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CONVEXITY OF MEASURES IN CERTAIN
CONVEX CONES IN VECTOR SPACE o-ALGEBRAS

CHRISTER BORELL

1. Introduction.

The Brunn—-Minkowski theory on vector spaces deals with all types of
connections between set functions and linear combination of sets. Below we
will treat a special situation when the sets are restricted to a certain convex
cone in the underlying o-algebra.

Let 0<f0<1 and —oo<a< + 00 be fixed. For any 0<s,t< + 00 define the
mean

M(s,t) = (6s"+ (1 =60, aeR\{0};

min (s,t), a = —00;

=%  a=0;
= max(s,f), a=+00.
Here 0°= + 00, if —oo<a<0. Finally, for arbitrary 0=s,t< + 00,
Mis,t) = 0, if s=0 or t=0.

Throughout E denotes a real, locally convex Hausdorff vector space and
C 3 0 stands for a fixed closed convex cone in E. Set

{(CY> = {K—-C; E2K compact} .
Clearly,
st >0, ABe(C) = sA+tBe(C).

In addtion, each set 4 € (C) is C-invariant, that is, 4 —C=A. Given —oco=«
< + 00, we shall write u € #,(E; C), if p is a finite positive Radon measure on
E (abbreviated u € #(E)) and

p(0A+(1—0)B) = Mj(u(A), u(B)

for all 4, B € {C) and every 0<f< 1. A measure satisfying these assumptions
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is said to be :a:-concave in {(C). For brevity, #,(E; {0}) is written .#,(E) and
an :o:-concave measure in {{0}) is simply called :a:-concave. Below, by abuse
of language, “:a:-concave” is sometimes shortened to “a-concave” (“a-convex”
if a0 (x£0).

The interest in 1/n-concave measures originates from Brunn and Minkowski
who show that the uniform distribution in an arbitrary convex body in R" is
1/n-concave (restricted to convex bodies). The main features of O-concave
measures on R" are due to Davidovi¢, Korenbljum, and Hacet [11], Prekopa
([21], [22], [23]) and the author [3]. In ([4], [5], [6], [7]) we continue this
program introducing o-convex measures on possibly infinite-dimensional
spaces. During the past few years this subject has been enriched on the
foundational level, mainly by Brascamp and Lieb ([9], [10]), Dubuc ([12],
[13]), and Hoffmann-Jergensen [17].

The present paper is devoted to a study of :a:-concave measures in convex
cones of the type (C) introduced above. One motivation for this is the
following. Let X =(X,,...,X,) be a random vector in R" with probability
distribution function Fy(x,,...,x,)=P[X;<xy,...,X,£x,]. In a variety of
different contexts it may be useful to know that Fy is :a:-concave, that is, to
know that the inequality Fy(0x+ (1—0)y)= MY(F x(x), Fx(y)) is true for all
x,y € R" and each 0<f <1 (see e.g. Barlow and Proschan (reliability theory)
[1], Berwald (convexity) [2], Hoffmann-Jergensen, -Shepp, and Dudley
(absolute continuity of semi-norms) [18], Prekopa (stochastic programming)
[24], and Rinott (statistics) [27]). Here two remarks are in order. Firstly, in
almost all cases of interest, it is a non-trivial problem to decide whether Fy is
:o:-concave or not. Secondly, it seems to be an almost hopeless task to
develope a convex analysis based on :a:-concave distribution functions in
R"(n>1). In this context :a:-concave measures in (R%) have some advan-
tages as will be seen below.

A second reason for this paper is to deepen the Bruun-Minkowski approach
to measures on linear spaces. Among other things, we prove zero-one laws and
integrability of appropriate semi-norms.

AckNOWLEDGMENT. The author is grateful to the referee for pointing out an
error in an earlier version of this paper.

2. The basic results for the class .#,(R").

Throughout, —coLa< +00, —00<f = +00, and 0<f<1 are assumed to
be fixed if not otherwise stated. Given yu,v € #(E), we let

Mo, v; C) = {t e R(E); 1(0A+ (1-0)B) = M{(u(A),v(B)), 4,B e (C)}
and set #9(u,v; {0})=#°(u,v). If VSE is universally Borel measurable and
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convex, then the notation h € #4(f,g| V) will mean that f,g,h: ¥V — [0, +00]
are universally Borel measurable functions satisfying the inequality
h(0x+ (1 —O)y)gMg( f(x),g(y) for all x,y € V. The members in the class

FyV) = {f: Vo [0, +00]:fe F4f f1V), 0<0<1}

are called :fB:-concave functions in V.

