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ON THE POSTAGE STAMP PROBLEM
WITH THREE STAMP DENOMINATIONS, II

ERNST S. SELMER and ARNE RODNE

The present paper is an immediate continuation of Selmer [8]. With one
exception for Theorems 10.4-5 below, all references to theorems and formulas

from section 1-10 are automatically to [8].— Incidentally, note also the
completed references [4] and [7].

In section 4, we left the open question whether we always have
(k) > gy(k), h22, k23.

This has now been proved by Rossbach [5]. We mention this here since [5] is
not easily accessible.

10. Some inequalities for n,(4;) (continued).

For use below, we shall need other upper bounds for # and 3 of (10.9). With
f=1, it follows from (10.16) that

n=<a3-r—1=a,—-1,
with equality for instance in the case (10.10). For general f, we can only prove
the slightly weaker
THEOREM 10.4. For a non-pleasant basis A;, we always have
(10.17) n<a,—f+1.
We note that the bound a, —f+12r+22=3. There is equality in (10.17) for
instance if h, is even, a, =3hy+2, f=3%h,, r=1, when n=3 by (2.28).

The proof runs exactly as for Theorem 10.2. In both cases 1 and 2, we need
the inequality

Que1 2 Qp = (f~Da,—(f-2) 2 3(/-D-(/=2) = 2f-1,

.cf. the comments to (7.14-15).
We can also give another upper bound for 9:
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146 ERNST S. SELMER AND ARNE RODNE

THEOREM 10.5. We always have
(10.18) 3 Sa,+1.
If f>1, we even have
(10.19) _ 3= a,
except in the pleasant cases with s=1.
In the proof of Theorem 10.2, it was pointed out that 9, <a, + 1, while the

possibility 3, =a, + 2 was considered separately. However, this can be excluded
immediately by the contradiction

9, =a,+2 = Quyy = 5,41 = 0,

We then turn to the inequality 3 < a,. If 4, is pleasant, $=r+2 by (2.11), and
the only exception clearly occurs for r=a,—1. We may therefore assume A4,
non-pleasant.

Since s,,,<s, and Q,,,>0Q,, 3, S a, follows immediately. To prove that 3,
<a,, we must show that s,, ; £0Q,,, —2. The only exception to this would be
for

(10.20) Spr1 = @ Qusr = Q,+1.

Again, we use that v>f—1 and q,>2. We have @, =Q, +1, even if g, >2. For
f>1, however, it follows from the recursion Q,,,=¢;,,Q;—Q;_, that

4, >2=0,>Q, +1 = @iy > Qi+1, i2f-1,

showing that (10.20) is impossible.
We can characterize equality in (10.18) by

(10.21) f=1: 3 =a,+1 « (g+1)|(r+1).

As in (8.4), we have put hy=1r+9, 0Spo<r.
From the above proof, it follows that we can have $=a, +1 only if (10.20)
holds. Now,

Qi1 = Q,+1 = g, =2, ie{23,...,0+1} (empty if v=0).
Then Q;=i for iSv+1, and the division algorithm (2.20) gives
(10.22) 5,41 = (v+1)s; —vsq .
We are applying Theorem 6.2, hence
a=a3—1=a,+r—1 = hy+r = (t+1)r+9, 5 = ay—a, =r.

If p=0, then (¢+1)|(r+1). If ¢>0, we can write
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= (t+2)r—(r—9g) = ¢q, = 1+2, s, =r—g.

Substituting so=r, s, =r—¢ in (10.22), and using s,,,=Q,=v, we get the
relation r+1=(v+1)(¢+1), and = in (10.21) follows. To show <, we note

that (¢+1)| (r+1) implies (8.2), and 3=a,+1 is then an easy consequence
of (8.3).

11. The sequence of h,-ranges.
Let the positive integer n have the regular representation

(11.1) n = eja;teya,+e;; e =< a,—1, e +ea, < a;—1.

We may in some cases reduce the coefficient sum X by using what we will call
“ay-transfers”, a technique closely related to the “s-Stellen” of Hofmeister [2].

Assuming A, non-pleasant, hence g <s, we may replace one a, in (11.1) by
qa,—s:

(11.2) n = (33_1)a3+(82+q)a2+e1“s .

If e;21 and e, =5, this is a (non-regular) representation where X has been
reduced with at least one unit compared to (11.1).

If e;22, the process can be repeated. To recover a non-negative constant
term, it may sometimes be necessary to use substitutions a; =fa, +r instead of
ay=qa,—s.

