UNIQUENESS OF HAHN-BANACH EXTENSIONS AND LIFTINGS OF LINEAR DEPENDENCES

ASVALD LIMA

Abstract.

We study intersection properties of balls for a subspace M of a Banach space E which ensures either that each linear functional on E has a unique norm-preserving extension to E or that if $f_1, \ldots, f_n \in M^*$ are such that $\sum_{i=1}^n f_i = 0$, then every f_i has a norm-preserving extension $g_i \in E^*$ such that $\sum_{i=1}^n g_i = 0$. We relate these properties to the existence of norm-1 projection in E^* with kernel M^{\perp} .

1. Introduction.

Let E be a real Banach space and let M be a closed subspace. The dual space of E is denoted E^* and the annihilator of M in E^* is denoted M^{\perp} . B(x,r) denotes the closed ball in E with center x and radius r. The closure of a set S is denoted \overline{S} , its convex hull conv (S) and the distance from y to S by d(y, S). The unit ball of E is written E_1 , and the set of extreme points of a set S is denoted $\delta_e S$.

We shall study extensions of linear functionals from M to E and we write for $f \in E^*$, $||f||_M$ for the norm of the restriction f | M of f to M. By M^* we mean

$$M^* = \{ f \in E^* : ||f|| = ||f||_M \}$$

L(E,F) (respectively K(E,F)) denotes the space of bounded (respectively compact) linear operators from E into F.

M-ideals were first studied by Alfsen and Effros in [1]. They called M an M-ideal if there exists a projection P in E^* such that $P(E^*) = M^{\perp}$ and for all $f \in E^*$

$$||f|| = ||Pf|| + ||f - Pf||$$
.

One characterization of M-ideals is as follows:

M is an M-ideal in E if and only of whenever $\{B(a_i, r_i)\}_{i=1}^n$ is a finite family of balls in E such that

Received February 19, 1982.

$$\bigcap_{i=1}^{n} B(a_{i}, r_{i}) \neq \emptyset \quad \text{and} \quad M \cap B(a_{i}, r_{i}) \neq \emptyset \quad \text{for all } i,$$

then $M \cap \bigcap_{i=1}^n B(a_i, r_i + \varepsilon) \neq \emptyset$ for all $\varepsilon > 0$. [1], [10].

For example, c_0 is an M-ideal in l_{∞} . In this paper we are looking for weaker intersection properties which characterize those subspaces M of E such that M^{\perp} is the kernel of a norm -1 projection in E^* .

One direction of weakening the intersection properties is to start with the characterization of semi M-ideals as defined in [10]. This leads us to characterizations of subspaces M such that if $f \in M^*$, then f has a unique norm-preserving extension to E. An example of this is Theorem 2.2 which says that if M is a closed subspace of E, then we have:

Every $f \in M^*$ which attains its norm on M_1 has a unique norm-preserving extension to E if and only if whenever $x \in M$, $y \in E$ with ||x|| = ||y|| = 1 and $\varepsilon > 0$, there exists $r \ge 1$ such that

$$M \cap B(y+rx,r+\varepsilon) \cap B(y-rx,r+\varepsilon) \neq \emptyset$$
.

This intersection property characterize semi M-ideals if we can take r=1. In the other direction we generalize the intersection property characterizing M-ideals in that we require that the centers of the balls are in M. Then we get a result that ensure that we can obtain simultaneous norm-preserving extensions of several linear functionals. For instance, Theorem 3.1 implies that the following statements are equivalent:

- (i) If $\{B(a_i, r_i)\}_{i=1}^n$ are balls with centers in M and $\bigcap_{i=1}^n B(a_i, r_i) \neq \emptyset$ in E, then $M \cap \bigcap_{i=1}^n B(a_i, r_i + \varepsilon) \neq \emptyset$ for all $\varepsilon > 0$.
- (ii) If $f_1, \ldots, f_n \in M^*$ are such that $f_1 + \ldots + f_n = 0$, then there exist norm-preserving extensions g_i of f_i such that $g_1 + \ldots + g_n = 0$.

As shown in Corollary 4.9, if E is a smooth Banach space, then (i) with n=3 is equivalent to M^{\perp} being the kernel of a norm-1 projection in E^* .

