{h_0}(A_3)$ has the form

$$(11.11) \quad n_{h_0}(A_3) = e_3 a_3 + (f-1)a_2 + e_1; \quad a_2 - e_3 - 1 \le e_1 \le a_2 - 2.$$

This holds for pleasant A_3 by (11.3). To prove it for A_3 non-pleasant, we need the deeper theorems of section 10.

We see at once that (11.11) holds in the case (10.10). In the remaining cases, we write (10.9) as

$$n_{h_0}(A_3) = \eta a_3 - \vartheta = (\eta - 1)a_3 + (f - 1)a_2 + a_2 + r - \vartheta$$
.

By (10.13) and (10.18), this is the regular representation. Since $e_3 = \eta - 1$, the bounds for $e_1 = a_2 + r - \vartheta$ in (11.11) follow immediately from (10.16) and (10.13). The lower bound is non-negative by (10.17).

The form of $n_{h_0}(A_3)$ was studied in detail by Windecker [9]. In particular, his Lemma 4.2 states that $e_2 = f - 1$, as in (11.11).

We may also formulate Theorem 11.2 as

$$(11.12) n_{h_0}(A_3) = (e_3 + 1)a_3 - (r + t), 2 \le t \le e_3 + 1.$$

In this form, we recognize the h_0 -ranges as given in Theorem 11.1.

For use in a different context, we shall also mention representations with $\Sigma \le h_0 - 1$. The smallest number where this fails is given by

(11.13)
$$n_0 = (f-1)a_2 + a_2 - 1 = a_3 - r - 1.$$

For non-pleasant A_3 , the next case is $g_{h_0}(A_3)$ of (11.3), which cannot be saved by an a_3 -transfer if $s = a_2 - 1$. We formulate this as

PROPOSITION 11.1. If A_3 is non-pleasant, all integers in the interval $[a_3-r, 2a_3-(r+3)]$ have representations with at most h_0-1 addends.

12. On the minimal value of $n_h(A_3)$.

For given h, the extremal bases A_3^* , with the largest possible extremal h-range $n_h(3) = n_h(A_3^*)$, were determined by Hofmeister [2, Satz 2], cf. the comments to (4.7). He also considered the extremal h_0 -ranges $l_h(3)$ [2, Satz 3-4], where we only consider those bases A_3 which for given h have $h_0 = h$.

In the literature, "extremal" in this connection always means "maximal". It is not unnatural, however, to ask also for minimal h-ranges and h_0 -ranges. With k=3, it turns out that the search should be made over pleasant and non-pleasant A_3 separately. Of the four combinations thus arising, three of them have a trivial solution. It is not difficult to prove the following results for given h_0 or h:

For A_3 pleasant, the minimal h_0 -range occurs in the case

$$(12.1) n_{h_0}(1, h_0 + 1, 2h_0 + 1) = 3h_0$$

with one additional possibility for $h_0 = 2$:

$$(12.2) n_2(1,2,4) = 6 = 3 \cdot 2.$$

For A_3 pleasant, the minimal h-range occurs in the cases

$$n_h(1, h+1, 2h+1) = n_h(1, 2, 3) = 3h$$

with the one additional possibility (12.2).

For A_3 non-pleasant, the minimal h-range occurs in the case

$$n_h(1,3,4) = 4h$$
.

The only non-trivial result is expressed by the following

THEOREM 12.1. Over non-pleasant bases A_3 , the minimal h_0 -range for $h_0 \neq 4$ is given by

(12.3)
$$h_0 \equiv 0 \pmod{3} : n_{h_0} \left(1, \frac{2h_0 + 6}{3}, \frac{2h_0^2 + 9h_0 + 9}{9} \right) = \frac{2h_0^2 + 8h_0}{3}$$

(12.4)
$$h_0 \equiv 1 \pmod{3} : n_{h_0} \left(1, \frac{2h_0 + 4}{3}, \frac{2h_0^2 + 8h_0 + 17}{9} \right) = \frac{2h_0^2 + 8h_0 + 5}{3}$$

$$(12.5) \quad h_0 \equiv 2 \pmod{3} : n_{h_0} \left(1, \frac{2h_0 + 5}{3}, \frac{2h_0^2 + 7h_0 + 14}{9} \right) = \frac{2h_0^2 + 7h_0 + 2}{3} .$$

The bases A_3 were first conjectured by inspection, and the result was verified by Mossige for $h_0 \le 100$. The proof is simplified by assuming $h_0 \ge 24$.

