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RATIONAL APPROXIMATIONS
TO STIELTJES TRANSFORMS

PETER B. BORWEIN*

1.

Rational sums of the form 3 a;/(x +b,) where a; and b, are positive can be
expressed as Stieltjes transforms of discrete positive measures. The Stieltjes
transforms of the measure «(t) is the function

f(x)=r@

0o X+t

Rational approximations that interpolate such functions on positive intervals
are particularly amenable to analysis because all of the poles of these
approximations lie on the negative real axis [1]. Furthermore, if g(x) is the
Stieltjes transform of B(z), f(x) is the transform of a(t) and if «, f and « — f are
all positive measures then g can be approximated more closely than f by
rational functions on any positive interval (see Theorem 1). We will exploit
these two observations to analyse the rate of rational approximation to certain
functions of the form Y a;/(x+b,).

Let IT, denote the real algebraic polynomials of degree at most n. Let R, ,,
denote the rational functions with numerators in I, and denominators in IT,,.
Let

Tnm(f: [a,b]) = . eiI;f 1S e} =7 (e, 11

where |- ||, 5; denotes the supremum norm on [a, b].

In a seminal paper ([6], see also [7]) Gongar shows that if fis the Stieltjes
transform of a positive measure « with support in the interval [a,b], if « >0
almost everywhere on [a, b] and if ¢> —a then

. 1
jinzo rn~1,n(f: [C9d])”n = Q_2 < 1
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where ¢ depends only on a, b, ¢, and d. These results have been extended by
Ganelius [5] who shows that under slightly more restrictive conditions

kl é rn—l,n(f: [c,d])QZn é k2 .
Ganelius [4] also shows that for non-integral positive 4,
bolsinnd| < r,_, .(x°: [0, 1])e2"l/5 < Cpeem

where b;, ¢;, and C,; depend only on 6. This settles the conjecture of Goncar
that

) limn~"2Inr,_, ,(x*: [0,1]) = —2x)/6 .
As a corollary to Theorem 1 we deduce that
lim n~"21nr,_; (xInx: [0,1]) = —2=n.

This amounts in some sense to the =1 case of GoncCar’s conjecture.

In contrast to the above situation we will also consider functions which arise
as transforms of discrete measures, that is, functions of the form >, a,/(x
+b), a,b;=0. We will, for example, obtain results of the following nature:

n+1 1 a, . 12n
(a) ",.—1,"<.=Z et [o, 1]) = & where lim al/>" = 278 ...

(n")? n—o00
and
n+1 1 b
(b) r,,_l,,,< Z x—_'_‘i‘zl [0, 1]) = 1—6‘;(—:{5)7 where lim b'll/Zn = 439 ... .
i=1 : n—oo

The convergence problem for Padé approximants to functions of the form
> a;/(x+b,) is treated by Franzen in [3].

2. A comparison theorem.

A particularly useful theorem in polynomial approximation theory due to
Bernstein states that if |g"*V(x)|<f™*V(x) on [a,b], then the error in best
uniform polynomial approximation of degree n to g is no greater than the
corresponding error in approximating f. Our first result is a modest extension
of this to the case of rational approximations to Stieltjes transforms.

THEOREM 1. Let

f) = r‘@i’ and  g(x) = r iU
0

o X+t
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Suppose that a, B and o — B are all non-negative measures. Suppose that for k=20

— duri-1(C)
pa(C)

dn+x-1(C)
pn(Ci)

at 2n+k points 0L, <8, ... SCop+p Where

—-f&) =0 —g()

qn+k—l/pn’ q:+k—l/p: € Rn+k—1,n .
Then, for x>0,

dnvx-1(x)

)

< ‘f(x)—ﬂﬂ;*(—;)("—’ .