In the course of these investigations, we also get characterizations of HB-subspaces. HB subspaces were defined by Hennefeld in [6]. He said that M is an HB subspace of E if M^{\perp} is complemented by a subspace M_* in E^* such that whenever $f_* \in M_*$ and $f^{\perp} \in M^{\perp} \setminus \{0\}$, then $||f_* + f^{\perp}|| \ge ||f^{\perp}||$ and $||f_* + f^{\perp}|| > ||f_*||$. In Theorem 4.1 we show that M is an HB-subspace of E if and only if M has property (i) above and every $f \in M^*$ has a unique norm-preserving extension to E.

We follow Sulivan [17] and say that M is (weakly) Hahn-Banach smooth in E if every $f \in M^*$ (which attains its norm on M_1) has a unique norm-preserving extension to E. By Phelps [14] and others, this has been called

property U. With our notation we get that E is smooth if and only if every subspace of E is weakly Hahn-Banach smooth, and E^* is strictly convex if and only if every subspace of E is Hahn-Banach smooth. We call the intersection property in (i) the n.E. intersection property (n.E.I.P.) This resemble the n.k. intersection property as defined in [12].

2. Uniqueness of Hahn-Banach extensions.

We shall say that a subspace M of E is Hahn-Banach smooth in E if every functional on M has a unique norm-preserving extension to E. Moreover, M is weakly Hahn-Banach smooth in E if every functional on M which attains its norm on the unit ball of M has a unique norm-preserving extension to E.

M. Smith and F. Sullivan studied in [16] spaces E which are Hahn-Banach smooth or weakly Hahn-Banach smooth in E^{**} . They showed that if a space E is weakly Hahn-Banach smooth in E^{**} , then E^{*} has the Radon-Nikodym property.

A. E. Taylor [18] and S. R. Foguel [4] have shown that every subspace of E is Hahn-Banach smooth in E if and only if E^* is strictly convex.

From R. R. Phelps [14], we get the following theorem. We use the notation

$$M^* = \{ f \in E^* : ||f|| = ||f||_M \}.$$

Theorem 2.1. Let M be a closed subspace of E. The following statements are equivalent:

- 1) M is Hahn-Banach smooth in E.
- 2) M^{\perp} is a Haar-subspace of E^* , i.e. if $x \in E^*$, then there exists a unique $y \in M^{\perp}$ such that $||x-y|| = d(x, M^{\perp})$.
- 3) If $x, y \in M^*$ and $x + y \in M^{\perp}$, then x + y = 0.
- 4) Every element in E^* can be written in a unique way as a sum of elements from M^* and M^{\perp} .

It is known that semi M-ideals are Hahn-Banach smooth [10]. Recall from [10] that M is a semi M-ideal in E if and only if whenever $x \in M$, $y \in E$ with ||x|| = 1 = ||y|| and $\varepsilon > 0$, then there exists $z \in M$ such that $\max_{\pm} ||x \pm (y - z)|| \le 1 + \varepsilon$. We can generalize this result as follows.

Theorem 2.2. The following statements are equivalent for a closed subspace M of E.

- 1) M is weakly Hahn-Banach smooth in E.
- 2) If $x \in M$, $y \in E$ with ||x|| = 1 = ||y|| and $\varepsilon > 0$, then there exist $r \ge 1$ and $z \in M$ such that

$$\max_{+} \|rx \pm (y-z)\| \leq r + \varepsilon.$$

PROOF. 2) \Rightarrow 1). Let $f \in M^*$ be such that ||f|| = f(x) for some $x \in M$ with ||x|| = 1. Let $g, h \in E^*$ be norm-preserving extensions of f and let $\varepsilon > 0$. Then it suffices to show that $(g-h)(y) \le \varepsilon 2||f||$ for each $y \in E$ with ||y|| = 1.

