CONVEXITY OF MEASURES IN CERTAIN CONVEX CONES IN VECTOR SPACE σ-ALGEBRAS

CHRISTER BORELL

1. Introduction.

The Brunn–Minkowski theory on vector spaces deals with all types of connections between set functions and linear combination of sets. Below we will treat a special situation when the sets are restricted to a certain convex cone in the underlying σ-algebra.

Let $0 < \theta < 1$ and $-\infty \leq a \leq +\infty$ be fixed. For any $0 < s, t \leq +\infty$ define the mean

$$M^a_\theta(s, t) = (\theta s^a + (1 - \theta) t^a)^{1/a}, \quad a \in \mathbb{R} \setminus \{0\};$$

$$= \min (s, t), \quad a = -\infty;$$

$$= s^\theta t^{1-\theta}, \quad a = 0;$$

$$= \max (s, t), \quad a = +\infty.$$

Here $0^a = +\infty$, if $-\infty < a < 0$. Finally, for arbitrary $0 \leq s, t \leq +\infty$,

$$M^a_\theta(s, t) = 0, \quad \text{if} \ s = 0 \ \text{or} \ t = 0.$$

Throughout E denotes a real, locally convex Hausdorff vector space and $C \ni 0$ stands for a fixed closed convex cone in E. Set

$$\langle C \rangle = \{ K - C; \ E \ni K \ \text{compact} \}.$$

Clearly,

$$s, t \geq 0, \quad A, B \in \langle C \rangle \Rightarrow sA + tB \in \langle C \rangle.$$

In addition, each set $A \in \langle C \rangle$ is C-invariant, that is, $A - C = A$. Given $-\infty \leq \alpha < +\infty$, we shall write $\mu \in \mathcal{M}_\alpha(E; C)$, if μ is a finite positive Radon measure on E (abbreviated $\mu \in \mathcal{R}(E)$) and

$$\mu(\theta A + (1 - \theta)B) \geq M^a_\theta(\mu(A), \mu(B))$$

for all $A, B \in \langle C \rangle$ and every $0 < \theta < 1$. A measure satisfying these assumptions

Received February 16, 1982; in revised form June 3, 1982.
is said to be \(\alpha\)-concave in \(\langle C \rangle\). For brevity, \(\mathcal{M}_\alpha(E; \{0\})\) is written \(\mathcal{M}_\alpha(E)\) and an \(\alpha\)-concave measure in \(\langle \{0\} \rangle\) is simply called \(\alpha\)-concave. Below, by abuse of language, "\(\alpha\)-concave" is sometimes shortened to "\(\alpha\)-concave" ("\(\alpha\)-convex") if \(\alpha \geq 0\) (\(\alpha \leq 0\)).

The interest in \(1/n\)-concave measures originates from Brunn and Minkowski who show that the uniform distribution in an arbitrary convex body in \(\mathbb{R}^n\) is \(1/n\)-concave (restricted to convex bodies). The main features of 0-concave measures on \(\mathbb{R}^n\) are due to Davidović, Korenblum, and Hacet [11], Prekopa ([21], [22], [23]) and the author [3]. In ([4], [5], [6], [7]) we continue this program introducing \(\alpha\)-concave measures on possibly infinite-dimensional spaces. During the past few years this subject has been enriched on the foundational level, mainly by Brascamp and Lieb ([9], [10]), Dubuc ([12], [13]), and Hoffmann-Jørgensen [17].

The present paper is devoted to a study of \(\alpha\)-concave measures in convex cones of the type \(\langle C \rangle\) introduced above. One motivation for this is the following. Let \(X = (X_1, \ldots, X_n)\) be a random vector in \(\mathbb{R}^n\) with probability distribution function \(F_X(x_1, \ldots, x_n) = P[X_1 \leq x_1, \ldots, X_n \leq x_n]\). In a variety of different contexts it may be useful to know that \(F_X\) is \(\alpha\)-concave, that is, to know that the inequality \(F_X(\theta x + (1-\theta)y) \geq M^\alpha_x(F_X(x), F_X(y))\) is true for all \(x, y \in \mathbb{R}^n\) and each \(0 < \theta < 1\) (see e.g. Barlow and Proschan (reliability theory) [1], Berwald (convexity) [2], Hoffmann-Jørgensen, Shepp, and Dudley (absolute continuity of semi-norms) [18], Prekopa (stochastic programming) [24], and Rinott (statistics) [27]). Here two remarks are in order. Firstly, in almost all cases of interest, it is a non-trivial problem to decide whether \(F_X\) is \(\alpha\)-concave or not. Secondly, it seems to be an almost hopeless task to develop a convex analysis based on \(\alpha\)-concave distribution functions in \(\mathbb{R}^n(n > 1)\). In this context \(\alpha\)-concave measures in \(\langle \mathbb{R}^n_+ \rangle\) have some advantages as will be seen below.

A second reason for this paper is to deepen the Brunn–Minkowski approach to measures on linear spaces. Among other things, we prove zero-one laws and integrability of appropriate semi-norms.

Acknowledgment. The author is grateful to the referee for pointing out an error in an earlier version of this paper.

2. The basic results for the class \(\mathcal{M}_\alpha(\mathbb{R}^n)\).

Throughout, \(-\infty \leq \alpha < +\infty\), \(-\infty \leq \beta \leq +\infty\), and \(0 < \theta < 1\) are assumed to be fixed if not otherwise stated. Given \(\mu, \nu \in \mathcal{R}(E)\), we let

\[\mathcal{M}_\alpha^\theta(\mu, \nu; C) = \{\tau \in \mathcal{R}(E) \mid \tau(\theta A + (1-\theta)B) \geq M^\theta_x(\mu(A), \nu(B)), A, B \in \langle C \rangle\}\]

and set \(\mathcal{M}_\alpha^\theta(\mu, \nu; \{0\}) = \mathcal{M}^\theta(\mu, \nu)\). If \(V \subseteq E\) is universally Borel measurable and
convex, then the notation \(h \in \mathcal{F}_\beta(f, g \mid V) \) will mean that \(f, g, h : V \to [0, +\infty] \) are universally Borel measurable functions satisfying the inequality
\[
h(\theta x + (1 - \theta)y) \leq M^\theta_\beta(f(x), g(y)) \text{ for all } x, y \in V.
\]
The members in the class
\[
\mathcal{F}_\beta(V) = \{ f : V \to [0, +\infty] ; f \in \mathcal{F}_\beta^\theta(f, f \mid V), 0 < \theta < 1 \}
\]
are called \(\beta \)-concave functions in \(V \).

Theorem 2.1. ([3, Th. 3.1]) If \(f, g, h \in L^1_\alpha(m_n), -\infty \leq \alpha \leq 1/n, \) and
\(h \in \mathcal{F}_\alpha(1-\alpha)(f, g \mid \mathbb{R}^n) \), then \(hm_n \in \mathcal{M}_\alpha(fm_n, gm_n) \).

Here \(m_n \) denotes Lebesgue measure in \(\mathbb{R}^n \) and \(\alpha/(1-\alpha) = -1/n, \alpha = -\infty, = +\infty, \alpha = 1/n \).

Theorem 2.2. ([3, Th. 3.2]) a) Let \(-\infty \leq \alpha \leq 1/n \) and suppose \(\mu \in \mathcal{M}_\alpha(\mathbb{R}^n) \). If the convex set \(\text{supp} \mu \) is \(n \)-dimensional, then \(\mu \) is absolutely continuous with respect to \(m_n \) and a suitable version of \(d\mu/dm_n \) is \(\alpha/(1-\alpha) \)-concave in \(\mathbb{R}^n \).

b) If \(\alpha > 1/n \) and \(\mu \in \mathcal{M}_\alpha(\mathbb{R}^n) \), then \(\text{dim \ sup} \mu < n \).