To determine ny, (4;), we must construct a consequtlve string of integers n
with XS hy=a,+f—2. We begin with e;=0 in (11.1):

n=ea,+e;; e <a,—1, e £ f-1
n = fa,+e;; e, Sr—1=<a,-2.
With n=fa, +r=a,, we start a new sequence with e;=1:

a,—1, e, < f-2
n=ay+(f—a,+e;; e < a,-2.

n = as+ea,+1,; e,

IIA

If A5 is pleasant, we cannot get further, since an as-transfer does not reduce X.
In this case, the hy-range is consequently given by (2.11):

(11.3) M(A3) = a3+ (f—Day+a,—2 = 2a,—(r+2).
If A, is non-pleasant, however, the a,-transfer of (11.2) works for the next n:
n=ay+(f-a,+a,—1 = 2fa,+r—1,

where ¥ <h, since
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(11.4) 1<r<a,—f-1<a,-2

by (4.3). Using (2.9) and (2.13), we have thus given a very simple proof of the
inequality (2.12).

In what follows, we assume that 4; is non-pleasant, hence (11.4) satisfied.
The string of hy-representable integers n then continues with

n = as+fa,+e,; e; =r—1
n = 2as+e,a,+e;; e, Sa,—1,e, £ f-3
n = 2a,+(f—-2a,+e;; e < a,—2.

The next n, with e; =a, — 1, can be “saved” with one a,-transfer (11.2), and we
enter a new sequence

n = 2a;+(f-1a,+e,;; e =< a,—3.
In particular, we have shown that
(11.5) My(43) 2 2a3+ (f—Day+a,—3 = 3a;— (r+3)

for non-pleasant A;.

The next n, with e; =a, —2, cannot be saved by (11.2) if s=a,—1, hence
r=1. But using one more as-transfer, now in the form a;=fa,+1, we get
n=3fa, with =3f<h, if a, = 2q. Hence (11.5) holds with equality if and only
if r=1, a,<2q.

It is clear how these arguments may be continued. Details are found in R6dne
[6], from which we quote the following

THEOREM 11.1. Let A5 be non-pleasant. We then have the following sequence of

hy-ranges:

(11.6)  ny (A3) = 3a;—(r+3) <= r =1, g > 1a,

(117 my(A3) = 3a3—(r+2) < $a,—~1) <s =q < a,—1

(11.8)  ny(A43) = da;—(r+4) < r =2, $(a,—-2) < q < a,—2 or
r=1%a+1) < q < $(a,+1)

(119)  my(4s) = day—(r+3) < s = g = b(a,—1)

(11.10) ny (A43) = 4a;—(r+2) < 3(@a,—1) <s = q+1 < a,-2 or
3@—1) <5 =q <3@,-1).

It is apparant that the number of possible forms of ny,,(43) is restricted. This
fact is expressed by the following
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THEOREM 11.2. The regular representation of n, (A;) has the form

(1111) n, (A3) = esaz+(f—Da,+e;; a,—e;—1 < e, £ a,—2.

This holds for pleasant A3 by (11.3). To prove it for A; non-pleasant, we
need the deeper theorems of section 10.

We see at once that (11.11) holds in the case (10.10). In the remaining cases,
we write (10.9) as

n,(A43) = naz—9 = (m—Daz+ (f—Day+a,+r—9.

By (10.13) and (10.18), this is the regular representation. Since e;=n—1, the
bounds for e;=a,+r—9 in (11.11) follow immediately from (10.16) and
(10.13). The lower bound is non-negative by (10.17).

The form of n,, (A4,) was studied in detail by Windecker [9]. In particular, his
Lemma 4.2 states that e,=f—1, as in (11.11).

We may also formulate Theorem 11.2 as

(11.12) (A = (e3+Daz—(r+1), 2=t =e3+1.

In this form, we recognize the h,-ranges as given in Theorem 11.1.

For use in a different context, we shall also mention representations with
2 <hy,—1. The smallest number where this fails is given by

(11.13) mo = (f=Day+a,—1 = ag—r—1.

For non-pleasant A, the next case is g, (43) of (11.3), which cannot be saved
by an aj-transfer if s=a,—1. We formulate this as

PROPOSITION 11.1. If A5 is non-pleasant, all integers in the interval [a;—r, 2a;
— (r+3)] have representations with at most hy—1 addends.