Let $r \ge 1$ and let $z \in M$ be such that $\max ||rx \pm (y-z)|| \le r + \varepsilon$. Then we have

$$(g-h)(y) + 2r||f|| = (g-h)(y) + 2rf(x)$$

$$= (g-h)(y) + g(rx) + h(rx)$$

$$= g(rx+y-z) + h(rx-y+z)$$

$$\le ||g|| \cdot ||rx+y-z|| + ||h|| \cdot ||rx-y+z||$$

$$\le 2||f||(r+\varepsilon).$$

Hence $(g-h)(y) \le \varepsilon 2 ||f||$.

1) \Rightarrow 2). Assume 2) is false. Then there exist $x \in M$, $y \in E$ with ||x|| = 1 = ||y|| and $\varepsilon > 0$ such that

$$M \cap B(y+rx,r+\varepsilon) \cap B(y-rx,r+\varepsilon) = \emptyset$$
 for all $r \ge 1$.

Let

$$A = \bigcup_{r \ge 1} B(y+rx,r)$$
 and $B = \bigcup_{r \ge 1} B(y-rx,r)$.

Let $\Delta_M = \{(x, x) \in M \times M\}$. A and B are convex, and

$$\Delta_M \cap [(A \times B) + B(0, \varepsilon)] = \emptyset$$

in $E \oplus_{\infty} E$. By the Hahn-Banach theorem, there exist $\lambda \in \mathbb{R}$ and $g_1, g_2 \in E^*$ such that

$$\sup_{x \in M} (g_1 + g_2)(x) < \lambda < \inf_{(u,v) \in A \times B} (g_1(u) + g_2(v)).$$

Since M is a subspace, we get $g_1 + g_2 \in M^{\perp}$. If $(u, v) \in A \times B$, then we have

$$||u-(y+rx)|| \le r$$
 and $||v-(y-rx)|| \le r$

for all sufficiently large r. Hence

$$0 < \lambda < \inf_{r \ge 1} \left[g_1(y + rx) + g_2(y - rx) - r \|g_1\| - r \|g_2\| \right].$$

From this we get

$$r||g_1|| + r||g_2|| + \lambda < g_1(y + rx) + g_2(y - rx)$$
.

We divide by r and let $r \rightarrow \infty$. Hence

$$||g_1|| + ||g_2|| \le g_1(x) + g_2(-x) \le ||g_1|| + ||g_2||$$
.

Thus g_1 and $-g_2$ are norm-preserving extensions of $f = g_1|_{M}$. Moreover,

$$r||g_1|| + r||g_2|| + \lambda \le g_1(y) + r||g_1|| + g_2(y) + r||g_2||$$

so that

$$0 < \lambda \leq g_1(y) + g_2(y) .$$

Thus $g_1 \neq -g_2$.

From Taylor [18], Foguel [4] and Phelps [14], we have

THEOREM 2.3. The following statements are equivalent:

- 1) E* is strictly convex.
- 2) Every closed subspace of E is Hahn-Banach smooth in E.
- 3) Every closed hyperplane through 0 in E is Hahn-Banach smooth in E.

The following theorem in easy.

THEOREM 2.4. The following statements are equivalent:

- 1) E is smooth.
- 2) Every one dimensional subspace of E is weakly Hahn-Banach smooth in E.
- 3) Every closed subspace of E is weakly Hahn-Banach smooth in E.
- 4) Every closed hyperplane through 0 in E is weakly Hahn-Banach smooth in E.

PROOF. 1) \Rightarrow 3) \Rightarrow 4) and 3) \Rightarrow 2) \Rightarrow 1) are trivial.

4) \Rightarrow 1). Assume 1) is false. Then there exist $x \in E$, ||x|| = 1 and $f, g \in E^*$ with $f \neq g$ such that ||f|| = f(x) = 1 = g(x) = ||g||. Let $M = (\ker f \cap \ker g) + \mathbb{R} \cdot \{x\}$. Then M is a closed hyperplane such that f = g on M and $||f|| = ||f||_M$. Thus f and g are norm-preserving extensions of $f|_M$ and M is not weakly Hahn-Banach smooth.

Lima and Uttersrud [20] have given a characterization of smooth Banach spaces as follows: E is smooth if and only if $\bigcup_{n=1}^{\infty} B(nx, n)$ is a half-space whenever ||x|| = 1.