3. Some simple construction methods of \(\alpha \)-concave measures in convex cones.

To begin with, note that
\[
\mathcal{M}_\alpha(E; C) \supseteq \mathcal{M}_\alpha(E; C), \quad \alpha_1 \leq \alpha_2 ,
\]
\[
\mathcal{M}_\alpha(E; C_1) \subseteq \mathcal{M}_\alpha(E; C_2), \quad C_1 \subseteq C_2 ,
\]
\[
\mathcal{M}_\alpha(E; E) = \mathcal{R}(E)
\]

and
\[
\mathcal{M}_{-\infty}(E; H) = \mathcal{R}(E), \quad \text{H closed half space}.
\]

Also, by the Zorn lemma, any \(\mu \in \mathcal{M}_\alpha(E; C) \) belongs to at least one class \(\mathcal{M}_\alpha(E; C_\alpha(\mu)) \), where \(C_\alpha(\mu) \) is minimal.

The one-dimensional case \(E = \mathbb{R} \) is especially simple to treat since there only are four closed convex cones in \(\mathbb{R} \). Recall that a smooth positive \(\beta \)-concave function \((\beta \in \mathbb{R}) \) \(f \) on a subinterval of \(\mathbb{R} \) is characterized by the differential inequality \(ff'' + (\beta - 1)f'^2 \leq 0 \). Often, this enables us to construct measures on \(\mathbb{R} \) which are \(\alpha \)-concave in the cones in question. However, there are lots of interesting exceptional cases and, in such a case, Theorem 2.1 may sometimes be helpful.

Example 3.1. We claim that each stable probability measure \(\mu \) on \(\mathbb{R} \) with
topological support R_+^∞ is 0-concave in $\langle R_+ \rangle$. In fact, due to a representation formula of Zolotarev [31] there exist $\delta > 0$ and $0 < \alpha < 1$ such that

$$\mu([-\infty, \delta x]) = \frac{1}{\pi} \int_0^\infty \exp (-v_\alpha(x, t)) \, dt, \quad x > 0,$$

where for all $x > 0$ and $0 < t < \pi$,

$$v_\alpha(x, t) = x^{\alpha/(\alpha-1)} \left(\frac{\sin \alpha t}{\sin t} \right)^{\alpha/(1-\alpha)} \frac{\sin (1-\alpha)t}{\sin t} .$$

Thus the claim above follows if we prove that v_α is convex. To see this we write

$$v_\alpha(x, t) = x^{\alpha/(\alpha-1)} \left[\left(\frac{\sin \alpha t}{\sin t} \right)^{\alpha} \left(\frac{\sin (1-\alpha)t}{\sin t} \right)^{1-\alpha} \right]^{1-\alpha/(\alpha-1)}$$

and note that the function $(\xi, \eta) \mapsto \xi^\alpha \eta^{1-\alpha}$, $\xi, \eta > 0$, is convex for each $\alpha < 0$. Consequently, v_α is convex if the function

$$\left(\frac{\sin \alpha t}{\sin t} \right)^{\alpha} \left(\frac{\sin (1-\alpha)t}{\sin t} \right)^{1-\alpha}, \quad 0 < t < \pi,$$

is convex, which is obvious as

$$\frac{d^2}{dt^2} \ln \frac{\sin \alpha t}{\sin t} = \frac{\sin^2 \alpha t - \alpha^2 \sin^2 t}{\sin^2 \alpha t \sin^2 t} > 0, \quad 0 < t < \pi .$$

It is well-known from the early Brunn–Minkowski theory that each concave function, defined on a convex body in \mathbb{R}^n, induces a distribution measure which is $1/n$-concave in $\langle R_+ \rangle$. Before pushing this into a more general framework we introduce some new definitions.

Under the conditions on E and C stated in the Introduction, the ordered pair $(E; C)$ is called a semi-ordered, locally convex Hausdorff space over R. For all $x, y \in (E; C)$, the shorthand notation $x \prec y$ means that $y - x \in C$. Suppose $(F; D)$ is another semi-ordered, locally convex Hausdorff space over R and let u be a mapping of a convex subset V of $(E; C)$ into $(F; D)$. Then u is said to be increasing if $[x, y \in V, x \prec y \Rightarrow u(x) < u(y)]$ and convex if

$$[x, y \in V, 0 < \theta < 1 \Rightarrow u(\theta x + (1-\theta)y)] < \theta u(x) + (1-\theta)u(y) .$$

Theorem 3.1. Let $\tau \in M_0^0(\mu, \nu; C)$, let $u: (E; C) \to (F; D)$ be Lusin μ, ν, and τ-measurable, and suppose there exists a C-invariant convex support V of the measure $\mu + \nu$. If $u|_V$ is increasing and convex, then $u(\tau) \in M_0^0(u(\mu), u(\nu); D)$.

Proof. Let $A, B \subseteq F$ be D-invariant. It is readily seen that
\[u^{-1}(\theta A + (1 - \theta)B) \supseteq \theta(u^{-1}(A) \cap V) + (1 - \theta)(u^{-1}(B) \cap V) \]

where the sets \(u^{-1}(A) \cap V \) and \(u^{-1}(B) \cap V \) are \(C \)-invariant. Finally, using that

\[m_{\text{inner measure}}(u^{-1}(\cdot)) = (u(m)_{\text{inner measure}} \quad m = \mu, \nu, \tau, \]

(see e.g. Schwartz [28, p. 25]) we are done.

Example 3.2. Let \(E \neq \{0\} \) be a Banach space and suppose \(\mu \in \mathcal{M}_\alpha(E) \) \((\alpha > -\infty) \) has topological support \(E \). Then each sphere in \(E \) is a \(\mu \)-null set. In the Gaussian case the same result is due to Gross [16]. The interest of such a message has been further emphasized by Topsøe [30], who studies uniform weak convergence of measures in restricted Banach spaces.

A combination of Theorems 2.1 and 3.1 yields

Corollary 3.1. Suppose \(\mu = f m_n \in \mathcal{R}(\mathbb{R}^n) \) and let \(u : \mathbb{R}^n \to (\mathbb{R}^n; C) \) be a \(C^2 \) mapping. Moreover, assume there exists an open convex set \(V \subseteq \mathbb{R}^n \) such that \(u(V) \) supports \(\mu \) and such that \(u|_V \) is injective and convex. Then \(\mu \in \mathcal{M}_\alpha(\mathbb{R}^n; C) \) \((-\infty \leq \alpha \leq 1/n) \), if \((f \circ u)|Ju| \) is \(\alpha/(1-\alpha) \)-concave in \(V \), where \(Ju \) denotes the Jacobian of \(u \).

Example 3.3. Let \(X_1, \ldots, X_n, Y \) be stochastically independent \(N(0; 1) \)-distributed random variables and set \(Z = (X_1^2/Y^2, \ldots, X_n^2/Y^2) \). The density function \(f_Z \) of \(Z \) vanishes off \(\mathbb{R}^n_+ \) and

\[f_Z(z) = \text{const.} z_1^{\frac{1}{2}} \cdots z_n^{\frac{1}{2}}(1 + z_1 + \ldots + z_n)^{-\frac{n+1}{2}}, \quad z > 0. \]

Introducing \(u(\xi) = (\xi_1^2, \ldots, \xi_n^2), \) \(\xi \in \mathbb{R}^n \), and applying Corollary 3.1 we now conclude that \(P_Z \in \mathcal{M}_{-1}(\mathbb{R}^n; \mathbb{R}^n_+) \). From the proof it also follows that \(P_{(X_i/Y_1, \ldots, X_n/Y)} \in \mathcal{M}_{-1}(\mathbb{R}^n) \).