THeoreM 2.1. ([3, Th. 3.1)) If f,ghelL{(m,), —ocoZa<l/n, and
h € tgrgl(l —an)(ﬂgl Rn)’ then hmn € ’/”Z(fmm gmn) )

Here m, denotes Lebesgue measure in R" and a/(1—an)= —1/n, a= — o0,
=+00, a=1/n.

THeoOReEM 2.2. ([3, Th. 3.2]) a) Let —oo<a=1/n and suppose u € M ,(R").
If the convex set supppu is n-dimensional, then p is absolutely continuous
with respect to m, and a suitable version of du/dm, is :0/(1 — an):-concave in R".
(b) If a>1/n and p € M (R"), then dimsupp u<n.

3. Some simple construction methods of :x:-concave measures in conves cones.
To begin with, note that

My (E; C) 2 ML(E; C), o505,
MJE; Cy) & MJE;Cy), CieCy,
M,(E; E) = R(E)
and
M _(E; H = R(E), H closed half space .

Also, by the Zorn lemma, any p € .#,(E; C) belongs to at least one class
M (E; C, (1), where C,(u) is minimal.

The one-dimensional case E=R is especially simple to treat since there only
are four closed convex cones in R. Recall that a smooth positive :f:-concave
function (B € R) f on a subinterval of R is characterized by the differential
inequality ff” + (B—1)f’2 £0. Often, this enables us to construct measures on
R which are :a:-concave in the cones in question. However, there are lots of
interesting exceptional cases and, in such a case, Theorem 2.1 may sometimes
be helpful. '

ExamPLE 3.1. We claim that each stable probability measure u on R with
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topological support R, is 0-concave in (R, ). In fact, due to a representation
formula of Zolotarev [31] there exist 6 >0 and 0 <a <1 such that

L3

u(]—o00,0x]) = %j exp (—v,(x,t))dt, x>0,
0

where for all x>0 and O<t<m,

v (x, 1) = xe" D .
(%) sint sin t

sin oct)“‘/“ “Dgin (1 —a)t

Thus the claim above follows if we prove that v, is convex. To see this we write

x.0) e (sinat)*(sin (1—a) 1=al-a/@@-1)
v (x,1) = x p ;
* sint sint

and note that the function (£,1) ~ &' 7% &3>0, is convex for each a<0.
Consequently, v, is convex if the function

sinat\*/sin (1 —o)t\!
- (_ ) , O<t<m,
sint sint

is convex, which is obvious as

d*> sinot  sinZat—oZsin®t
—— N = n .
dt* " sint sin? at sin? ¢

>0, O<t<nm.

It is well-known from the early Brunn-Minkowski theory that each concave
function, defined on a convex body in R”, induces a distribution measure which
is 1/n-concave in (R _ ). Before pushing this into a more general framework we
introduce some new definitions.

Under the conditions on E and C stated in the Introduction, the ordered
pair (E; C)is called a semi-ordered, locally convex Hausdorff space over R. For
all x,y € (E; C), the shorthand notation x<y means that y—x e C. Suppose
(F; D)is another semi-ordered, locally convex Hausdorff space over R and let u
be a mapping of a convex subset V of (E; C) into (F; D). Then u is said to be
increasing if [x,y € V, x<y = u(x)<u(y)] and convex if

[x,ye V,0<O<1 = u(fx+(1-06)y)] < 6u(x)+ (1 -0u(y)] .
THEOREM 3.1. Let T € M%(u,v; C), let u: (E; C) — (F; D) be Lusin p-, v-, and
T-measurable, and suppose there exists a C-invariant convex support V of the

measure p+v. If uly is increasing and convex, then u(t) € #°%(u(u),u(v); D).

Proor. Let A4, BS F be D-invariant. It is readily Seen that
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w1 (0A+(1—0)B) 2 8(u="(4) N V)+(1-6)u"'(B) N V)
where the sets u~*(4)NV and u~(B)N V are C-invariant. Finally, using that

Minner measure(u -t S )) = (“ (m))inner measure m=uv,t,

(see e.g. Schwartz [28, p. 25]) we are done.

ExaMpLE 3.2. Let E< {0} be a Banach space and suppose u € #,(E) («>
—00) has topological support E. Then each sphere in E is a y-null set. In the
Gaussian case the same result is due to Gross [16]. The interest of such a
message has been further emphasized by Topsee [30], who studies uniform
weak convergence of measures in restricted Banach spaces.

A combination of Theorems 2.1 and 3.1 yields

COROLLARY 3.1. Suppose p=fm, € #(R") and let u: R" — (R"; C) be a C?
mapping. Moreover, assume there exists an open convex set VS R" such that
u(V) supports p and such that u|y is injective and convex. Then u e # ,(R"; C)
(—ooZLaZ1/n), if (fou)|Ju| is :a/(1 —an):-concave in V, where Ju denotes the
Jacobian of u.