This is related to Vlasov's theorem characterizing preduals of strictly convex spaces [19]. Taking Vlasov's theorem as a starting point, we can find a characterization of Hahn-Banach smooth subspaces of E similar to Theorem 2.2.

We shall use this result in the proof of Theorem 4.5. There we prove that if K(E) is Hahn-Banach smooth in L(E), then E is Hahn-Banach smooth in E^{**} .

THEOREM 2.5. Let M be a closed subspace of E. The following statements are equivalent:

- 1) M is Hahn-Banach smooth in E.
- 2) If $\varepsilon \ge 0$, $y \in E \setminus M$ and $(a_n)_{n=1}^{\infty}$ is a sequence in M such that $||a_1|| \le 1 + \varepsilon$ and

$$||a_{n+1}-a_n|| \le 1 + \frac{\varepsilon}{2^{n+1}}$$
 for all $n \ge 1$,

then $M \cap A_1 \cap A_2 \neq \emptyset$, where

$$A_i = \bigcup_{n=1}^{\infty} B\left(y + (-1)^i a_n, n + 2\varepsilon - \frac{\varepsilon}{2^n}\right); \quad i = 1, 2.$$

PROOF. 1) \Rightarrow 2). Assume there exist $\varepsilon \ge 0$, $y \in E \setminus M$ and a sequence $(a_n)_{n=1}^{\infty}$ as in 2) such that $M \cap A_1 \cap A_2 = \emptyset$. Define

$$B_i = \bigcup_{n=1}^{\infty} B\left(y + (-1)^i a_n, n + \frac{3}{2}\varepsilon - \frac{\varepsilon}{2^n}\right).$$

Then $A_i = B_i + B(0, \varepsilon/2)$. Since $||a_1|| \le 1 + \varepsilon$ and $||a_{n+1} - a_n|| \le 1 + \varepsilon/2^{n+1}$, we get

$$y\in B\left(y+(-1)^{i}a_{n},n+\frac{3}{2}\varepsilon-\frac{\varepsilon}{2^{n}}\right)\subseteq B\left(y+(-1)^{i}a_{n+1},n+1+\frac{3}{2}\varepsilon-\frac{\varepsilon}{2^{n+1}}\right).$$

Thus B_i is convex for i = 1, 2.

Let Δ_M be as in the proof of Theorem 2.2. Then Δ_M and $B_1 \times B_2$ can be strongly separated. Thus as in the proof of Theorem 2.2 there exist $g, h \in E^*$ and $\lambda > 0$ such that $g + h \in M^{\perp}$ and

$$\lambda \leq \inf_{b_i \in B_i} (g(b_1) + h(b_2)).$$

Thus we get

$$\lambda \leq \inf_{n} \left(g(y-a_n) + h(y+a_n) - (\|g\| + \|h\|) \left(n + \frac{3}{2}\varepsilon - \frac{\varepsilon}{2^n} \right) \right).$$

Since $||a_n|| \le n + \frac{3}{2}\varepsilon - \varepsilon/2^n$, we find by dividing by n and then letting $n \to \infty$, that

$$||g|| + ||h|| \le \lim_{n \to \infty} (h - g) \left(\frac{a_n}{n}\right) \le ||g - h||.$$

Thus ||g|| + ||h|| = ||g - h||. Hence it follows that

$$(\|g\| + \|h\|) \left(n + \frac{3}{2}\varepsilon - \frac{\varepsilon}{2^n}\right) + \lambda \le (g+h)(y) + (h-g)(a_n)$$

$$\le (g+h)(y) + \|h-g\| \cdot \left(n + \frac{3}{2}\varepsilon - \frac{\varepsilon}{2^n}\right).$$

and

$$0 < \lambda \leq (g+h)(y)$$
.

Thus shows that M is not Hahn-Banach smooth in E.

2) \Rightarrow 1). Assume for contradiction that there exists $f \in M^*$, ||f|| = 1 such that f has two different norm-preserving extensions $g, h \in E^*$. Let $y \in E \setminus M$ be such that $g(y) \neq h(y)$. Without loss of generality, we may assume $E = M \oplus \mathbb{R} \cdot \{y\}$. Define $N = \ker g \cap \ker h \subseteq E$. Clearly $N \subseteq M$ and $\dim E/N = 2$. Now $g, h \in N^{\perp}$ and ||g|| + ||h|| = ||g + h|| = 2. Choose $c \in E/N$ such that 1 = ||c|| = g(c) = h(c). Notice that if $z \in B(c, 1)$, then $g(z) \geq 0$ and $h(z) \geq 0$.