Next we will discuss a quite different construction method which only makes sense for \(C \neq \{0\} \).

Let \(C \neq \{0\} \) be a closed convex cone in \(E \) and suppose \(\alpha \geq 1 \) is fixed. We now choose a non-empty Borel set \(C_0 \subseteq C \setminus \{0\} \) such that \((x\mathbb{R}_+) \cap C_0 = \{x\}, \) \(x \in C_0 \), and a bounded Borel function \(f : E \to \mathbb{R}_+ \) possessing the following properties;

(i) the measure \(\nu_x : A \mapsto \int_0^\infty f(rx)1_A(rx) \, dr \) is \(\alpha \)-concave in \(\langle C \rangle \) for each \(x \in C_0 \),

(ii) \(0 \in \text{supp} \nu_x, \quad x \in C_0 \).

Let \(\tau \in \mathcal{R}(E) \) be supported on \(C_0 \). We claim that the Radon measure
\[\mu = \int v_x(\cdot) \, d\tau(x) \]

is an \(\alpha \)-concave measure in \(\langle C \rangle \). To see this, assume \(A, B \in \langle C \rangle \) are both of positive \(\mu \)-measure and note that

\[v_x(\theta A + (1 - \theta)B) \geq (\theta v_x^\alpha(A) + (1 - \theta)v_x^\alpha(B))^{1/\alpha}, \quad x \in C_0, \]

because \(0 \in A \cap B \). Finally, using the Minkowski inequality it follows that \(\mu \in \mathcal{M}_\alpha(E; C) \).

The above construction shows the necessity in the following

Theorem 3.2. Let \(\alpha > 0 \). Each \(\mu \in \mathcal{M}_\alpha(E; C) \) is concentrated on a finite-dimensional subspace of \(E \) if and only if \(C \) is finite-dimensional.

Proof. Suppose \(C \) is finite-dimensional and represent \(E \) as a topological direct sum of \(C - C \) and a complementary subspace \(F \) of \(E \). Let \(u: (E; C) \to (F; \{0\}) \) be the canonical map and note that \(u \) is increasing and convex. Thus, for any \(\mu \in \mathcal{M}_\alpha(E; C) \), \(u(\mu) \in \mathcal{M}_\alpha(F) \) and Theorem 2.2 implies that \(u(\mu) \) is concentrated on a finite-dimensional subspace of \(F \). Consequently, \(\mu \) is concentrated on a finite-dimensional subspace of \(E \).

In the sequel, \(E' \) denotes the topological dual of \(E \) and \(C^+ = \{ \xi \in E'; \xi|_C \geq 0 \} \). If \(\tau \in \mathcal{M}_\alpha^0(\mu, \nu; C) \) and \(\xi_1, \ldots, \xi_n \in C^+ \), then, by Theorem 3.1, \(u(\tau) \in \mathcal{M}_\alpha^0(u(\mu), u(\nu); \mathbb{R}^n) \), where \(u = (\xi_1, \ldots, \xi_n) \). To begin with in this section we shall prove the following converse result.

Theorem 4.1. Assume that the cone \(C^\ast \subseteq C^+ \) strictly separates \(C \) and points belonging to the complement of \(C \). If \(\mu, \nu, \tau \in \mathcal{B}(E) \) and \(u(\tau) \in \mathcal{M}_\alpha^0(u(\mu), u(\nu); \mathbb{R}^n) \) for all \(u = (\xi_1, \ldots, \xi_n) \) such that \(\xi_1, \ldots, \xi_n \in C^\ast \), \(n \in \mathbb{N}_+ \), then \(\tau \in \mathcal{M}_\alpha^0(\mu, \nu; C) \).

Proof. Let \(A, B \subseteq E \) be compact. We shall prove the following inequality

\[\tau(\theta A + (1 - \theta)B - C) \geq M_\alpha^0(\mu(A - C), \nu(A - C)) \]

To this end, first note that

\[\theta A + (1 - \theta)B - C = \\bigcap \{ \theta A + (1 - \theta)B - [\xi_1 \geq -1, \ldots, \xi_n \geq -1]: \xi_1, \ldots, \xi_n \in C^\ast, n \in \mathbb{N}_+ \} \]

as \(\theta A + (1 - \theta)B \) is compact. Now let \(\varepsilon > 0 \) be fixed and choose

\[C_0 = [\xi_1 \geq -1, \ldots, \xi_n \geq -1] \quad (\xi_1, \ldots, \xi_n \in C^\ast) \]
satisfying the estimate
\[\tau(\theta A + (1 - \theta)B - C) + \varepsilon \geq \tau(\theta A + (1 - \theta)B - C_0). \]
Moreover, by compactness, we may pick \(a_1, \ldots, a_p \in A, b_1, \ldots, b_q \in B \) such that \(A \subseteq \{a_1, \ldots, a_p\} - C_0 \) and \(B \subseteq \{b_1, \ldots, b_q\} - C_0 \). Then
\[\tau(\theta A + (1 - \theta)B - C_0) \geq \tau(\theta\{a_1, \ldots, a_p\} + (1 - \theta)\{b_1, \ldots, b_q\} - C_0) \]
where the last member does not exceed
\[M_\varepsilon^\theta(\mu(\{a_1, \ldots, a_p\} - C_0), \nu(\{b_1, \ldots, b_q\} - C_0)) \geq M_\varepsilon^\theta(\mu(A - C), \nu(B - C)). \]
Summing up, we have
\[\tau(\theta A + (1 - \theta)B - C) + \varepsilon \geq M_\varepsilon^\theta(\mu(A - C), \nu(B - C)) \]
and (4.1) follows at once.

Theorem 4.1 raises the question how to characterize the classes \(\mathcal{M}_x(\mathbb{R}^n; \mathbb{R}_+^n) \) in a simple way, which, however, seems to be very complicated for each \(n > 1 \). It should be remarked that an \(\alpha \)-concave measure in \(\langle \mathbb{R}^2_+ \rangle \) is not generally, a convex image of an \(\alpha \)-concave measure on \(\mathbb{R}^2 \) even if \(\alpha \leq \frac{1}{2} \).

Example 4.1. Let \(I_1, I_2, I_3 \subseteq \{x| = 1, x \in \mathbb{R}^2_+\} \) be mutually disjoint closed arcs of positive lengths. Set \(S_i = \text{convex hull} \{0 \cup I_i\}, i = 1, 2, 3, \) and introduce the measure \(\mu(dx) = 1_{S_1 \cup S_2 \cup S_3}(x)dx/|x| \). Of course, \(\mu \ll m_2 \) and from the previous section we know that \(\mu \) is 1-concave in \(\langle \mathbb{R}^2_+ \rangle \). However, there do not exist a \(v \in \mathcal{M}_{-\infty}(\mathbb{R}^n) \) and a convex function \(u: \text{supp} \nu \rightarrow \text{supp} \mu \) such that \(u(\nu) = \mu \). In fact, assuming the converse, necessarily, \(k = \dim \text{supp} \nu > 0 \) and \(\dim u^{-1}(\{0\}) \leq k - 1 \). Consequently, there exists a continuous curve in \((\text{supp} \mu) \setminus \{0\} \) connecting two of the three connected components of \(\text{int} \text{supp} \mu \), which is absurd.