The cases (12.4-5) have r=1, and (12.3) has s=q. The expressions for $n_{h_0}(A_3)$ then follow easily from (2.28-29).

The formulas (12.3-5) may also be written in the more concentrated form:

$$a_2 = \left[\frac{2h_0}{3}\right] + 2$$

$$h_0 \equiv 0 \pmod{3} : a_3 = \frac{1}{2}a_2(a_2 - 1), \qquad n_{h_0}(A_3) = 3a_3 - \frac{1}{2}a_2 - 2$$

$$h_0 \equiv 1 \pmod{3} : a_3 = \frac{1}{2}a_2^2 + 1$$

$$h_0 \equiv 2 \pmod{3} : a_3 = \frac{1}{2}a_2(a_2 - 1) + 1$$

$$n_{h_0}(A_3) = 3a_3 - 4.$$

To prove Theorem 12.1, we note that the largest h_0 -range, as a function of h_0 , occurs in the case (12.4). We denote this range by

$$m_{h_0} = \frac{1}{3}(2h_0^2 + 8h_0 + 5) ,$$

and proceed to show that "most" bases A_3 have $n_{h_0}(A_3) > m_{h_0}$. For this purpose, we use (10.2):

$$(12.6) n_{h_0}(A_3) > h_0 a_2 ,$$

but must then consider the *Frobenius-dependent* bases separately. For these bases, we know by (5.5) that

$$n_{h_0}(A_3) \ge (h_0+1)^2 - r(r-1)-1$$
.

Since $r \mid h_0$ or $r \mid (h_0 + 1)$, and A_3 is non-pleasant, we have $r \leq \frac{1}{2}(h_0 + 1)$. It then follows that $n_{h_0}(A_3) > m_{h_0}$ for $h_0 \geq 10$.

Using (12.6), we may thus confine ourselves to bases A_3 with $a_2 < m_{h_0}/h_0 \le \frac{1}{3}(2h_0 + 9)$ for $h_0 \ge 5$, hence $f = h_0 + 2 - a_2 > \frac{1}{3}h_0 - 1$,

$$(12.7) f \ge \frac{1}{3}(h_0 - 2) .$$

On the other hand, it follows from (4.4) that

$$(12.8) a_2 \ge \frac{1}{2}(h_0 + 4) .$$

It turns out that it suffices to consider the bases of Theorem 11.1. By Theorem 11.2, the next value in the sequence of h_0 -ranges is namely

$$(12.9) n_{h_0}(A_3) = 4a_3 + (f-1)a_2 + a_2 - 5 \ge 5fa_2 - 1,$$

since $a_3 \ge fa_2 + 1$. And by (12.7-8), $5fa_2 - 1 > m_{h_0}$ for $h_0 \ge 12$.

We first consider the case (11.6), with r=1:

$$(12.10) n_{h_0}(A_3) = 3a_3 - 4 = 3fa_2 - 1 = 3(h_0 + 2 - a_2)a_2 - 1,$$

where

$$q = f+1 = h_0+3-a_2 > \frac{1}{2}a_2 \Rightarrow a_2 < \frac{2}{3}h_0+2$$
.

The last expression in (12.10) attains its (formal) maximum for $a_2 = \frac{1}{2}(h_0 + 2)$, which is smaller than the bound (12.8). The minimal value of $n_{h_0}(A_3)$ in (12.10) thus occurs for the largest value of a_2 with $a_2 < \frac{2}{3}h_0 + 2$, which depends on the residue of h_0 (mod 3).

$$h_0 \equiv 0 \pmod{3} : a_2 = \frac{2}{3}h_0 + 1 \Rightarrow n_{h_0}(A_3) = \frac{2}{3}h_0^2 + 3h_0 + 2 > m_{h_0}$$

$$h_0 \equiv 1 \pmod{3} : a_2 = \frac{2h_0 + 4}{3} \Rightarrow (12.4)$$

$$h_0 \equiv 2 \pmod{3} : a_2 = \frac{2h_0 + 5}{3} \Rightarrow (12.5)$$

We next consider the case (11.7), with s=q:

$$n_{h_0}(A_3) = 3(qa_2-q) - (a_2-q+2) = (h_0+3-a_2)(3a_2-2) - a_2-2$$

where

$$q = h_0 + 3 - a_2 > \frac{1}{2}(a_2 - 1) \Rightarrow a_2 < \frac{1}{3}(2h_0 + 7)$$
.