We now follow Vlasov's reasoning:

Put $c_n = nc$. Let Q be the quotient map onto E/N. Let $C_n = Q^{-1}(c_n)$. Since g = h exactly on M, we get that $C_n \subseteq M$. Let $r_n = n - \varepsilon/2^n$. First choose $a_1 \in C_1$ with $||a_1|| \le 1 + \varepsilon$. Next assume that a_1, \ldots, a_n has been found such that $a_k \in C_k$ and $||a_{k+1} - a_k|| \le r_{k+1} - r_k$, for $k = 1, 2, \ldots, n-1$. Since $a_n \in C_n$, we have

$$d(a_n, C_{n+1}) = ||c_{n+1} - c_n|| = 1 < r_{n+1} - r_n.$$

Thus we can find $a_{n+1} \in C_{n+1}$ such that $||a_{n+1} - a_n|| \le r_{n+1} - r_n$. Since $r_{n+1} - r_n = 1 + \varepsilon/2^{n+1}$, we have found a sequence in M as in 2). By 2) there exist $z \in M$ and n such that for i = 1, 2.

$$||y+(-1)^{i}a_{n}-z|| \leq n+2\varepsilon-\frac{\varepsilon}{2^{n}} \leq n+2\varepsilon$$
.

This can be written as

$$\max_{\pm} \|a_n \pm (y-z)\| \leq n + 2\varepsilon.$$

Hence

$$n+2\varepsilon \ge \max_{\pm} |g(a_n) \pm g(y-z)|$$

$$= \max_{\pm} |g(c_n) \pm g(y-z)|$$

$$= \max_{\pm} |n \pm (y-z)|$$

$$= n+|g(y-z)|.$$

Thus $2\varepsilon \ge |g(y-z)|$.

Similarly $2\varepsilon \ge |h(y-z)|$.

Since $z \in M$, we have g(z) = h(z) = f(z). Thus

$$|g(y)-h(y)| \leq 4\varepsilon$$
.

Starting with a sufficiently small $\varepsilon > 0$, we obtain a contradiction.

We shall use Theorem 2.5 in section 4. But first we need some results about another intersection property.

3. Liftings and intersections of balls.

We shall assume M is a closed subspace of E. Let $f_1, \ldots, f_n \in M^*$ with $f_1 + \ldots + f_n = 0$. We shall find conditions on M which ensure the existence of norm-preserving extensions $\hat{f_i}$ such that $\hat{f_1} + \ldots + \hat{f_n} = 0$ in E^* .

DEFINITION. Let $n \ge 3$ be a natural number. We shall say that M has the n.E. intersection property (n.E.I.P.) if whenever $\{B(a_i,r_i)\}_{i=1}^n$ are n closed balls in M with $\bigcap_{i=1}^n B(a_i,r_i) \neq \emptyset$ in E, then $M \cap \bigcap_{i=1}^n B(a_i,r_i+\varepsilon) \neq \emptyset$ for all $\varepsilon > 0$.

The following result is the main theorem.

THEOREM 3.1. Let $n \ge 3$. The following statements are equivalent:

- 1) M has the n.E.I.P.
- 2) $M^{\perp\perp}$ has the n.E**.I.P.
- 3) If $f_1, \ldots, f_n \in M^*$ are such that $f_1 + \ldots + f_n = 0$, then there exist norm-preserving extensions \hat{f}_i to E such that $\hat{f}_1 + \ldots + \hat{f}_n = 0$.
- 4) If $f_1, \ldots, f_n \in E^*$ with $f_1 + \ldots + f_n = f \in M^{\perp}$ and $r_i = d(f_i, M^{\perp})$, then there exist $h_i \in M^{\perp} \cap B(f_i, r_i)$ such that $h_1 + \ldots + h_n = f$.