We must leave the above question unanswered here and shall next discuss some applications of Theorem 4.1.

Below, if a net \((\mu_i) \) in \(\mathcal{R}(E) \) converges weakly to \(\mu \in \mathcal{R}(E) \), this fact is expressed \(\mu_i \Rightarrow \mu \).

Corollary 4.1. The map \((\mu, \nu) \rightarrow \mathcal{M}_x^\theta(\mu, \nu; C) \) is weakly closed, that is, if \(\tau_i \in \mathcal{M}_x^\theta(\mu_i, \nu_i; C) \) and \(\mu_i \Rightarrow \mu, \nu_i \Rightarrow \nu, \tau_i \Rightarrow \tau \), then \(\tau \in \mathcal{M}_x^\theta(\mu, \nu; C) \).

Proof. By Theorem 4.1 we may assume that \((E; C) = (\mathbb{R}^n; \mathbb{R}_+^n) \) and the result follows at once (compare [4, Th. 2.2]).

Theorem 4.2. If \(\mu, \nu \in \mathcal{M}_x(E) \), then \(\mu \land \nu \in \mathcal{M}_x(E) \).
Theorem 4.2 does not extend to arbitrary α-concave measures in convex cones. Note, however, that $\mu \wedge \nu \in \mathcal{M}_x \wedge _1(R; R_+)$ if $\mu, \nu \in \mathcal{M}_x(R; R_+)$, which follows by differentiation.

PROOF. The finite-dimensional case is a consequence of Theorems 2.1 and 2.2. In the general case we argue as follows.

Let $u: E \to R^n$ be an arbitrary linear continuous mapping. It shall be proved that $u(\mu \wedge \nu)$ is α-concave. To this end, suppose A, B are compact subsets of R^n. Moreover, let G be a Borel set in R^p and choose an arbitrarily linear continuous map $f: E \to R^p$. Then, setting $H = R^p \setminus G$, we have

$$
\mu(u^{-1}(\theta A + (1-\theta)B) \cap f^{-1}(G)) + \nu(u^{-1}(\theta A + (1-\theta)B) \cap f^{-1}(H))
= \mu(u, f)((\theta (A \times R^p) + (1-\theta)(B \times R^p)) \cap (R^n \times G)) +
+ \nu(u, f)((\theta (A \times R^p) + (1-\theta)(B \times R^p) \cap (R^n \times H))
$$

where the last expression does not exceed

$$
(\mu(u, f) \wedge \nu(u, f))(\theta (A \times R^p) + (1-\theta)(B \times R^p)) \geq M^\theta_2((\mu(u, f) \wedge \nu(u, f))(A \times R^p), (\mu(u, f) \wedge \nu(u, f))(B \times R^p))
$$

Finally, using the inequality $\mu(u, f) \wedge \nu(u, f) \geq (\mu \wedge \nu)(u, f)$, Theorem 4.2 follows at once.

5. Multiplication by densities.

For all $\alpha, \beta \in R$ satisfying $\alpha + \beta \geq 0$, we introduce half the harmonic mean

$$
\kappa(\alpha, \beta) = \begin{cases}
(\alpha^{-1} + \beta^{-1})^{-1}, & \alpha + \beta > 0, \alpha \neq 0, \beta \neq 0, \\
-\infty, & \alpha + \beta = 0, (\alpha, \beta) \neq (0,0), \\
0, & \alpha = \beta = 0.
\end{cases}
$$

THEOREM 5.1. Suppose $\tau \in \mathcal{M}_x^\theta(\mu, \nu; C) (\alpha \in R)$ and let $h \in \mathcal{F}_\beta^\theta(f, g, |E) (\beta \in R)$, where $\alpha + \beta \geq 0$. If $f, g, h: (E, C) \to R$ are bounded and decreasing, then $ht \in \mathcal{M}_x^\theta(\kappa(\alpha, \beta)f \mu, g \nu; C)$.

Here and throughout R is assumed to be endowed with its usual cone ordering if not otherwise stated.

The proof of Theorem 5.1 is based on the next

LEMMA 5.1. Let $\alpha \in R$, $\beta \in R \setminus \{0\}$, and suppose $H \in \mathcal{F}_x^\theta(F, G| R_+)$.

a) If $\alpha > 0 > \beta$ and $\alpha + \beta \geq 0$, then
CONVEXITY OF MEASURES IN CERTAIN CONVEX CONES... 133

(5.1) \[\int_0^\infty x^{1/\beta - 1} H(x) \, dx \geq M^\theta_{\alpha, \beta} \left(\int_0^\infty x^{1/\beta - 1} F(x) \, dx, \int_0^\infty x^{1/\beta - 1} G(x) \, dx \right). \]

b) If \(\alpha + \beta \geq 0 \) and \(F, G, H \) decrease, then (5.1) is true.

PROOF. Recall that the function \(\xi^a \eta^{1-a}, \xi, \eta > 0 \), is concave (convex) if \(0 < a < 1 \) (\(a < 0 \) or \(a > 1 \)).

a) Since \(x^{1/\beta - 1} H(x) \in \mathcal{F}_{(\alpha^{-1} + \beta^{-1} - 1)^{-1}}(x^{1/\beta - 1} F(x), x^{1/\beta - 1} G(x) | R_+) \) the inequality (5.1) follows from Theorem 2.1.

b) STEP 1. \(0 < \alpha \leq 1, \beta > 0 \).

Proof of Step 1. Set \(I_x = I^x, I = F, G, H \). Without loss of generality we may assume that \(I(a(l)) = 0 \) for a suitable \(a(l) > 0 \) and that the function \(I |_L | [0, a(l)] \) is strictly decreasing and \(\mathcal{C}^1 \). Then, by partial integration,

\[
\int_0^\infty x^{1/\beta - 1} I(x) \, dx = -\frac{\beta}{\alpha} \int_0^{a(l)} x^{1/\beta} I_x^{1/\alpha - 1} (x) I'_x (x) \, dx
\]

and if \(i_x \) denotes the inverse of the function \(I_x |_L | [0, a(l)] \), we have

\[
\int_0^\infty x^{1/\beta - 1} I(x) \, dx = \frac{\beta}{\alpha} \int_0^{i_x(0)} i_x^{1/\beta} (x) x^{1/\alpha - 1} \, dx.
\]

Moreover,

\[
h_x(\theta x + (1 - \theta)y) \geq \theta f_x(x) + (1 - \theta) g_x(y), \quad 0 \leq x \leq f_x(0), \quad 0 \leq y \leq g_x(0).
\]

Thus, defining \(i_x = 0, x > i_x(0) \), it follows that

\[
h_x^{1/\beta} (x) x^{1/\alpha - 1} \in \mathcal{F}_{(\alpha^{-1} + \beta^{-1} - 1)^{-1}}(f_x^{1/\beta} (x) x^{1/\alpha - 1}, g_x^{1/\beta} (x) x^{1/\alpha - 1} | R_+)
\]

and (5.1) is an immediate consequence of Theorem 2.1.

STEP 2. \(1 < \alpha < +\infty, \beta > 0 \).