ExampLE 3.3. Let X,,...,X,, Y be stochastically independent N(O; 1)
distributed random variables and set Z=(X2/Y?,...,X2/Y?). The density
function f; of Z vanishes off R, and

fz2(z) = const.z7¥ ... z; 14z, +. .. +2,) D2 250,

Introducing u(&)=(£%,...,£2), £ € R", and applying Corollary 3.1 we now
conclude that P, e .#_,(R"; R%:). From the proof it also follows that
Pxy,... xyvy € # -1 (R).

Next we will discuss a quite different construction method which only makes
sense for C+{0}.

Let C+{0} be a closed convex cone in E and suppose a =1 is fixed. We now
choose a non-empty Borel set Co < C\ {0} such that (xR, )NCy={x}, x € C,,
and a bounded Borel function f: E — R, possessing the following properties;

(i) the measure v.: 4 ~ (¢ f(rx)14(rx)dr is a-concave in (C) for each
x € Cy,
(i) Oesuppv,, xeC,

Let t € #(E) be supported on C,. We claim that the Radon measure

Math. Scand. 53 — 9
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b= jvx(')df(x)

is an a-concave measure in {C). To see this, assume A, B € {C) are both of
positive u-measure and note that

v (04+(1—0B) 2 (BE(A)+ (1 —OWi(B),  xeCo,

because 0 € AN B. Finally, using the Minkowski inequality it follows that
ne M, (E; C).
The above construction shows the necessity in the following

THEOREM 3.2. Let 0>0. Each pe M,(E;C) is concentrated on a finite-
dimensional subspace of E if and only if C is finite-dimensional.

ProoF. Suppose C is finite-dimensional and represent E as a topological
direct sum of C—C and a complementary supspace F of E. Let u: (E; C)
— (F; {0}) be the canonical map and note that u is increasing and convex.
Thus, for any u € 4 ,(E; C), u(u) € #,(F) and Theorem 2.2 implies that u(y) is
concentrated on a finite-dimensional subspace of F. Consequently, u is
concentrated on a finite-dimensional subspace of E.

4. Finite-dimensional projections.

In the sequel, E' denotes the topological dual of E and C*={¢ € E'; &|¢
20}. If te #%puv;C) and ¢&,...,&,€C*, then, by Theorem 3.1,
u(t) € A8(u(w),u(v); R%), where u=(¢,,...,¢&,). To begin with in this section
we shall prove the following converse result.

THEOREM 4.1. Assume that the cone C*< C™ strictly separates C and points
belonging to the complement of C. If u,v,t € #(E) and u(7) € A3 (u(p), u(v); R%)
for all u=(&,,...,¢,) such that &,,...,E,€ C*, ne N,, then t € M3 (p,v; C).

Proor. Let 4, BS E be compact. We shall prove the following inequality
4.1) 1(0A+(1-0)B-C) =2 MY(u(A—C),v(A-0C)).

- To this end, first note that
0A+(1-6B-C =
N{6A+(1-0B-[&2—1,...52—1]:&,...,6, e C% ne N}
as 04+ (1—6)B is compact. Now let ¢>0 be fixed and choose
Co=[&z-1..,62-11 (.. ..5eC)
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satisfying the estimate
1(0A+(1-6B—C)+e = 1(6A+(1—-0)B—C,) .

Moreover, by compactness, we may pick ay,...,a, € A4, by,...,b, € B such
that Ac{a,...,a,} —Co and B&{b,,...,b,} —C,. Then

104+ (1—6)B—Co) 2 1(8{ay,. . ..a,} + (1—=0){by,...,b} —Co)

where the last member does not exceed

Mz(ll'({al" . "ap}_CO)’v({bls' . '9bq} —CO)) g Mg(H(A—C),V(B*’C)) .

Summing up, we have

1(0A+(1-0B—C)+& = M(u(A—C),v(B—C))

and (4.1) follows at once.

Theorem 4.1 raises the question how to characterize the classes .#,(R"; R")
in a simple way, which, however, seems to be very complicated for each n>1. It
should be remarked that an :a:-concave measure in {R% > is not generally, a
convex image of an :a:-concave measure on R? even if a<3.

ExaMpLE 4.1. Let I,,1,,I;={|x| =1, x € R%} be mutually disjoint closed arcs
of positive lengths. Set S;=convex hull {0} Ul), i=1,2,3, and introduce the
measure p(dx)=1lg ys,us,(x)dx/|x]. Of course, p<<m, and from the previous
section we know that u is 1-concave in (R%). However, there do not exist a
ved_ (R and a convex function u:suppv — supp u such that u(v)=p. In
fact, assuming the converse, necessarily, k =dim supp v>0and dimu~ ! ({0}) <k
— 1. Consequently, there exists a continuous curve in (supp y)\ {0} connecting
two of the three connected components of intsupp u, which is absurd.