12. On the minimal value of n,(4;).

For given h, the extremal bases A¥, with the largest possible extremal h-range
n,(3)=n,(A¥), were determined by Hofmeister [2, Satz 2], cf. the comments to
(4.7). He also considered the extremal hy-ranges 1,(3) [2, Satz 3-4], where we
only consider those bases A5 which for given h have hy=h.

In the literature, “extremal” in this connection always means “maximal”. It is
not unnatural, however, to ask also for minimal h-ranges and hy-ranges. With
k=3, it turns out that the search should be made over pleasant and non-
pleasant A, separately. Of the four combinations thus arising, three of them

have a trivial solution. It is not difficult to prove the following results for given
hy or h: '
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For A, pleasant, the minimal hy-range occurs in the case
(12.1) Muo(1, o+ 1,2k + 1) = 3h, ,
with one additional possibility for hy=2:
(12.2) ny(1,2,4) = 6 = 3-2.
For A, pleasant, the minimal h-range occurs in the cases
m(1,h+1,2h+1) = n,(1,2,3) = 3h,

with the one additional possibility (12.2).
For A4 non-pleasant, the minimal h-range occurs in the case

n,(1,3,4) = 4h.

The only non-trivial result is expressed by the following

THEOREM 12.1. Over non-pleasant bases A, the minimal hy-range for hy+4 is
given by

2 2
(123) hy = 0 (mod3) : nho<1‘, 2h03+6’ 2ho+gho+9> _ 2ho;8h0

2hy+4 2h%+8h,+17 2h2+8hy+5
124) h, =1 3) 1, =2 00 =20 _"70
(124) h, (mod 3) n,.o( 7 5 ) 3

2hy+5 2h2+7Th,+ 14 202 +7hy +2
125) hy =2 3): 1, =22 0”0 =207 077
(12.5) h, (mod 3) nho( 3 5 ) 3

The bases A, were first conjectured by inspection, and the result was verified
by Mossige for hy <100. The proof is simplified by assuming h,>24.

The cases (12.4-5) have r=1, and (12.3) has s=gq. The expressions for n, (4,)
then follow easily from (2.28-29).

The formulas (12.3-5) may also be written in the more concentrated form:

az = [2;'—0—]-}-2

ho = 0 (mod3): a; = }a,(a,—1), n,(4;) = 3a3—%a, -2
ho =1 (mod3):ay = $a?+1

= 3a,-4.
hy =2 (mod3):a; = da,(a,—1)+1 Pho(A3) = 3as

To prove Theorem 12.1, we note that the largest hy-range, as a function of
ho, occurs in the case (12.4). We denote this range by

my, = $(2h3 +8hy+5),
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and proceed to show that “most” bases 4, have n, (4;)>m, . For this purpose,
we use (10.2):

(12.6) n,,o(A3) > h0a2 N

but must then consider the Frobenius-dependent bases separately. For these
bases, we know by (5.5) that

n(43) = (ho+ 12 =r(r—1)—1.

Since r| hy or r| (hy+1), and A, is non-pleasant, we have r <3(hy+1). It then
follows that n, (A43)>m,, for hy210.

Using (12.6), we may thus confine ourselves to bases A with a, <m, /h,
<3(2hy+9) for hy25, hence f=hy+2—a,>3hy—1,

(12.7) 2 4(ho-2).
On the other hand, it follows from (4.4) that
(12.8) a, 2 $(hy+4).

It turns out that it suffices to consider the bases of Theorem 11.1. By Theorem
11.2, the next value in the sequence of hy-ranges is namely

(12.9) nho(A3) = 4as+(f'_ 1)a2+a2-5 g Sfaz"‘l 3

since a; = fa,+ 1. And by (12.7-8), 5fa, —1>m,, for hy=12.
We first consider the case (11.6), with r=1:

(12.10) n,,o(As) = 303"‘4 = 3faz—1 = 3(h0+2—'a2)az—1 s
where
q =f+1 = h0+3"az > '%az = az < %h0+2 .

The last expression in (12.10) attains its (formal) maximum for a, =4(ho+2),
which is smaller than the bound (12.8). The minimal value of n (4;) in (12.10)
thus occurs for the largest value of a, with a, <%ho +2, which depends on the
residue of hy (mod 3).

hO = 0 (m0d3) :az = %h0+1 = n,,o(A3 = %hg+3ho+2 > m,,o
2h,+4

hy =1 (mod3) :a, = °3+ = (12.4)

hy =2 (mod3):a, = 2h°3+5 = (12.5).