Proor. If k of the {; coincide, then we are assuming that f—gq, ., ,_,/p, and
g—q*, «_1/p¥ have zeros of multiplicity k at those {;.
We may suppose that the {; are distinct and that

00

J.
f=3 Y and g =Y

i=1 X+ =1 X+

where for all i,
0§_0(,-<0(,~+1 and Oééié))i'

(The general argument is completed by taking limits.) Let I ; be the index of the
first non-zero y;, and let I, be the index of the first non-zero ;. Then, if f=qo;,
and ﬁ*:a,‘, it follows from results in [1] that

An+k-1

d>p ¢>0
I p

= qi- ‘+Zx+d

and

qn*"'k—l =% c ei *
T:qk_l"'.zlm hi>ﬂ,e|‘>0

where G _ 1, G¥-1 € M—y. (m-,=0))
Furthermore,

In+x-1 k . rvk-1
F(x) := =———f and G(x):= ——~¢g
P 4n
have exactly 2n+k simple zeros on
[—B,00) and [-p* 00)

respectively. Also,

lim F(x) = lim G(x) = —

x——p* x=(~p*)*
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It follows that
sgn F(x) = sgnG(x) for x € [0,00).
If there exists xo>0, xo & {{y,- - -,{an+x} SO that
) [F (xo)l = 1G(xo)l
then there exists ¢>1 so that on [0, 00)
cF(x)—G(x) has2n+k+1 zeros.
Thus,

Cn+k-1 = of— g+qn+k 1
Dn px

has 2n+k +1 non-negative solutions.
If we differentiate the above k times we see that

n c; ; e;
C.-; Ccrd)f Z (xﬂt,)"‘“1 .Zl (c+h)*!

has 2n+ 1 negative solutions. Since c¢y;—9;20, this violates Descartes rule of
signs (see [1] for further details). Thus, assumption (2) is not possible and the
proof is complete.

The interpolation condition in Theorem 1 is satisfiable for all choices of non-
negative {; (see [1]). This observation yields the following corollaries.

COROLLARY 1. Let

fx) = J:o da(t) and g(x) = J\oo dp0 .

o X+t

Suppose that a, B and a.— B are all non-negative measures. Then, for any n,k,a,b
20,

rn+k—l,n(g: [a’b]) é rn+k—1,n(f: [a’b]) .

COROLLARY 2. Let f and g be as above. Let p, .y, ,(f; x) be the (n+k—1,n)
Padé approximant to f concentrated at the point a=0. Then, for x=0

|g(x)—P..+k-1,,.(g; x) £ If(x)'—pn+k—l,n(f; x)| .

As an application of Theorem 1 we have
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COROLLARY 3.

limn™"?Inr, (xInx: [0,1]) = —2=.

Proor. For 6 € (0,1), x=0

P sin (6m) [ ¢°~'dt
T o t+x

Let s,_,,€R,_,, interpolate x*~! at any 2n points in (0,1] and let
ti—1.n € R,-;, , interpolate

sin (6m) sin (6n) ' dt
n 0

1 1)-1 =
(In (x+1)—Inx) - P
at the same points. By Theorem 1, for x>0,

sin (om) .

ty-1,n(X)— (In e+ =Inx) < Isy-q,n(0)—x""

and for suitably chosen interpolation points,

xt,,_l,,,(x)—-it—l—(—é—@ (xIn(x+1)—xInx)

< Ixs,_q o(x)—x°
- S 1XSy-1,a(¥)— X7

IA

2r, o(x*: [0,1])

< Cpe 12V
where the latter inequality, due to Ganelius, was mentioned in the
introduction. Since xIn (x+1) is analytic in a region containing [0,1] there

exists p<1 so that
Fun(xIn(x+1): [0,1]) < @"

and hence

C,,ec"(" —nRye 2/3 T
. < L —
r,,_,,(xln X: [0, 1]) = (W+Q )(Sil’l (57’.’)) .
Taking logarithms and letting d tend to 1 yields
limn "2Inr, ,(xInx: [0,1]) £ —2=.

The lower bound is achieved by observing that

U ot
J; x ksx®+f3(x) € (0,1)



RATIONAL APPROXIMATIONS TO STIELTJES TRANSFORMS 119

where f5(x) is analytic in {|z—1/2|<1}. We observe that by Theorem 1
(applied to the above and In (x+1)—In x) we have

2r, o(xIn (x+1)—xIn (x): [0,1]) = Pun(ksx® ™+ xf5(x): [0,1])

and the lower bound is now completed in a similar fashion to the upper bound.