Proof of Step 2. Set \(I(\cdot, \xi) = \xi I, \xi > 0, I = F, G, H \), and note that for all fixed \(\xi, \eta > 0 \),

\[
H(\cdot, \theta \xi + (1 - \theta) \eta) \in \mathcal{F}_{\frac{\alpha}{\alpha + 1} + \beta^{-1}}(F(\cdot, \xi), G(\cdot, \eta) | R_+).
\]

Now using the previous step, we have

\[
(\theta \xi + (1 - \theta) \eta) \int_0^\infty x^{1/\beta - 1} H(x) \, dx \geq M^\theta_{(\alpha/(\alpha + 1)), \beta^{-1}} \left(\xi \int_0^\infty x^{1/\beta - 1} F(x) \, dx, \eta \int_0^\infty x^{1/\beta - 1} G(x) \, dx \right).
\]
If \(F = 0 \) or \(G = 0 \) a.s. \([m_1]\) there is nothing to prove. If not, we set
\[
\xi = \left(\int_0^\infty x^{1/\beta - 1} F(x) \, dx \right)^{\chi(\alpha, \beta)}
\]
and
\[
\eta = \left(\int_0^\infty x^{1/\beta - 1} G(x) \, dx \right)^{\chi(\alpha, \beta)}
\]
and a simple computation gives (5.1).

Step 3. \(\alpha < 0, \beta > 0 \).

Proof of Step 3. By making some minor changes in the proof of Step 1, the result follows at once. We omit the details here.

Step 4. \(\alpha = 0, \beta > 0 \).

Proof of Step 4. The inequality (5.1) results from the previous step using an obvious limit argument.

This concludes the proof of Lemma 5.1.

Proof of Theorem 5.1. For each \(A \in \langle C \rangle \) the indicator function \(1_A : (E, C) \to \mathbb{R} \) is non-negative and decreasing and, hence, it is enough to prove that
\[
\int h \, d\tau \geq M^{\theta}_{\alpha, \beta} \left(\int f \, d\mu, \int g \, dv \right).
\]
To this end, first suppose \(\beta \neq 0 \). Then, if \(s, t > 0 \),
\[
[h \geq (\theta s + (1 - \theta)t)^{1/\beta}] \geq \theta[f \geq s^{1/\beta}] + (1 - \theta)[g \geq t^{1/\beta}]
\]
where all the involved sets are \(C \)-invariant. Accordingly,
\[
\tau(h \geq (\theta s + (1 - \theta)t)^{1/\beta}) \geq M^{\theta}_{\alpha}(\mu(f \geq s^{1/\beta}), \nu(g \geq t^{1/\beta}))
\]
and the desired inequality is obvious from Lemma 5.1.

Finally, the case \(\beta = 0, \alpha > 0 \) follows from the case already proved and the case \(\alpha = \beta = 0 \) is a direct consequence of Theorem 2.1.

Example 5.1. Suppose \(\mu \in \mathcal{M}_c(E; C) (\alpha \geq 0) \) is concentrated on \(-C\) and let \(c(\alpha, p) = 1, \alpha = 0; = \Gamma(\alpha^{-1} + p + 1), \alpha > 0 \). If \(\varphi : -C \to \mathbb{R}_+ \) is Borel measurable, concave, and decreasing, then the function
\[p \sim \frac{c(x, p)}{\Gamma(p + 1)} \int_0^{+\infty} \varphi^p d\mu, \quad p > 0, \]

is 0-concave.

To prove this assertion there is no loss of generality assuming \(\mu \in \mathcal{M}_2(\mathbb{R}; \mathbb{R}^-) \), \(\varphi(x) = x \in \mathbb{R}_+ \) and the result follows exploiting the same line of reasoning as in the author's work [8], which treats the case \(x = 1/n, n \in \mathbb{N}_+ \).

For the case \(x = 0, p \geq 1 \), see also Marshall and Olkin [20, p. 494].

It is simple to settle variants of the above conclusion in the parameter interval \(-\infty < x < 0\) to the cost of some beauty.

We shall next discuss some examples of convexity in potential theory.

Example 5.2. Let \(a_1, \ldots, a_n \) be non-zero vectors in Euclidean \(\mathbb{R}^3 \) satisfying \(\langle a_i, a_j \rangle \geq 0 \), \(i, j = 1, \ldots, n \). Suppose \(\mu \in \mathcal{B}(\mathbb{R}^3) \) is concentrated on the union of the line segments \([0, a_i], i = 1, \ldots, n\), and assume \(\mu \) reduces to a linear measure on each individual line segment. Of course, \(\mu \) is 1-concave in \(\langle C \rangle \), where \(C \) is the convex cone spanned by the \(a_i \). From the above assumptions we conclude that the Newtonian potential of \(\mu \), that is \(\int d\mu(y)/|x - y| \), is a \(-\infty \)-convex function of \(x \) in \(-C^+ \).

Example 5.3. Let \(\Gamma \) be a closed convex cone in \(\mathbb{R}^n \) and suppose \(f; (\mathbb{R}^n; \Gamma) \rightarrow (\mathbb{R}^n; \Gamma) \) is an increasing, convex, and uniformly Lipschitz continuous function. Below we let \(X \) denote the Brownian motion in \(\mathbb{R}^n \) with the drift vector \(f \), that is

\[dX(t) = dB(t) + f(X(t)) dt, \quad t \geq 0, \]

where \((B(t), t \geq 0) \) stands for the standard Brownian motion in \(\mathbb{R}^n \). It is natural that \(X \) inherits suitable convexity properties from those of the drift vector and the Brownian motion. To explain this, let \(\Omega = (\mathcal{C}(\mathbb{R}_+))^n \), \(\Omega_{\Gamma} = \{ \omega \in \Omega; \omega(t) \in \Gamma, t \geq 0 \} \), and \(\mu_x = P_x[\cdot | X(0) = x] \), respectively. We claim that

\[\mu_{\theta x + (1 - \theta)y} \in \mathcal{M}_0(\mu_x, \mu_y; \Omega_{\Gamma}). \]

This is evident if \(f = 0 \). To prove the general case, suppose \(\omega \in \Omega \) is fixed and define

\[
\begin{cases}
X_0(\omega, t) = \omega(t) \\
X_{k+1}(\omega, t) = \omega(t) + \int_0^t f(X_k(\omega, s)) ds, \quad t \geq 0.
\end{cases}
\]

Here each map \(X_k: (\Omega; \Omega_{\Gamma}) \rightarrow (\Omega; \Omega_{\Gamma}) \) is (increasing and) convex and applying Theorem 3.1, we have
Now using Corollary 4.1, the claim above follows by letting \(k \) tend to plus infinity.

Suppose \(g : (\mathbb{R}^n; \Gamma) \to \mathbb{R} \) is bounded from below, increasing, and convex and let \(A \in \langle \Gamma \rangle \) be convex. As is well-known the physical solution of the initial-value problem

\[
\begin{cases}
\frac{1}{2}Au + f \cdot \nabla u - gu = \partial u / \partial t, & t > 0 \\
u(\cdot, 0) = 1_A
\end{cases}
\]

is given by the Feynman–Kac formula

\[
u(x, t) = \int_{\omega(t) \in A} \exp \left(- \int_0^t g(\omega(s)) \, d\mu_x(\omega) \right).
\]

Consequently, \(u(\cdot, t) \) is 0-concave for each fixed \(t > 0 \) and, of course, the same function decreases as a mapping of \((\mathbb{R}^n; \Gamma) \) into \(\mathbb{R} \).