We must leave the above question unanswered here and shall next discuss
some applications of Theorem 4.1.

Below, if a net () in Z(E) converges weakly to u e #(E), this fact is
expressed y; = .

COROLLARY 4.1. The map (u,v) — M2(u,v; C) is weakly closed, that is, if
‘T € MOy vi; C) and p; = p, v = v, T; = 1, then T € Mo, v; C).

ProoF. By Theorem 4.1 we may assume that (E; C)=(R"; R%) and the result
follows at once (compare [4, Th. 2.2]).

THEOREM 4.2. If u,v € M, (E), then u A v € A ,(E).



132 * CHRISTER BORELL

Theorem 4.2 does not extend to arbitrary :o:-concave measures in convex
cones. Note, however, that uave #,,((R; R,) if u,ve #,R;R,), which
follows by differentiation.

Proor. The finite-dimensional case is a consequence of Theorems 2.1 and
2.2. In the general case we argue as follows.

Letu: E — R" be an arbitrary linear continuous mapping. It shall be proved
that u(u A v) is :a:-concave. To this end, suppose A4, B are compact subsets of
R". Moreover, let G be a Borel set in R? and choose an arbitrarily linear
continuous map f: E — R”. Then, setting H=RP\ G, we have

p(u ™t (0A+(1-0)B) N f 1 (G)+v(u~ (04 + (1—6)B) N £ (H))
= Hun((0(AXR?)+(1-0)(BxRP) N (R"x G) +
+ V0 ((0(4 xRP)+ (1 -6)(Bx R?) N (R"x H))
where the last expression does not exceed
(B, ) A Y, p)(0(A X RP)+ (1 —0)(B x RP))
2 MU(, 1y A Vi, ) (A X RP), (1 1y A Vi 1) (B x RP)) .

Finally, using the inequality u, ;A v, 5 2 (1 A V), ), Theorem 4.2 follows at
once.

S. Multiplication by densities.

For all a,f € R satisfying a+ =0, we introduce half the harmonic mean
@'+, a+p>0,a%0 p+0,

x(e, B) = -0, a+f =0, («,f) * (0,0),
0 , a=p=0.

THEOREM 5.1. Suppose © € M3(u,v; C) (a € R) and let h € F5(f,g|E) (B € R),
where a+B2=0. If f,g,h: (E,C)—> R are bounded and decreasing, then
ht € M3, 5 (fit, 8v; C).

Here and throughout R is assumed to be endowed with its usual cone
ordering if not otherwise stated.
The proof of Theorem 5.1 is based on the next

LEMMA 5.1. Let « € R, f € R\ {0}, and suppose H € #%(F,G|R,).
a) If a>0>p and a+ =0, then
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5.1 jo xP-1H(x)dx 2 Mﬂ(,,p,(jo x8~1F(x)dx, Jo x””"G(x)dx) .

b) If a+B=0 and F,G,H decrease, then (5.1) is true.

ProOOF. Recall that the function &' 79, &, n>0, is concave (convex) if 0<a
<1 (a<0or a>1)

a) Since x'#7'H(x)e 97‘;(1+ﬂ-n,1)~x(x””"F(x),x””’lG(x)| R,) the in-
equality (5.1) follows from Theorem 2.1.

b) Step 1. 0<a <1, f>0.

Proor oF STep 1. Set I, =1I° I=F, G, H. Without loss of generality we may
assume that I(a(I))=0 for a suitable a(I)>0 and that the function Il 4y is
strictly decreasing and €. Then, by partial integration,

0

o0 B a(l)
J‘ xVE-1[(x)dx = —;j‘ xVB[M= 1 (x)](x) dx
0
and if i, denotes the inverse of the function I,|fo a4y We have

o g [
xV U (x)dx = ~ il (x)x "t dx .
0 « Jo

Moreover,
h,(0x+(1=0)y) 2 0f,(x)+(1-0)g,(»), 0=x=/,(0), 0=y=g,(0).
Thus, defining i,(x)=0, x>1i,(0), it follows that
BB OX € Fhp g (AP XL gh P (xR )

and (5.1) is an immediate consequence of Theorem 2.1.
StEP 2. 1<a< +00, f>0.

Proor oF SteP 2. Set I(-,&)=¢1,E>0,1=F, VG, H, and note that for all fixed
&n>0,

H(-,0¢+(1-0)n) € Fo1+0(F(,8.G(,mIR,).