If f and g are Stieltjes transforms of non-negative measuies then an
immediate consequence of Corollary 1 is that for a,b20,

rn+k-—1,n(f+g: [a’b]) g max (rn+k—1,n(f: [aab])’rn+k—l,n(g: [(1, b])) .

Another application of Theorem 1 is

COROLLARY 4. Suppose that 0<y,<y,<...<y,<l and suppose that
€1,Cgs- « -3 Cp>0. Then

lim n™Y21n (r,,,,,<z cx': [0, 1])) = —274/;’: .
i=1

n—o0

Proor. That the limit exceeds —21:1/;:: is apparent from the comment
preceding the Corollary and (1). To derive an upper bound on the limit we
observe once again that

Loy
cxV o= d; j‘ —+h,(x)
o X+t

where h,, is analytic on {lz—1/2|<1}. Thus,

1 i
i dit?

m
Y ext =
i=1 o X+t

where h* is analytic on {|z—1/2|<1}. We note that for ¢t € [0,1],

0< Y dt" £ (Z di)t“.
i=1

i=1

+h*(x)

We may now compare, as in the proof of Corollary 3, the rational
approximation to Y., ¢;x”, and the known rational approximation to x™.

3. Approximating rational sums.

We begin by examining rational approximations with n poles to certain
rational sums with n+1 poles.

TueoreM 2. Fix k0. Suppose that y;>0 and B, > p;20. Let
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n+1 .yi
Sl = :;x x+B;

If {1s. . ., {2nsk Gre 2n+k (not necessarily distinct) non-negative points then
there exists p,.y+x—1/dn € Ry+1n that interpolates f at each of the {;. Furthermore,

Prri-1(%) _ s 4
a) _E_(;)—— = Pk—x(x)*'k; x+o,

where p,_, € T, _y, 6;>0 and B;<a; <P, for i=1,...,n
Also,
2n+k
b Pn+i-1(X) _ o il=—[l =0
) f(x)_ q (x) o n n+1
" I Ce+a) [T e+

where, for all j,

n+1 n
l_[ (ﬂi_ﬂj) H (ai_ﬂj))’j
i=1 i=1
Ianl = * 2n+k
IT ¢+0)

Furthermore, if k=0, then |a,| <7, ,.

Proor. Part a) can be found in [1]. Part b) is straightforward since f
—Pn+x-1/4, is an element of R,, 1, 2,4, With 2n+k zeros at the {; and 2n+1
poles at —o; and — ;. The bound on aq, is obtained by observing that

.<f_pn+k—l) —y = a, [T B+ L) (-1 .
q ! n (ﬂi—ﬁj) H (;—B))

i*j

When k=0 the right hand side of the above equation has absolute value
greater than a, for j=n+1.

For certain choices of f; we can be more precise.
ExampLe 1. Fix ¢,k20. Let Y7 0/(x+0)+pe-1(X), pe—, €M, _,,

interpolate 3741 1/(x+i) at 2n+k points {,,. . ., {544 € [0,c].
Then,
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2n+k
a, n (X’CJ\
=1
n+1 n
n (x+1i) n (x+o)
i=1

n+1 n 5
> L—(Z + Py ,(x)>

= x+i i=1 Xt+o;

and independent of the choice of the &,

lim |a,|'?" = 27846... = v

n—o0

where v is the solution of ve! *v=1.

ExAMPLE 2. Fix ¢,k=0. Let {},. . .,{;,, be 2n+k points in [0, ¢]. Then there
exists 6;,0,>0, p,_,, i?<o; < (i+1) so that

2n+k

a, l_[ (X _Ck)

i=1

n+1 1 n 5
Z .2“<.Z . +Pk—1(x)) = ¥l

Sox+i oo x+a; + e
! ! [T &+ ] (x+a)
i=1 i=1

where, independent of the choice of the {;,

lim |q,|'2" = 439... = /n?—1

n—o00

where n=.8335... is the solution of (1+#)/(1—n)=e?"