Theorem 5.2. For each \(i \in \{1, 2\} \), let \((E_i; C_i) \) be semi-ordered, locally convex Hausdorff spaces over \(\mathbb{R} \) and suppose \(\tau_i \in \mathcal{M}_x^\theta(\mu_i, v_i; C_i) \), where \(\alpha_i \in \mathbb{R} \) and \(\alpha_1 + \alpha_2 \geq 0 \). Then \(\tau_1 \otimes \tau_2 \in \mathcal{M}_x^\theta(\mu_1 \otimes \mu_2, v_1 \otimes v_2; C_1 \times C_2) \). In particular, if \(E_1 = E_2 = E \), then \(\tau_1 \ast \tau_2 \in \mathcal{M}_x^\theta(\mu_1 \ast \mu_2, v_1 \ast v_2; C_1 + C_2) \).

Proof. For every \(M \subseteq E_1 \times E_2 \) and \(x_1 \in E_1 \), set

\[
M(x_1) = \{ x_2 \in E_2; (x_1, x_2) \in M \}.
\]

Now choose \(A, B \in \langle C_1 \times C_2 \rangle \) arbitrarily but fixed and note that for all \(x_1, y_1 \in E_1 \),

\[
(\theta A + (1 - \theta)B)(\theta x_1 + (1 - \theta)y_1) \geq \theta A(x_1) + (1 - \theta)B(y_1)
\]

where each individual set is \(C_2 \)-invariant. Hence

\[
\tau_2((\theta A + (1 - \theta)B)(\theta x_1 + (1 - \theta)y_1)) \geq M^\theta_{x_2}(\mu_2(A(x_1)), v_2(B(y_1)))
\]

and since for each \(c_1 \in C_1, A(x_1 - c_1) \supseteq A(x_1) \), and \(B(y_1 - c_1) \supseteq B(y_1) \), the Fubini theorem and Theorem 5.1 imply that

\[
(\tau_1 \otimes \tau_2)((\theta A + (1 - \theta)B) \geq M^\theta_{x_1, x_2}((\mu_1 \otimes \mu_2)(A), (v_1 \otimes v_2)(B))
\]

Finally, the last statement in Theorem 5.2 follows by combining Theorem 3.1 and the first part of Theorem 5.2.

Corollary 5.1. If \(\alpha, \beta \in \mathbb{R} \) and \(\alpha + \beta \geq 0 \), then

\[
\mathcal{M}_\alpha(E; C) \ast \mathcal{M}_\beta(E; C) \subseteq \mathcal{M}_{x(\alpha, \beta)}(E; C).
\]
Corollary 5.1 is known in at least one special case for which \(C = E \) is a proper cone. In fact, the inclusion
\[
\mathcal{M}_0(\mathbb{R}; \mathbb{R}_-) \ast \mathcal{M}_0(\mathbb{R}; \mathbb{R}_-) \subseteq \mathcal{M}_0(\mathbb{R}; \mathbb{R}_-)
\]
is frequently used in the theory of reliability [1].

We will end this section by proving some complements of the results obtained so far. Below \(X \) is a real-valued random variable and \(X_1, \ldots, X_n \) stand for stochastically independent copies of \(X \).

First note that
\[
P_X \in \mathcal{M}_\alpha(\mathbb{R}; \mathbb{R}_+) \Rightarrow P_{\max_{1 \leq i \leq n} X_i} \in \mathcal{M}_{\frac{\alpha}{n}}(\mathbb{R}; \mathbb{R}_+)
\]
for each \(-\infty \leq \alpha < +\infty\). Here the special case \(0 \leq \alpha < +\infty \), in fact, is included in Theorem 5.2. More interesting, we have

Theorem 5.3. Assume \(-\infty < \alpha < +\infty \) and let \(\beta = \beta(\alpha) \) be the largest member \(-\infty \leq \beta < +\infty \) having the following property:
\[
(\forall n \in \mathbb{N}_+)(P_X \in \mathcal{M}_\alpha(\mathbb{R}; \mathbb{R}_-) \Rightarrow P_{\max_{1 \leq i \leq n} X_i} \in \mathcal{M}_\beta(\mathbb{R}; \mathbb{R}_-)).
\]

Then \(\beta(\alpha) > -\infty \). Moreover, \(\beta(\alpha) \leq \alpha \), where equality occurs if and only if \(\alpha \geq -1 \).

Theorem 5.3 is well-known if \(\alpha = 0 \) [1, p. 38]. The general case follows at once from the next

Lemma 5.2. Suppose \(n \in \mathbb{N}_+, \alpha, \beta \in \mathbb{R} \setminus \{0\}, \alpha \beta > 0 \), and \(f(x) = (1 - (1 - x^{1/\alpha} n)^\beta), \ x > 0, \ x^{1/\alpha} < 1. \) Then for any \(\alpha > 0 \) \(-1 \leq \alpha < 0\) the largest \(\beta \) such that \(f \) is concave [convex] equals \(\alpha \). If \(\alpha < -1 \), then there exists a \(\beta \), independent of \(n \), such that \(f \) is convex for every \(n \geq 1 \). The largest \(\beta \) with this property is strictly smaller than \(\alpha \).

Proof. The second derivative of \(f(x) \) equals \(\alpha \) times a strictly positive function times
\[
g(y) = 1 - n + (n - \alpha)y + (n\beta - 1)y^n + (\alpha - n\beta)y^{n+1}, \quad y = 1 - x^{1/\alpha}.
\]
Since \(g(1-) = 0 \) and \(g'(1-) = n(\alpha - \beta) \), necessarily, \(\beta \leq \alpha \) if \(g \leq 0 \). Moreover, note that \(g'' \) has at most one change of sign and that \(g(0+) \leq 0 \). Also, if \(\alpha = \beta \), then \(g''(1-) < 0 \) (respectively \(> 0 \)) if and only if \((n-1)(\alpha + 1) > 0 \) (respectively \(< 0 \)). Consequently,
\[
\alpha = \beta \geq -1 \Rightarrow g \leq 0
\]
and
\[\alpha = \beta < -1 \Rightarrow \neg (g \leq 0, \text{ all } n). \]

In the following we suppose that the parameter \(\alpha \) is strictly smaller than \(-1\).

If \(\beta(\alpha) \) has the same meaning as in Theorem 5.3, then
\[-\beta(\alpha) = \sup \left\{ \frac{(1 + n + (n - \alpha) y - y^n + \alpha y^{n+1})}{(n y^n - y^{n+1})} : 0 < y < 1, n \in \mathbb{N}_+ \right\}. \]

Thus, \(\beta(\alpha) > -\infty \) if and only if
\[\sup \left\{ \frac{(1 + n + (n - \alpha) y + (\alpha - 1) y^n)}{(n y^n + (1 - y))} : 0 < y < 1, n \in \mathbb{N}_+ \right\} < +\infty. \]

Now setting
\[h_\alpha(z) = \frac{(1 - \alpha - (n - \alpha) z + (\alpha - 1)(1 - z)^n)}{(n z(1 - z)^n)}, \quad 0 < z < 1, \]

and noting that \(h_{\alpha}(1) = 0, \alpha, 1 \leq 0, \), we conclude that \(\beta(\alpha) > -\infty \) if and only if
\[\sup \left\{ h_\alpha(z) : 0 < z < (1 - \alpha)/n, n \in \mathbb{N}_+ \right\} < +\infty. \]

This, however, follows at once from the formula
\[2h_\alpha(z) = (1 - \alpha)h_{-1}(z) - (1 - 1/n)(\alpha + 1)/(1 - z)^n \]

and the already proved fact that the quantity \(h_{-1}(z) = h_{-1}(z, n) \) is uniformly bounded from above. Lemma 5.2 is thereby completely proved.