We next consider the case (11.7), with s=¢:
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my(43) = 3(ga,—q)—(a,—q+2) = (hy+3—a,)(3a,—2)—a, -2,
where
= hy+3—a, > J(a,—1) = a, < 12h,+7).
Now hy=0 (mod 3) = (12.3), while hy=1,2 give Npo(A3)>my, for hy=S5.
We finally consider the cases (11.8-10). In analogy with (12.9), these give
(12.11) m,(A3) 2 4fa,—1 = 4(hy+2—-ay)a,—1.
For hy210, hence a,>7 by (12.8), the smallest bound for q in (11.8-10) is
1(a,—-1), and
= ho+3—a, > (a,—1) = a, < 1(3h,+10).

The last expression (12.11) then shows that ny,(A3)>m, for hy,>24. This
completes the proof of Theorem 12.1.

13. On minimal ranges in general.

For regular h-ranges, it is easily shown that for given h and k, the minimal
regular h-range is attained in the one case

(13.1) g4 = g(Lh+Lh+2,. . h+k—1) = 2h+k—2.

Since A, has hy = h, this also gives the minimal regular ho-range. For k23, A, is
non-pleasant, with n,(4,)= ha,.

The problem of minimal ordinary ranges is much more difficult. We solved it
completely for k=3 in the previous section, and shall mention briefly some
theoretical and numerical results for k> 3.

In what follows, we disregard the trivial case

(13.2) n(1,2,...,k) = hk

(the only basis with hy=1). All other bases 4, have a > k.
It was observed that for a large number of combinations of small hy and k,
we always have

(13.3) My (Ay) 2 hok

For a long time, we even denoted this inequality as the “minimum-conjecture”,
until it was recently disproved by Klove [3]. His s1mplest counter-example
(given by his Theorem 13) is
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ho = 3 3
e [ Ay = {1,4,5,16,17,20,21,64-84, 88,92, 96-100, 104 ,
(134) 108, 112-116, 120, 124}

ns(Ass) = 126 < 344 .

If (13.3) holds, it follows from (2.13) and a, >k that
ny(A,) > hk, h>h,.

We saw in the previous section that (13.3) holds for k=3, with equality for the
pleasant bases (12.1-2). An immediate generalization of (12.1) is

(135)  np(A) = my(Lho+1,2h+1,. .., (k—Dho+1) = hok ,

with pleasant A4,. For k>3, however, there are also non-pleasant bases
satisfying (13.3). This means that the non-trivial minimal bases of Theorem
12.1 have no counterpart for k> 3.

Kl16ve [3] shows that (13.3) always holds for hy=2. We shall indicate below a
proof of

THEOREM 13.1. We always have

n,(4) 2 hok  for k<T.

For this purpose, we need the following result which was suggested in a
private communication by Rodseth (see also [7, p. 174]):

(13.6) a, < (i—Dh+1, i=23,....k = n(A) = hk.

In particular, equality for all q; implies equality for n,(4;) by (13.5).

To prove (13.6), we use the well known theorem of Dyson, cf. Halberstam
and Roth [1, Theorem 7, p. 17]. Let o be a finite set of non-negative integers,
including 0, and define A(m) as the number of positive integers <m in /. The
ratios A(m)/m may then be considered as densities in sections of <. In
particular, A(m)/m=1 means that &/ contains all positive integers <m.

As usual, we define

(g=hd= {a1+0(z+...+06,,| aied},

and select of =4, U {0}. Then C(m)/m=1 means that n,(4,)=m.
It follows from Dyson’s theorem that
A@m) cm)

6, m=12...,n = ——2=2min{l,hd}, m=12...,n.
m m
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With o = A4, U {0} and é=1/h, this implies

A(m) = m=12...,n= n((A4)Zn,

7{
where
mela;._.,a,—1] = Am) = i—1, i=23,...,k,
mza, = Am) =

Now (13.6) is an immediate consequence if we put n=hk.
The first inequality (13.6),

(13.7) a, £ h+1,

must always be satisfied for an admissible basis. For i > 1, however, (13.6) puts
severe restrictions on 4,. All the same, the result must be considered as “deep”.
We note that

(13.8) a > (k=Dh = ny(4) = (h—1)-1+1-a, = hk.

As a corollary to (13.6-8), we see at once that (13.3) holds for k=3. To study
k>3, we examine the validity of the similar implication

(139  a_; > (k—j—Dh+1 = n(4) 2 hk, 1<j<k-3.