Now using the previous step, we have

(0E+ (1—6)n) ‘ro xVB-1H (x)dx
0
" xVE-1F(x)dx, n jw x””"G(x)dx) .

0

Z M'f(u/(1+a))"+ﬁ")“(f j

0
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If F=0 or G=0 as. [m,] there is nothing to prove. If not, we set

(*oo »(a, B)
¢ = ( x‘“’“‘F(x)dx)

0

and

(oo *(a, B)
n= < x””‘lG(x)dx)

0

and a simple computation gives (5.1).

SteP 3. <0, f>0.

Proor or Step 3. By making some minor changes in the proof of Step 1, the
result follows at once. We omit the details here.

STEP 4. =0, f>0.

Proor or Step 4. The inequality (5.1) results from the previous step using
an obvious limit argument.

This concludes the proof of Lemma 5.1.

Proor oF THEOREM 5.1. For each A € {C) the indicator function 1 4: (E, C)
— R is non-negative and decreasing and, hence, it is enough to prove that

- Ihdr = Mf,(a,ﬂ,(ffdy, Jgdv).

To this end, first suppose f+0. Then, if 5,t>0,

(hz(Bs+ (1-0))"""] = 6[f2s'* ]+ (1-6O)[g=1"]
where all the involved sets are C-invariant. Accordingly,

t(hz (0s+(1—0))%) 2 MO(u(f2s'%), v(g2 /%)

and the desired inequality is obious from Lemma 5.1.

Finally, the case f=0, a>0 follows from the case already proved and the
case a=f=0 is a direct consequence of Theorem 2.1.

ExampLE 5.1. Suppose u € #,(E; C) (#=0) is concentrated on — C and let
c(a,p)=1,a=0; =@ '+p+1),a>0.If p: —C — R, is Borel measurable,
concave, ahd decreasing, then the function
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cwp [**
du, >0,
o+ ), ©% F

is O-concave.

To prove this assertion there is no loss of generality assuming
pe My R;R_), @(x)=x € R, and the result follows exploiting the same line
of reasoning as in the author’s work [8], which treats the case a=1/n,n € N,.
For the case a=0, p=1, see also Marshall and Olkin [20, p. 494].

It is simple to settle variants of the above conclusion in the parameter
interval —oo <a<0 to the cost of some beauty.

We shall next discuss some examples of convexity in potential theory.

ExaMPLE 5.2. Let a,,...,a, be non-zero vectors in Euclidean R3 satisfying
{a,a;»20,i,j=1,...,n. Suppose u € #(R?) is concentrated on the union of
the line segments [0,q;], i=1,...,n, and assume u reduces to a linear measure
on each individual line segment. Of course, p is 1-concave in {C), where C is
the convex cone spanned by the a;. From the above assumptions we conclude
that the Newtonian potential of g, that is [du(y)/|x—yl, is a —oo-convex
function of x in —C™.

ExaMPLE 5.3. Let I" be a closed convex cone in R" and suppose f; (R"; I')
— (R"; T) is an increasing, convex, and uniformly Lipschitz continuous
function. Below we let X denote the Brownian motion in R"” with the drift
vector f, that is

dX(t) = dB()+f(X(@®)dt, =0,

where (B(t),t=0) stands for the standard Brownian motion in R™ It is natural
that X inherits suitable convexity properties from those of the drift vector and
the Brownian motion. To explain this, let 2= (¢(R,)), Qr={w e Q; w() e T,
=0}, and pu,=Px[- | X (0)=x], respectively. We claim that

Hox+(1-6)y € '//l?)(u.v#y; Qp) .

This is evident if f=0. To prove the general case, suppose w € @ is fixed and
define

Xo(w,1) = o)

Xii(wt) = w(t)+f f(X(w,5)ds, t=0.
)

Here each map X,: (2; Qp) — (2; Q) is (increasing and) convex and
applying Theorem 3.1, we have
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Xk(“£x=+o(l —op) € "Ilg(xk(#£=0)a Xk(ﬂ£=0)§ Qr) .

Now using Corollary 4.1, the claim above follows by letting k tend to plus
infinity.

Suppose g: (R"; I') — R is bounded from below, increasing, and convex and
let A € <I') be convex. As is well-known the physical solution of the initial-
value problem

fAu+f-Vu—gu=0u/dt, >0
u(-,0)=1,

is given by the Feynman-Kac formula

u(x,t) = j exp(—j g(w(s)ds) du,(w) .
w(t)eA 0

Consequently, u(-, 1) is 0-concave for each fixed ¢ >0 and, of course, the same
function decreases as a mapping of (R”; I') into R.