6. Examples of stochastic processes with increasing paths inducing 0-concave measures in suitable convex cones.

Throughout the present section \(I \) is assumed to be a fixed subinterval of the real line and \(R_n^I \) means \(R^I \) equipped with the topology of pointwise convergence.

As is well-known and easy to see each real-valued stochastic process \(X = (X(t), t \in I) \) satisfying
\[P[X(s) \leq X(t)] = 1, \quad s \leq t, \]

induces a Radon probability measure \(P_X \) on \(R_n^I \) such that the closed convex cone of all increasing functions on \(I \) supports \(P_X \). For additional information, see e.g. Tjur [29, p. 170].

Now suppose \(Q: R \rightarrow]-\infty, +\infty] \) is a decreasing function such that \(Q(x)^{\uparrow} + \infty, x \downarrow -\infty \), and \(Q(x)^{\downarrow} 0, x^{\uparrow} + \infty \). The extremal-\(Q \) process \(X = (X(t), t > 0) \), introduced by Dwass [14] and Lamperti [19], is a real-valued stochastic process characterized by the following equation
\[
\left\{ P[X(t_1) \leq x_1, \ldots, X(t_n) \leq x_n] = \exp \left[- \sum_{k=1}^{n} (t_k - t_{k-1}) Q(x_k \wedge \ldots \wedge x_n) \right] \right\}
\]

all \(0 = t_0 < t_1 < \ldots < t_n, x_1, \ldots, x_n \in \mathbb{R}, n \in \mathbb{N}_+\).

If \(0 = t_0 < t_1 < \ldots < t_n\) and \(U_1, \ldots, U_n\) are real-valued stochastically independent random variable with

\[
P[U_k \leq x] = \exp \left[- (t_k - t_{k-1}) Q(x) \right], \quad k = 1, \ldots, n,
\]

then the random vectors \((X(t_1), \ldots, X(t_n))\) and \((U_1, U_1 \lor U_2, \ldots, U_1 \lor \ldots \lor U_n)\) obey the same probability law. Thus, combining Theorems 3.1 and 5.2, we have

Theorem 6.1. An extremal-Q process induces a 0-concave measure in \(\langle \mathbb{R}_+^{10}, +\infty \rangle\) if and only if \(Q\) is convex.

Example 6.1. Consider a real-valued homogeneous Lévy process \(X = (X(t), t > 0)\), where

\[
E[\exp (i\zeta X(1))] = \exp \left(\int_{-\infty}^{+\infty} (e^{i\theta x} - 1 - i\zeta \sin x) d\tau(x) \right)
\]

and \(\tau\) is a positive Borel measure on \(\mathbb{R}\) such that \(\{x \sim x^2\} \in L_{1,\text{loc}}(\tau)\) and \(\tau(\mathbb{R} \setminus [-x, x]) < +\infty, x > 0\). By a theorem of Dwass [15, p. 382], the stochastic process

\[
Y(t) = \sup_{0 < s \leq t} (X(s+) - X(s-))^+, \quad t > 0,
\]

is an extremal-Q process with \(Q(x) = +\infty, x < 0; = \tau(\{x, +\infty\}, x > 0\) (see also Resnick and Rubinovitch [26, Th. 1]). In particular, if \(0 < \alpha < 2\) and \(X\) is an \(\alpha\)-stable, symmetric, and homogeneous Lévy process, then \(\tau(\{x, +\infty\}) = \text{const.} x^{-\alpha}, x > 0\), and, hence, \(P_Y\) is 0-concave in \(\langle \mathbb{R}_+^{10}, +\infty \rangle\).

Recall that a real-valued stochastic process \(X = (X(t), t \in I)\) is called additive if the increments \(X(t_1), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})\) are stochastically independent for all points of time \(t_1 < \ldots < t_n, n \in \mathbb{N}_+\). Below \(D_+(I)\) denotes the set of all non-negative increasing functions on \(I\).

Theorem 6.2. Any increasing and additive stochastic process \(X = (X(t), t \in I)\), processing \(\mathcal{M}_0(\mathbb{R}; \mathbb{R}_+)\) distributed increments, induces a 0-concave measure in \(\langle D_+(I) \rangle\).

Proof. Suppose \(\xi_1, \ldots, \xi_m \in (D_+(I))^+\) and choose \(t_1 < \ldots < t_n\) such that each \(\xi_j\) only depends on the coordinates \(x(t_1), \ldots, x(t_n)\). Then, from Theorem 5.2,
\[P_{x(t_1), x(t_2) - x(t_1), \ldots, x(t_n) - x(t_{n-1})} \in \mathcal{M}_0(\mathbb{R}^n; \mathbb{R}_+^n) \]

and using Theorem 3.1 we conclude that \(P_{x(t_1), \ldots, x(t_n)} \) is 0-concave in \(\langle \{x \in \mathbb{R}^n; 0 \leq x_1 \leq \ldots \leq x_n \} \rangle \). Hence

\[P_{\xi_1(x), \ldots, \xi_n(x)} \in \mathcal{M}_0(\mathbb{R}^m, \mathbb{R}_+^m) \]

and the result follows from Theorem 4.1.

Example 6.2. Let \(X = (X(t), t \geq 0) \) be an one-sided, stable, and homogeneous Lévy process. Remembering Example 3.1 we have that \(P_X \) is 0-concave in \(\langle D_+(\mathbb{R}_+) \rangle \).

Now suppose \(B \) denotes a standard Brownian motion in \(\mathbb{R} \) with \(B(0)=0 \) and let \(\tau_x \) be the first time \(B \) hits \(x \neq 0 \). Since \((\tau_x)_x>0 \) is a one-sided \(\frac{1}{2} \)-stable homogeneous Lévy process it follows that the probability

\[P \left[\max_{0 \leq t \leq \tau_k} B(t) \geq x_k, \ k=1, \ldots, n \right] \]

is a 0-concave function of \((t_1, \ldots, t_n)>0 \) for all fixed \(x_1, \ldots, x_n>0 \).

Example 6.3. Consider an extremal-\(Q \) process \(X = (X(t), t > 0) \) such that \(a = \inf \{ x; Q(x) < +\infty \} \) and \(b = \sup \{ x; Q(x) > 0 \} \) do not coincide. Set \(X^{-1}(x) = \inf \{ t; X(t) > x \} \), \(a < x < b \). From Resnick [25, Th. 1], we know that the stochastic process \(X^{-1} \) is increasing and additive. Moreover, for arbitrary \(a < x < y < b \),

\[P[X^{-1}(x) \leq t] = 1 - \exp(-tQ(x)), \quad t > 0, \]

and

\[P[X^{-1}(y) - X^{-1}(x) \leq t] = \theta + (1 - \theta)(1 - \exp(-tQ(y))), \quad t > 0, \]

for a suitable \(0 < \theta = \theta(x, y) < 1 \). Consequently, \(P_{X^{-1}} \) is 0-concave in \(\langle D_+([a, b]) \rangle \).

7. A zero-one law.

A non-empty subset \(G \) of \(E \) is said to be an additive subgroup of \(E \) if \(G - G = G \).

Theorem 7.1. Suppose \(\mu \in \mathcal{M}_a(E; C) \) and let \(G \) be a \(\mu \)-measurable additive subgroup of \(E \) with strictly positive \(\mu \)-measure.

a) If \(G \) is \(C \)-invariant, then \(\mu \) is supported on \(G \).

b) If \(\alpha > -\infty \), then \(\mu \) is supported on \(C + G \).
Here Part a) is a pure extension of the zero-one law for \(-\infty\)-convex measures [4].