Now $h_0 \equiv 0 \pmod{3} \Rightarrow (12.3)$, while $h_0 \equiv 1, 2$ give $n_{h_0}(A_3) > m_{h_0}$ for $h_0 \ge 5$.

We finally consider the cases (11.8-10). In analogy with (12.9), these give

$$(12.11) n_{h_0}(A_3) \ge 4fa_2 - 1 = 4(h_0 + 2 - a_2)a_2 - 1.$$

For $h_0 \ge 10$, hence $a_2 \ge 7$ by (12.8), the smallest bound for q in (11.8–10) is $\frac{1}{3}(a_2-1)$, and

$$q = h_0 + 3 - a_2 > \frac{1}{3}(a_2 - 1) \Rightarrow a_2 < \frac{1}{4}(3h_0 + 10)$$
.

The last expression (12.11) then shows that $n_{h_0}(A_3) > m_{h_0}$ for $h_0 \ge 24$. This completes the proof of Theorem 12.1.

13. On minimal ranges in general.

For regular h-ranges, it is easily shown that for given h and k, the minimal regular h-range is attained in the one case

$$(13.1) g_h(A_k) = g_h(1, h+1, h+2, \dots, h+k-1) = 2h+k-2.$$

Since A_k has $h_0 = h$, this also gives the minimal regular h_0 -range. For $k \ge 3$, A_k is non-pleasant, with $n_h(A_k) = ha_k$.

The problem of minimal ordinary ranges is much more difficult. We solved it completely for k=3 in the previous section, and shall mention briefly some theoretical and numerical results for k>3.

In what follows, we disregard the trivial case

$$(13.2) n_h(1,2,\ldots,k) = hk$$

(the only basis with $h_0 = 1$). All other bases A_k have $a_k > k$.

It was observed that for a large number of combinations of small h_0 and k, we always have

$$(13.3) n_{h_0}(A_k) \ge h_0 k.$$

For a long time, we even denoted this inequality as the "minimum-conjecture", until it was recently disproved by Klöve [3]. His simplest counter-example (given by his Theorem 13) is

(13.4)
$$\begin{cases} h_0 = 3, \\ A_{44} = \{1, 4, 5, 16, 17, 20, 21, 64-84, 88, 92, 96-100, 104, \\ 108, 112-116, 120, 124\} \\ n_3(A_{44}) = 126 < 3.44. \end{cases}$$

If (13.3) holds, it follows from (2.13) and $a_k > k$ that

$$n_h(A_k) > hk, \quad h > h_0$$
.

We saw in the previous section that (13.3) holds for k=3, with equality for the pleasant bases (12.1-2). An immediate generalization of (12.1) is

$$(13.5) n_{h_0}(A_k) = n_{h_0}(1, h_0 + 1, 2h_0 + 1, \dots, (k-1)h_0 + 1) = h_0 k,$$

with pleasant A_k . For k>3, however, there are also non-pleasant bases satisfying (13.3). This means that the non-trivial minimal bases of Theorem 12.1 have no counterpart for k>3.

Klöve [3] shows that (13.3) always holds for $h_0 = 2$. We shall indicate below a proof of

THEOREM 13.1. We always have

$$n_{h_0}(A_k) \ge h_0 k$$
 for $k \le 7$.

For this purpose, we need the following result which was suggested in a private communication by Rödseth (see also [7, p. 174]):

$$(13.6) a_i \leq (i-1)h+1, i=2,3,\ldots,k \Rightarrow n_h(A_k) \geq hk.$$

In particular, equality for all a_i implies equality for $n_h(A_k)$ by (13.5).

To prove (13.6), we use the well known theorem of Dyson, cf. Halberstam and Roth [1, Theorem 7, p. 17]. Let \mathscr{A} be a finite set of non-negative integers, including 0, and define A(m) as the number of positive integers $\leq m$ in \mathscr{A} . The ratios A(m)/m may then be considered as densities in sections of \mathscr{A} . In particular, A(m)/m=1 means that \mathscr{A} contains all positive integers $\leq m$.