Both examples are consequences of Theorem 2. It is essentially just a
calculus exercise to estimate the size of a,. The two results (a) and (b) of the
introduction follow from these examples by chosing the {; to be the roots of the
Cebysev polynomial of degree 2n shifted to the interval [0,1].

CoMMENT. For the circle C = {|z| =1} we observe the following. Suppose that

n+1

f2) = Z X %y 2+l 22

and suppose that p,,,_,/q, € R 44, , interpolates f(z) at 2n+k points
{15+ sCansx € [—1,1]. Then, by Theorem 2,

2n+k

1_[ (z—=2C)
2n+k
il - c.>|

It follows from Rouche’s theorem (see [2] for details) that if we choose

Igleig 1f (D) = Pask-1(2)/4,(2)] mm
max |f(2) = Pu+x-1(2)/da(D ~

(o+1)* max
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Pk «—1/aF to be the (n+k—1,n) Padé approximant (i.e. {;=0) then p},,_,/q¥
is, up to a multiple of 1/(«, ., ;)*, as efficient as a best rational approximation of
corresponding degree in the sense that

If=pPrei-1/allc 2 Tasx-1,a(f: C) 2 @ 1f=Pasx-1/dallc -

4
n+1)

We can use the previous results to get upper estimates for approximations
to 272, 0,/ (x + o).

THEOREM 3. If

o,
! < < <o
flx) = Zl P 056,21, 1ScSo<0yy,
then
2 21 (0
rn-l,n(f: [0’ 1]) é (CZC__ 1) f( )

n 2"
42n*1<1—[ ai)
i=1

PROOF. Let 5, € R, 4 py—1,n+m interpolate f at the 2n— 1 zeros of the (2n— 1)th
Cebysev polynomial T,,_, shifted to [0, 1] and also 2m+ 1 times at zero. Note
that, as in the proof of Theorem 1,

n+m m
5, = Vi
i
where " >a; and
n+m
')’;
,,, ).
L=t

In particular, since each y7", B 20, we have for each m

Tiem < £(0).

n+m

From Theorem 2 we deduce that for x € [0,1]

|S,,,H(x)—sm(x)| < ("Z::'m«kl"rzjzl(x)l

IT 6Brh

i=1

m+ 1
n+m+1

< JOIT -, ()

= n+m

[1 o

i=1
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L YO

n+m

42nlna

We finish by observing that
”f"sou[o,u < Z “5;'+1_Si||[0,1] .
m=0

We note that

2z

X 1
2-2422 Y
Etez ,.; 22 + (2nn)?

e’ =1+

By Theorem 3, there exists C, so that
hod 1 C
- i [-L1]) € 5o
o 2'“(..; Zramr | ]> = " n)?
and hence, there exists C, so that

C

r2n+1,2n+1(ez3[ L1]) = 42,,(2—;,,0”?-

This implies that

1 1
<

Qn)? = 394"

lim (ntnlr, (e [-1L1V" <

This should be compared to the “correct” result due to Németh [8]

lim (n!n'r, (e [ 1,1 = & .

n—*o0

Thus, our method yields good but inexact upper bounds for r, ,
It is apparent from Theorem 1 that if 0<¢, <y;Zc, and ;20 then, on
positive intervals,

1 Y: o 1
clrnfk,n(l‘;l x+a,-> = n+k n(E1 x+a) = CZrn+k u(zzl x+ai)

and that
n+1 1 00 1
<
rn+k.n(i;l x+ai) == rn+k,n(i§1 x+ai) .

Lower bounds for rational approximation to 7! 1/(x+a;) will depend
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critically on the spacing of the «; However, the technique presented in this
section can be extended to many more special cases.

ADDED IN PROOF. It has come to the author’s attention that a version of
Theorem 1 is derived by D. Braess in Numer. Math. 22 (1974), 219-232.
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