PROOF. 2) \Rightarrow 1) follows from the "principle of local reflexivity" [13] since we can identify $M^{\perp\perp}$ with M^{**} .

3) \Rightarrow 1). Let $\{B(a_i, r_i)\}_{i=1}^n$ be *n* balls in *M* such that $\bigcap_{i=1}^n B(a_i, r_i) \neq \emptyset$ in *E*. Let $f_1, \ldots, f_n \in M^*$ be such that $f_1 + \ldots + f_n = 0$. By 3) there exist norm-preserving extensions \hat{f}_i such that $\hat{f}_1 + \ldots + \hat{f}_n = 0$.

Let
$$a \in \bigcap_{i=1}^n B(a_i, r_i)$$
.

Then we have

$$\left| \sum_{i=1}^{n} f_i(a_i) \right| = \left| \sum_{i=1}^{n} \widehat{f}_i(a_i) \right|$$

$$= \left| \sum_{i=1}^{n} \widehat{f}_i(a_i - a) \right|$$

$$\leq \sum_{i=1}^{n} r_i ||\widehat{f}_i||$$

$$= \sum_{i=1}^{n} r_i ||f_i||.$$

By Theorem 1.1 in [10], we get that

$$M \cap \bigcap_{i=1}^{n} B(a_i, r_i + \varepsilon) \neq \emptyset$$
 for all $\varepsilon > 0$.

1) \Rightarrow 3). We introduce sets $A \subseteq (M^* \oplus \ldots \oplus M^*)_{l_1^n}$ and $B \subseteq (E^* \oplus \ldots \oplus E^*)_{l_1^n}$ as follows:

$$A = \left\{ (f_1, \dots, f_n) : \sum_{i=1}^n f_i = 0 \text{ and } \sum_{i=1}^n \|f_i\| \le 1 \right\}$$

and

$$B = \left\{ (g_1, \ldots, g_n) : \sum_{i=1}^n g_i = 0 \text{ and } \sum_{i=1}^n \|g_i\| \le 1 \right\}.$$

Let $Q: (E^* \oplus \ldots \oplus E^*)_{l_1^n} \to (M^* \oplus \ldots \oplus M^*)_{l_1^n}$ be defined by

$$Q(g_1,...,g_n) = (g_1|_M,...,g_n|_M).$$

Q(B) is a convex w^* -compact subset of A. Clearly it suffices to show that Q(B) = A. Assume for contradiction that there exists $(f_1, \ldots, f_n) \in A \setminus Q(B)$. By the Hahn-Banach theorem there exist $a_1, \ldots, a_n \in M$ such that

$$\sum_{i=1}^{n} f_i(a_i) > 1 = \sup_{(g_1, \dots, g_n) \in B} \sum_{i=1}^{n} g_i(a_i).$$

By Theorem 1.1 in [10], we have $\bigcap_{i=1}^n B(a_i, 1+\varepsilon) \neq \emptyset$ in E for all $\varepsilon > 0$, and

$$M \cap \bigcap_{i=1}^{n} B(a_i, r_i + \varepsilon) = \emptyset$$
 for some $\varepsilon > 0$.

- 3) \Leftrightarrow 4) is trivial.
- 4) \Rightarrow 2) follows by using Theorem 1.2 in [10].

Note that it follows from the proof of 1) \Rightarrow 3) that we can take all $r_i = 1$ in the definition of the *n.E.I.P.* This also follows from Theorem 4.3 in [12].

REMARKS.

- a) Let E = C[0, 1] and let M be a subspace of E isometric to l_1 . Since l_1 has the 3.2.I.P. but not the 4.2.I.P., it follows that M has the 3.E.I.P. but not the 4.E.I.P.
- b) Let $E = 1^3_{\infty}$ and let $M = \{(x, y, z) \in E : x + y + z = 0\}$. It is easy to see that M does not have the 3.E.I.P.
- c) From the "principle of local reflexivity", it easily follows that every Banach space M has the $n.M^{**}$.I.P. for all n.

From Theorem 3.1 and the proof of Theorem 5.9 in [12] we get the following result.