THEOREM 5.2. For each i € {1,2}, let (E;; C,) be semi-ordered, locally convex
Hausdorff spaces over R and suppose t; € thi(m, v;;C), where o; € R and o, +a,
20. Then 1, ®1; € M3y o) (11 Oz, v, ®Vy; Cy x Cy). In particular, if E,=E,
=E, then t, %7, € My o)1y %3,V %v,; C +Cy).

Proor. For every M E, xE, and x, € E,, set
M(x;) = {x; € E;; (x;,x,) € M} .

Now choose 4,B e (C, xC,) arbitrarily but fixed and note that for all
x5,y € Ey,

04+ (1-0)B)(0x, + (1-06)y,) Z 6A(x,)+ (1—6)B(y,)
where each individual set is C,-invariant. Hence
1,((04+ (1-0)B)(6x, + (1— 0)y,) = M;, (p2(A(xy)),v2(B(3y))

and since for each ¢, € C,, A(x, —¢,)2A4(x,), and B(y, —c,) 2 B(,), the Fubini
theorem and Theorem 5.1 imply that

(1;®1,)(04+ (1-6)B) 2 M:(a,,az)((#l ®uz)(4), (v, ®v,)(B)) .

Finally, the last statement in Theorem 5.2 follows by combining Theorem
3.1 and the first part of Theorem 5.2.

CoRrOLLARY 5.1. If ¢, € R and a+ B =0, then
MNE; C)x MY(E; C) © M, 4(E; C).



CONVEXITY OF MEASURES IN CERTAIN CONVEX CONES ... 137

Corollary 5.1 is known in at least one special case for which C# E is a proper
cone. In fact, the inclusion

MoR;R)wMo(R;R_) & Mo(R;R)

is frequently used in the theory of reliability [1].

We will end this section by proving some complements of the results
obtained so far. Below X is a real-valued random variable and X,,..., X,
stand for stochastically independent copies of X.

First note that

PX € '/l{a(R; R+) = PmaxX, € ,//{a/"(R; R+)
15ksn
for each —oo<a < + 0o. Here the special case 0 < a < + 00, in fact, is included
in Theorem 5.2. More interesting, we have

THEOREM 5.3. Assume —oo<a< +00 and let f=f(a) be the largest member
— 00 Z B < + 00 having the following property:

(VneN,)(Pxe MR R) = Prpx € MyR;R)).

Then B(a)> —o0o. Moreover, B(x)<«, where equality occurs if and only if
a=>—1.

Theorem 5.3 is well-known if a=0 [1, p. 38]. The general case follows at
once from the next

LEMMA 5.2. Suppose neN,, o, feR\{0}, af>0, and f(x)=(1-(1
— x4 x>0, x'/* < 1. Then for any a>0 [ — 1 Za<0] the largest B such that f
is concave [convex] equals o. If a < — 1, then there exists a B, independent of n,
such that f is convex for every n21. The largest B with this property is strictly
smaller than o.

Proor. The second derivative of f(x) equals a times a strictly positive
function times

gy) = 1—n+(—ay+@p—1y"+ @—npy""", y=1-x"".

Since g(1 —)=0and g'(1 —)=n(x — B), necessarily, f < a if g < 0. Moreover, note
that g” has at most one change of sign and that g(0+)<0. Also, if a =, then
. g'(1—)<0 (respectively >0) if and only if (n—1)(ax+1)>0 (respectively <0).
Consequently,
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and _
o=f< -1 = —(gg0,alln).

In the following we suppose that the parameter « is strictly smaller than — 1.
If B(x) has the same meaning as in Theorem 5.3, then

= B(@ = sup[(1—n+(m—a)y—y"+ay" 1)/ (1" —y"* 1) : O<y<l,neN,].

Thus, f(¢)> — oo if and only if

sup[(1=n+@n—a)y+@—1)")/(m"(1-y) : 0<y<l,neN,] < +00.
Now setting
h(2) = (1—a—(n—a)z+ (@—1)(1-2)")/(nz(1-2)"), O<z<1,
and noting that h,;; _ . 1;=0, we conclude that B(x)> — oo if and only if
sup[h,(2): O<z<(l—a)/n, neN,] < +00.
This, however, follows at once from the formula
2h,(2) = (1—awh_;(2)— (1= 1/m)(a+1)/(1 = 2)"

and the already proved fact that the quantity h_,(z)=h_,(z,n) is uniformly
bounded from above. Lemma 5.2 is thereby completely proved.

6. Examples of stochastic processes with increasing paths inducing 0-concave
measures in suitable convex cones.

Throughout the present section I is assumed to be a fixed subinterval of the
real line and R! means R/ equipped with the topology of pointwise
convergence. »

As is well-known and. easy to see each real-valued stochastic process
X=(X(), t €I) satisfying

PIX()=X(@0] =1, sst

k4

induces a Radon probability measure Py on R! such that the closed convex
cone of all increasing functions on I supports Py. For additional information,
see e.g. Tjur [29, p. 170].