As usual, we define

$$\mathscr{C} = h\mathscr{A} = \{\alpha_1 + \alpha_2 + \ldots + \alpha_h \mid \alpha_i \in \mathscr{A}\},\,$$

and select $\mathcal{A} = A_k \cup \{0\}$. Then C(m)/m = 1 means that $n_h(A_k) \ge m$.

It follows from Dyson's theorem that

$$\frac{A(m)}{m} \geq \delta, \quad m = 1, 2, \ldots, n \Rightarrow \frac{C(m)}{m} \geq \min\{1, h\delta\}, \quad m = 1, 2, \ldots, n.$$

With $\mathcal{A} = A_k \cup \{0\}$ and $\delta = 1/h$, this implies

$$A(m) \geq \frac{m}{h}, \quad m = 1, 2, \ldots, n \Rightarrow n_h(A_k) \geq n$$

where

$$m \in [a_{i-1}, a_i-1] \Rightarrow A(m) = i-1, \quad i=2,3,\ldots,k,$$

 $m \geq a_k \Rightarrow A(m) = k.$

Now (13.6) is an immediate consequence if we put n = hk. The first inequality (13.6),

$$(13.7) a_2 \leq h+1,$$

must always be satisfied for an admissible basis. For i > 1, however, (13.6) puts severe restrictions on A_k . All the same, the result must be considered as "deep". We note that

$$(13.8) a_k > (k-1)h \Rightarrow n_h(A_k) \ge (h-1)\cdot 1 + 1\cdot a_k \ge hk.$$

As a corollary to (13.6-8), we see at once that (13.3) holds for k=3. To study k>3, we examine the validity of the similar implication

$$(13.9) a_{k-j} > (k-j-1)h+1 \Rightarrow n_h(A_k) \ge hk, 1 \le j \le k-3.$$

If this holds for $j \le j_0$, we conclude similarly that (13.3) holds for $k \ge j_0 + 3$. The proof for $j = j_0 = 1$ is simple, since

$$n_h(A_k) \ge n_{h-1}(A_k) + a_k \ge n_{h-1}(A_2) + a_k = (h+2-a_2)a_2 - 2 + a_k$$

If $a_2 \le h$, the product $(h+2-a_2)a_2$ attains its minimum 2h for $a_2=2$ and $a_2=h$. Since $a_k \ge a_{k-1}+1 > (k-2)h+2$, we even get $n_h(A_k) > hk$.

The case $a_2 = h + 1$ must be considered separately, using $a_{k-1} + h \le a_k + h - 1$ $\le n_h(A_k)$. We can then also represent $a_{k-1} + h + 1 = a_{k-1} + a_2$ (assuming $h \ge 2$), and further the succeeding integers up to $a_{k-1} + a_2 + h - 2 > hk$.

The cases (13.9) with j=2,3 are treated in Rödne [6]. The proof for j=2 is moderately simple, but j=3 is rather complicated, with many alternatives and special cases.

No attempt has been made to examine (13.9) for j=4. To prove (13.3) also for the (final) value k=7, the following "shortcut" simplified matters considerably: By the preceding results, it sufficed to show that $n_h(A_7) \ge 7h$ when $a_3 > 2h+1$ and $a_4 \le 3h+1$.

We shall also discuss the cases with equality in (13.3)—still disregarding (13.2). For k=3, all cases are given by (12.1-2). For k=4, it is easily shown (Rödne [6]) that all cases are given by (13.5) and by

$$(13.10) n_{h_0}(1,2,2h_0+1,2h_0+2) = 4h_0.$$

In addition, there are three bases with $h_0 = 2$:

$$(13.11) A_{\perp} = \{1, 2, 3, 5\}, \{1, 2, 4, 6\}, \{1, 3, 4, 7\}.$$

For $k \ge 5$, the numbers in Table 6 were computed by Mossige. Within the range of the table, there are no bases with $n_{h_0}(A_k) < h_0 k$.

•	h_0	5	6	7	8	9	10
	2	9	19	36	72	138	274
	3	2	4	1	4	6	7
	4	1	4	2	3	2	4
	5	1	3	2	4	2	3

Table 6. The number of bases satisfying $n_{h_0}(A_k) = h_0 k$.