Proposition 3.2. The statements below are related as follows

- $1) \Rightarrow 2) \Rightarrow 3) \Leftrightarrow 4)$:
- 1) There exists a norm 1 projection in E with range M.
- 2) There exists a norm 1 projection in E^* with kernel M^{\perp} .
- 3) M has the n.E.I.P. for all n.
- 4) For each Banach space Y such that $M^{\perp \perp} \subseteq Y \subseteq E^{**}$ and dim $Y/M^{\perp \perp} = 1$, there is a norm 1 projection from Y onto $M^{\perp \perp}$.

REMARKS.

- a) Clearly 2) \neq 1) in Proposition 3.2, but we do not know if 3) \Rightarrow 2).
- b) We do not know if there exists a number $k \ge 4$ such that if M has the k.E.I.P., then M has the n.E.I.P. for all $n \ge k.$
- c) Using Helly's theorem [5], we get that if dim $M = k < \infty$ and M has the (k+1). E.I.P., then M has the n.E.I.P. for all n.
- d) From Proposition 3.2 and [8], we get that E is isometric to a Hilbert space if and only if every two-dimensional subspace of E has the 3.E.I.P. This result was first proved by Comfort and Gordon in [2].

We refer to [10] for the definition of M-ideals and semi M-ideals. An easy corollary of Theorem 3.1 is the following result.

COROLLARY 3.3. Assume M is a semi M-ideal in E. Then the following statements are equivalent:

- 1) M is an M-ideal in E.
- 2) M has the n.E.I.P. for all n.
- 3) M has the 3.E.I.P.

An easy corollary of this result and the Remarks above, is the following result of Saatkamp [15].

COROLLARY 3.4. If M is a semi M-ideal in M^{**} , then M is an M-ideal in M^{**} .

From a result of J. Johnson [7], we get:

PROPOSITION 3.5. If F or E^* has the metric approximation property, then K(E,F) has the n.L(E,F). I.P. for all n. Moreover, if also K(E,F) is a semi Mideal in L(E,F), then K(E,F) is an M-ideal.

We shall end this section by considering which subspaces of $L_1(\mu)$ -spaces and predual $L_1(\mu)$ -spaces have the *n.E.I.P.*

PROPOSITION 3.6. Let $E = L_1(\mu)$ and let M be a closed subspace of M. Then M has the 3.E.I.P. if and only if M is the range of a norm-1 projection in E.

PROOF. One way is trivial.

Assume M has the 3.E.I.P. Then M has the 3.2.I.P. By Theorem 4.3, Theorem 3.12, and Corollary 3.3 in [10], it follows that M is isometric to an $L_1(\nu)$ -space. By Theorem 6.3 in [9] it follows that M is the range of a norm-1 projection in E.

PROPOSITION 3.7. Assume $E^* = L_1(\mu)$ and that M is a subspace of E. Then M has the 4.E.I.P. if and only if M^{\perp} is the kernel of a norm-1 projection in E^* .

PROOF. Use proposition 3.8 and Theorem 2.17 in [10].

4. HB-subspaces.

Hennefeld [6] call a subspace M of E a HB-subspace if M^{\perp} is complemented by a subspace M_{\star} such that whenever $f_{\star} \in M_{\star}$ and $f^{\perp} \in M^{\perp} \setminus \{0\}$, then $\|f_{\star} + f^{\perp}\| \ge \|f^{\perp}\|$ and $\|f_{\star} + f^{\perp}\| > \|f_{\star}\|$.

We use the notation $M^* = \{ f \in E^* : ||f|| = ||f||_M \}.$

Theorem 4.1. The following statements are equivalent:

- 1) M is a HB-subspace of E.
- 2) M* is a linear subspace.
- 3) If $f_1, f_2, f_3 \in M^*$ with $f_1 + f_2 + f_3 \in M^{\perp}$, then $f_1 + f_2 + f_3 = 0$.
- 4) M is Hahn-Banach smooth in E and has the 3.E.I.P.
- 5) M is Hahn-Banach smooth in E and has the n.E.I.P. for all $n \ge 3$.

PROOF. 5) \Rightarrow 4) is trivial.