Now suppose Q: R — ]—o00, +00] is a decreasing function such that Q(x)1
400, x| —00, and Q(x) | 0, x T + oco. The extremal-Q process X = (X (t), t >0),
introduced by Dwass [14] and Lamperti [19], is a real-valued stochastic
process characterized by the following equation
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[ PIX(t)=x,,., X(t)Ex,] = eXP[— Y (=t )@ A Axn)}
k=1
l all O=ty<t;<...<t,, x1,...,x, €R,neN, .

If 0=ty<t,;<...<t, and U,,...,U, are real-valued stochastically inde-
pendent random variable with

PIUx] = exp[— (h—t,- O],  k=1,....n,

then the random vectors (X(ty,...,X(t,) and (U,,U, v U,,...,U; v ...
v U,) obey the same probability law. Thus, combining Theorems 3.1 and
5.2, we have

THEOREM 6.1. An extremal-Q process induces a 0-concave measure in
(RI®*y if and only if Q is convex.

ExampPLE 6.1. Consider a real-valued homogeneous Lévy process X =
(X (1),t>0), where

+o00

Efexp (ilX (1))] = exp (j

=00

(€®*— 1 —ilsin x) dt (x))

and 7 is a positive Borel measure on R such that {x ~ x*} € Ly joc(7) and
t(RN[=x,x])< +00, x>0. By a theorem of Dwass [15, p. 382], the
stochastic process '
Y(t) = sup (X(s+)—X(s—))*, >0,
O<s<t

is an extremal-Q process with Q(x)= + 00, x <0; =1(]x, 4+ 00[), x>0 (see also
Resnick and Rubinovitch [26, Th. 17). In particular, if 0<a <2 and X is an a-
stable, symmetric, and homogeneous Lévy process, then t(]x, +o00[)
- =const.x "% x>0, and, hence, Py is 0-concave in (R0 ool

Recall that a real-valued stochastic process X = (X (¢), t € I) is called additive
if the increments X(t,), X (t;)—X(ty),..., X(t,)—X(t,—,) are stochastically
independent for all points of time ¢; < .. .t,, n € N,. Below D, () denotes the
set of all non-negative increasing functions on I.

THEOREM 6.2. Any increasing and additive stochastic process X = (X (1), t € I),
processing M o(R; R.) distributed increments, induces a O-concave measure in

<D, ().

ProoF. Suppose &,,. .., &, € (D, ()" and choose t; <. .. <t, such that each
¢; only depends on the coordinates x(t,),. .., x(t,). Then, from Theorem 5.2,
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Pxe)x@)-xe).. .. Xt)-X,.,) € #o(R"; R%)

and using Theorem 3.1 we conclude that P(xq,,....x¢y) is O-concave in
{xe R, 0<x,<...5x,})>. Hence

P x)...enx) € Ho(R™RT)

and the result follows from Theorem 4.1.

EXAMPLE 6.2. Let X = (X (¢), t 20) be an one-sided, stable, and homogeneous
Lévy process. Remembering Example 3.1 we have that Py is O-concave in
D, (R.)). _

Now suppose B denotes a standard Brownian motion in R with B(0)=0 and
let 7, be the first time B hits x+0. Since (r,),., is a one-sided i-stable
homogeneous Lévy process it follows that the probability

P[ max B(t) = x,, k;l,...,n}
Ot

is a 0-concave function of (t,,...,t,)>0 for all fixed x,,...,x,>0.

ExaMPLE 6.3. Consider an extremal-Q process X = (X (t), t>0) such that a
=inf{x; Q(x) < + oo} and b=sup {x; Q(x)>0} do not coincide. Set X ~!(x)=
inf{t; X(t)>x}, a<x<b. From Resnick [25, Th. 1], we know that the
stochastic process X ~! is increasing and additive. Moreover, for arbitrary a < x
<y<b,

PIX7'(x)=f] = 1—exp(—1Q(x), t>0,
and
PIX'()-X"'(x)<t] = 0+(1—0)(1—exp(—-tQ(y))), t>0,

for a suitable 0<6=6(x,y)<1. Consequently, Py-: is O-concave in

<D (Ja,bD)>.

7. A zero-one law.

A non-empty subset G of E is said to be an additive subgroup of E if G— G
=G.

THEOREM 7.1. Suppose pu € M (E; C) and let G be a u-measurable additive
subgroup of E with strictly positive p-measure.

a) If G is C-invariant, then p is supported on G.
b) If «> — oo, then p is supported on C+G.
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Here Part a) is a pure extension of the zero-one law for —oo-convex
measures [4].