It is quite striking that we get such large numbers for $h_0 = 2$, approximately proportional to 2^k . This case is discussed further in Klöve [3].

For $h_0 > 2$, a considerable number of the bases in Table 6 can be covered by general formulas. We first treat a generalization of (13.10) to all cases when k has a proper factorization $k = k_1 k_2$. For instance, we have for k = 6:

$$n_{h_0}(1, 2, 2h_0 + 1, 2h_0 + 2, 4h_0 + 1, 4h_0 + 2) = 6h_0$$

 $n_{h_0}(1, 2, 3, 3h_0 + 1, 3h_0 + 2, 3h_0 + 3) = 6h_0$.

It is not difficult to guess the general form:

$$A_k = A_{k_1k_2} = \{ik_2h_0+j \mid i=0,1,\ldots,k_1-1; j=1,2,\ldots,k_2\}$$

A simple proof of (13.3) for these bases, by induction on k_1 , is found in Rödne [6]. It is easily seen that all integers in $[0, h_0 k]$ have regular representations by A_k with at most h_0 addends, so $g_{h_0}(A_k) = h_0(A_k) = h_0 k$. All the same, A_k is not pleasant for $h_0 > 1$, since $a_k - a_{k-1} = 1$, and (2.16) then implies $n_{h_1}(A_k) = h_1 a_k > g_{h_1}(A_k)$.

Next, we note that the last basis (13.11) is of the form A_{h+2} of section 3, for which $n_h(A_{h+2}) = h(h+2) = hk$. This observation may be generalized in several directions. As an illustration, we mention four simple possibilities.

Let $a_2 = h_0 + 1$, $a_3 = h_0 + 2$. The following bases then satisfy $n_{h_0}(A_k) = h_0 k$:

$$\{1\} \cup \{(\delta i + 1)a_2 \mid i = 0, 1, \dots, t - 1\}$$

$$\cup \{ja_2 + a_3 \mid j = 0, 1, \dots, th - 1\}, k = th + t + 1$$

$$\{1\} \cup \{\delta ia_2 + a_3 \mid i = 0, 1, \dots, t-1\}$$

$$\cup \{ja_2 \mid j=1,2,\ldots,th+1\}, k=th+t+2.$$

In both cases, we may choose either $\delta = 1$ or $\delta = h_0$. The proofs (Rödne [6]) are simple, by induction on t. All the bases are *non-pleasant* for $h_0 > 1$. This is the case for the partial basis $A_3 = \{1, h_0 + 1, h_0 + 2\}$, and Zöllner [10] has shown in general that A_k pleasant $\Rightarrow A_3$ pleasant.

We conclude with two natural questions regarding the "minimum-conjecture":

- 1) What is the smallest k = K such that $n_{h_0}(A_K) < h_0 K$ for some basis A_K ? We have seen that $8 \le K \le 44$, which means quite a large gap in our knowledge.
- 2) What is the smallest j=J such that the implication (13.9) fails for some basis A_k ?

Since Klöve's basis (13.4) has $a_{k-j} \le (k-j-1)h+1$ for $j \le 10$ but not for j=11, we know that $4 \le J \le 11$.

Both questions are apparently very difficult.

REFERENCES

- 1. H. Halberstam and K. F. Roth, Sequences I, Clarendon Press, Oxford, 1966.
- G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. Reine Angew. Math. 232 (1968), 77-101.
- 3. T. Klöve, The minimal range of additive h-bases, Math. Scand. 53 (1983), 157-177.
- 4. S. Mossige, Algorithms for computing the h-range of the postage stamp problem, Math. Comp. 36 (1981), 575-582.
- 5. H. Rossbach, Zum globalen Reichweitenproblem, Staatsexamensarbeit, Mainz, 1982.
- 6. A. Rödne, Master's thesis (in Norwegian), Dept. of Math., Univ. of Bergen, 1981.
- 7. Ö. Rödseth, On h-bases for n, Math. Scand. 48 (1981), 165-183.
- E. S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
- 9. R. Windecker, Zum Reichweitenproblem, Dissertation, Mainz, 1978.
- J. Zöllner, Über Mengen natürlicher Zahlen für die jede euklidische Darstellung eine minimale Koeffizientensumme besitzt, Diplomarbeit, Mainz, 1974.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BERGEN N-5000 BERGEN NORWAY