If this holds for j<j,, we conclude similarly that (13.3) holds for k>j,+3.
The proof for j=j,=1 is simple, since

(A 2 my-(A)+a, 2 ny_1(A)+a, = (h+2—ay)a,—2+a,.

If a, < h, the product (h+2 —a,)a, attains its minimum 2h for a,=2 and a, =h.
Since a,2a,_, +1> (k—2)h+2, we even get n,(A4,)> hk.

The case a, =h+ 1 must be considered separately, using a,_; +h<a,+h—1
<n,(Ay). We can then also represent a,_, +h+1=a,_, +a, (assuming h>2),
and further the succeeding integers up to a,_, +a, +h—2>hk.

The cases (13.9) with j=2,3 are treated in Rddne [6]. The proof for j=2 is
moderately simple, but j=3 is rather complicated, with many alternatives and
special cases. ‘

No attempt has been made to examine (13.9) for j=4. To prove (13.3) also
for the (final) value k=7, the following “shortcut” simplified matters
considerably: By the preceding results, it sufficed to show that n,(4,)=7h
when a;>2h+1 and a,<3h+1.

We shall also discuss the cases with equality in (13.3)—still disregarding
(13.2). For k=3, all cases are given by (12.1-2). For k=4, it is easxly shown
(Rbdne [6]) that all cases are given by (13.5) and by
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(13.10) M, (1,2,2h0+1,2hy+2) = 4k, .
In addition, there are three bases with hy=2:
(13.11) A, = {1,2,3,5}, {1,2,4,6}, {1,3,4,7} .

For k=5, the numbers in Table 6 were computed by Mossige. Within the
range of the table, there are no bases with n, (4,) <hgk.

Table 6. The number of bases satisfying ny,(A)=hok.

k

hh\|5 6 7 8 9 10
2 19 19 36 72 138 274
302 4 1 4 6 71
4 |1 4 2 3 2 4
s {1 3 2 4 2 3

It is quite striking that we get such large numbers for h, =2, approximately
proportional to 2* This case is discussed further in Klove [3].

For hy>2, a considerable number of the bases in Table 6 can be covered by
general formulas. We first treat a generalization of (13.10) to all cases when k
has a proper factorization k=k,k,. For instance, we have for k=6:

ny,(1,2,2h +1,2ho+2,4h +1,4ho +2) = 6h,
ny,(1,2,3,3ho +1,3hg +2,3hy+ 3) = 6h, .
It is not difficult to guess the general form:
A, = Ay, = {ikoho+j | i=0,1,.. ki —1;j=1,2,.. ., k;} .

A simple proof of (13.3) for these bases, by induction on k;, is found in R6édne
[6]. It is easily seen that all integers in [0, hok] have regular representations by
A, with at most h, addends, so g, (4;)=mn,, (4,) =hok. All the same, A, is not
pleasant for hy>1, since a,—a,_, =1, and (2.16) then implies n, (4,)=ha,
> g, (Ap)-

Next, we note that the last basis (13.11) is of the form A4, , of section 3, for
which n, (A, ;)=h(h+2)=hk. This observation may be generalized in several
directions. As an illustration, we mention four simple possibilities.

Let a,=hy+ 1, a;=hy+2. The following bases then satisfy n, (A,)=hok:

{1} U {@i+Da, | i=0,1,...,t—1}
U {jay+ay | j=0,1,...,th—1}, k=th+t+1
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{1} U {dia,+ay | i=0,1,...,t—1}
Ufja, | j=12,...,th+1},k=th+t+2.

In both cases, we may choose either =1 or § =h,,. The proofs (Rodne [6]) are
simple, by induction on . All the bases are non-pleasant for hy> 1. This is the
case for the partial basis 4;={1,h,+ 1, hy+2}, and Z6llner [10] has shown in
general that 4, pleasant = A; pleasant.

We conclude with two natural questions regarding the “minimum-
conjecture”:

1) What is the smallest k=K such that n, (Ax) <hoK for some basis Ay?

We have seen that 8 <K <44, which means quite a large gap in our
knoWledge.

2) What is the smallest j=J such that the implication (13.9) fails for some
basis A,?

Since Klove’s basis (13.4) has a,_;<(k—j—1)h+1 for j<10 but not for
j=11, we know that 4<J <11,

Both questions are apparently very difficult.
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