Proof. We first choose a compact set \(K = -K \subseteq G\), with \(\mu(K) > 0\), and set

\[
A = C + \bigcup \left[K + \ldots + K : n \in \mathbb{N}_+ \right].
\]

Now, because \(\mu(A \cap (K - C)) > 0\), there exists a compact set \(L \subseteq E \setminus [A \cup (K - C)]\) such that \(\mu(E \setminus (A \cup L)) < \mu(K - C)\). Moreover, for each \(n \in \mathbb{N}_+\),

\[
E \setminus (A \cup L) \supseteq \frac{1}{n + 1} \left[E \setminus \{ A \cup (nK + (n + 1)L + C) \} \right] + \frac{n}{n + 1} (K - C)
\]

and as the complement of a \(-C\)-invariant set is \(C\)-invariant, we have

\[
\mu(E \setminus (A \cup L)) \geq \min \left(\mu(E \setminus \{ A \cup (nK + (n + 1)L + C) \}), \mu(K - C) \right).
\]

Thus

\[
\mu(E \setminus (A \cup L)) \geq \mu(E \setminus \{ A \cup (nK + (n + 1)L + C) \})
\]

and, hence,

\[
\mu(nK + (n + 1)L + C) \geq \mu(L), \quad \text{all } n \in \mathbb{N}_+.
\]

However, for any fixed compact \(M \subseteq E\), \(M \cap (nK + (n + 1)L + C) = \emptyset\) for an appropriate \(n \in \mathbb{N}_+\) and it follows that \(\mu(L) = 0\), which proves Part a).

To show Part b), first note that \(\mu(E \setminus A) < \mu(K - C)\). If \(\mu(E \setminus A) > 0\), then we may use the relation

\[
E \setminus A \supseteq \frac{1}{2}(E \setminus A) + \frac{1}{2}(K - C)
\]

and have

\[
\mu^x(-1)(E \setminus A) \leq \frac{1}{2} \mu^x(-1)(E \setminus A) + \frac{1}{2} \mu^x(-1)(K - C)
\]

that is, \(\mu(E \setminus A) \geq \mu(K - C)\), which is a contradiction. Thus \(\mu(E \setminus A) = 0\) and Part b) is proved, too.

Corollary 7.1. Let \(\mu \in \mathcal{M}_a(E; C) (a > -\infty)\). If \(a \in E\) is an atom of \(\mu\), then \(\mu\) is concentrated on \(a + C\).

8. Integrability of sublinear functions.

A function \(\varphi : E \to \mathbb{R} \cup \{ +\infty \}\) is said to be an extended valued sublinear function if
\[
\begin{cases}
\varphi(x+y) \leq \varphi(x) + \varphi(y), & x, y \in E, \\
\varphi(\lambda x) = \lambda \varphi(x), & \lambda > 0, x \in E.
\end{cases}
\]

Below, for any \(\varphi: E \to \mathbb{R} \cup \{+\infty\} \), we set \(\varphi_-(x) = \varphi(-x), x \in E \).

Theorem 8.1. Suppose \(\mu \in \mathcal{M}_a(E; C) \) \((\alpha > -\infty)\) and let \(\varphi \) and \(\varphi_- \) be \(\mu \)-measurable extended valued sublinear functions such that \(\varphi|_C < +\infty \) and \(\mu(\varphi + \varphi_- < +\infty) > 0 \). Then \(\varphi < +\infty \) a.s. \([\mu]\). If \(\varphi \geq 0 \), \(\varphi|_C = 0 \), and

(i) \(-\infty < \alpha < 0\), then \(\varphi^p \in L_1(\mu), 0 < p < -1/\alpha \),

(ii) \(\alpha = 0 \), then \(\exp(\varepsilon \varphi) \in L_1(\mu) \) for some \(\varepsilon > 0 \),

(iii) \(\alpha > 0 \), then \(\varphi \in L_\infty(\mu) \).

In the special case \(C = \{0\} \), Theorem 8.1 is well-known [4]. For connections with integrability of Gaussian semi-norms, see e.g. [17].

Proof. The first part of Theorem 8.1 follows from Theorem 7.1. Now suppose \(\varphi \geq 0 \) and \(\varphi|_C = 0 \). Then, for all \(s > 0 \) and \(t > 1 \),

\[
[\varphi > s] \supseteq \frac{2}{t+1} [\varphi \geq st] + \frac{t-1}{t+1} [\varphi_- < s]
\]

where the sets in the right-hand side are \(C \)-invariant. Consequently,

\[
\mu(\varphi > s) \geq M_a^{2/(t+1)}(\mu(\varphi \geq st), \mu(\varphi_- < s)).
\]

Case (i): First choose an \(s > 0 \) satisfying the inequalities

\[
\mu^\alpha(\varphi > s) > 2\mu^\alpha(\varphi_- < s) > 0.
\]

Then \(\mu(\varphi \geq st) = O(t^{1/\alpha}) \) as \(t \to +\infty \) and thus \(\varphi^p \in L_1(\mu) \) for each \(0 < p < -1/\alpha \).

Case (ii) may be treated as Case (i).

Case (iii): If \(\varphi \notin L_\infty(\mu) \), then for all large \(s > 0 \)

\[
\mu^\alpha(\varphi > s) \geq \frac{2}{3} \mu^\alpha(\varphi \geq 2s) + \frac{1}{3} \mu^\alpha(\varphi_- < s)
\]

which implies the contradiction \(0 \geq (1/3) \mu^\alpha(\varphi_- < +\infty) \).

This completes the proof of Theorem 8.1.

Recall that a measure \(\mu \in \mathcal{R}(E) \) has a barycentre at the point \(e \in E \) if \(E' \subseteq L_1(\mu) \) and \(\xi(e) = \int \xi \, d\mu, \xi \in E' \). The next theorem is an example of an application of Theorem 8.1.
THEOREM 8.2. Assume $\mu \in \mathcal{M}_a(E; C)$ ($\alpha > -1$) has a barycentre $e \in E$. Moreover, suppose G is an affine linear subspace of E such that $\mu(K) > 0$ for a suitable compact and convex $K \subseteq G$. Then $e \in C + G$.

PROOF. Of course, there is no loss of generality to set $e = 0$. Now write $G = F - a$, where $a \in -G$ is fixed. If $0 \notin C + G$, that is, $a \notin C + F$, then we obtain a contraction as follows.

Suppose $L \subseteq F$ is a compact, convex, and symmetric set such that $\mu_a(L) = \mu(L - a) > 0$ and choose for each $n \in \mathbb{N}_+$ a $\xi_n \in E'$ such that $\xi_n(x) > \xi_n(a)$, $x \in C + nL$. Obviously, each $\xi_n \in C^+$ and without loss of generality we may assume that $\xi_n(a) = -1$. Set $\varphi = \sup_{n \in \mathbb{N}_+} \xi_n^-$. Then $\mu_a(\varphi + \varphi^- < +\infty) > 0$ and $\varphi|_C = 0$. Thus $\varphi \in L_1(\mu_a)$ by Theorem 8.1 and it follows that

$$\lim_{n \to +\infty} \int \xi_n^- d\mu_a = 0$$

since in view of Theorem 7.1, $\xi_n^- \to 0$ a.s. $[\mu_a]$ as $n \to +\infty$. But

$$\int \xi_n^- d\mu_a \geq \left(\int \xi_n d\mu_a \right)^- = 1$$

and we have got a contradiction.

REFERENCES