ProoF. We first choose a compact set K= —K <G, with u(K)>0, and set

A=C+|JIK+...+K: neN,].

n terms

Now, because u(AN (K~ C))>0, there exists a compact set LS EN[AU (K
— )] such that u(E\ (AU L))< u(K —C). Moreover, for each ne N,

EN(4UL) 2 n—:_-;[E\{AU(nK+(n+1)L+C}]+£T(K—C)

and as the complement of a — C-invariant set is C-invariant, we have
H(EN (AUL)) 2 min (u(EN\ {AU (nK+ (n+ 1)L+ C)}),u(K—C)) .
Thus
H(EN(AUL) 2 p(EN{AU @K+ (n+1)L+C)})

and, hence,

u(nK+m+1)L+C) = u(L), all neN, .
However, for any fixed compact McE, MN(nK+ (n+1)L+C)=F for an
appropriate n € N, and it follows that u(L)=0, which proves Part a).

To show Part b), first note that u(E\ A)<u(K—C). If u(EX\ A)>0, then we
may use the relation

ENA 2 H{ENA+HK-0)
and have
prCNEN A < Bt TUEN A+t T NK - 0)
that is, u(E\ A)=u(K —C), which is a contradiction. Thus u(E\ A)=0 and

Part b) is proved, too.

COROLLARY 7.1. Let p € M ,(E; C) (o> —o0). If a € E is an atom of u, then p
is concentrated on a+ C.

8. Integrability of sublinear functions.

A function ¢: E - RU{+00} is said to be an extended valued sublinear
function if
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ox+y) £ o(x)+0()), x,yekE,
@(Ax) = Ap(x), A>0, xeE.

Below, for any ¢: E — RU{+o00}, we set ¢ _(x)=¢(—x), x € E.
THEOREM 8.1. Suppose pe M, (E; C) (a>—00) and let ¢ and ¢_ be

u-measurable extended valued sublinear functions such that @|c< +o00 and
ul@+¢@_<+00)>0. Then p< +00 as. [u]. If 920, ¢|c=0, and

(i) —oco<a<0, then f e L,(n), 0<p<—1/a,
(ii) =0, then exp (ep) € L,(u) for some £¢>0,
(i) >0, then ¢ € L ().

In the special case C={0}, Theorem 8.1 is well-known [4]. For connections
with integrability of Gaussian semi-norms, se e.g. [17].

Proor. The first part of Theorem 8.1 follows from Theorem 7.1. Now suppose
@20 and ¢|c-=0. Then, for all s>0 and t>1,

2 t—1
e QS >
[p>s] 2 ; 1[(P=St]+t 1[<P-<S]

where the sets in the right-hand side are C-invariant. Consequently,

ul@>s) = MIH D (u(pzst), u(@- <s)) .

Cask (i): First choose an s>0 satisfying the inequalities
Wp>s) > 2u*(p_<s) > 0.
Then u(p=st)=0(:/*) as t — + oo and thus ¢? € L, (u) for each 0<p< —1/a.

CASE (ii) may be treated as Case (i).

Cask (iii): If ¢ ¢ L (u), then for all large s>0
w(@>s) Z 3 (@229 +1u (9 <)
which implies the contradiction 0= (1/3)u*(¢ - < +00).
This completes the proof of Theorem 8.1.

Recall that a measure p € #(E) has a barycentre at the point e € E if
E'cL,(w) and &(e)=[¢dp, & € E. The next theorem is an example of an
application of Theorem 8.1.
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THEOREM 8.2. Assume pue #,(E; C) (x> —1) has a barycentre ec E.
Moreover, suppose G is an affine linear subspace of E such that u(K)>0 for a
suitable compact and convex K< G. Then e € C+G.

Proor. Of course, there is no loss of generality to set e=0. Now write G=F
—a, where a € —G is fixed. If 0 ¢ C+G, that is, a ¢ C+ F, then we obtain a
contraction as follows.

Suppose L £ F is a compact, convex, and symmetric set such that u,(L)= u(L
—a)>0 and choose for each n e N, a £, € E’ such that £ (x)>¢,(a), xe C
+nL. Obviously, each &, € C* and without loss of generality we may assume
that ¢,(a)= —1. Set p=supyen, &, - Then p(@+¢_ < +00)>0 and ¢|-=0.
Thus ¢ € L,(u,) by Theorem 8.1 and it follows that
lim Jé,,’ dp, =0

n— + oo

since in view of Theorem 7.1, £, — 0 ass. [u,] as n — +o00. But

jc; du, = (jé,.duay —1

and we have got a contradiction.
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