- 4) \Rightarrow 3) follows from Theorem 3.1 since $f \in M^*$ implies that f is a norm-preserving extension of $f|_{M}$.
- 3) \Rightarrow 2). Let $f_1, f_2 \in M^*$. Then we can write $f_1 + f_2 = -f_3 + f$ where $f_3 \in M^*$ and $f \in M^{\perp}$.
 - By 3) $f_1 + f_2 = -f_3 \in M^*$.
- 2) \Rightarrow 5). Let $f \in M^*$ and let $g, h \in E^*$ be norm-preserving extensions of f. Then $g, h \in M^*$ and $g h \in M^{\perp}$. Thus g h = 0 and M is Hahn-Banach smooth in E. Let P be the projection in E^* with range M^* and kernel M^{\perp} . Then ||P|| = 1 and M has the n.E.I.P. by Proposition 3.2.
 - 1) \Rightarrow 5) follows from Lemma 1.2 and 1.3 in [6].
- 5) \Rightarrow 1). Define $M_* = M^*$. Clearly if $f \in M^*$ and $g \in M^{\perp} \setminus \{0\}$, then $||f+g|| \ge ||f+g||_M = ||f||$ and ||f+g|| > ||f|| since M is Hahn-Banach smooth.

COROLLARY 4.2. M is a HB-subspace of M^{**} if and only if M is Hahn-Banach smooth in M^{**} .

COROLLARY 4.3. If M is a HB-subspace of M^{**} , then M^* has the Radon-Nikodym property.

PROOF. It follows from [16] and Corollary 4.2.

COROLLARY 4.4. If E^* or F has the metric approximation property, then K(E,F) is a HB-subspace of L(E,F) if and only if K(E,F) is Hahn-Banach smooth in L(E,F).

In [11], we proved that if K(E) is an M-ideal in L(E), then E is an M-ideal in E^{**} . A similar result is true for HB-subspaces.

THEOREM 4.5. Assume K(E) is a HB-subspace of L(E). Then E is a HB-subspace of E^{**} . In particular E^* has the Radon-Nikodym property.

Note that similar results are true if we replace the word HB-subspace by Hahn-Banach smooth or by weakly Hahn-Banach smooth.

PROOF. By Proposition 3.6 and Theorem 4.1, it suffices to show that E is Hahn-Banach smooth in E^{**} . To this end we use Theorem 2.5.

Let $\varepsilon > 0$ and let $y \in E^{**} \setminus E$. Clearly we may assume that ||y|| = y(f) for some $f \in E^*$ with ||f|| = 1. (We use the Bishop-Phelps theorem.) Let $(a_n)_{n=1}^{\infty}$ be

a sequence in E such that $||a_1|| \le 1 + \varepsilon$ and $||a_{n+1} - a_n|| \le 1 + \varepsilon/2^{n+1}$. Define $S_n \in K(E)$ by

$$\dot{S_n}(u) = f(u)a_n.$$

Then $||S_1|| \le 1 + \varepsilon$ and $||S_{n+1} - S_n|| \le 1 + \varepsilon/2^{n+1}$.

By Theorem 2.5 there exist $T \in K(E)$ and n such that

$$\max_{\pm} \|S_n \pm (I - T)\| \leq n + 2\varepsilon - \frac{\varepsilon}{2^n}.$$

Thus

$$n + 2\varepsilon - \varepsilon/2^{n} \ge \max_{\pm} \|S_{n}^{**} \pm (I - T^{**})\|$$

$$\ge \max_{\pm} \|S_{n}^{**} y \pm (y - T^{**} y)\|$$

$$= \max_{\pm} \|a_{n} \pm (y - T^{**} y)\|.$$

Since T is compact, we have $T^{**}y \in E$. Thus E is Hahn-Banach smooth in E^{**} by Theorem 2.5.

THEOREM 4.6. Assume M is a closed subspace of E and that E is smooth and reflexive. Then the following statements are equivalent:

- 1) M is the range of a norm 1 projection in E.
- 2) M has the n.E.I.P. for all $n \ge 3$.
- 3) M has the 3.E.I.P.
- 4) M is a HB-subspace of E.

PROOF. Since E is smooth and reflexive, it follows that M is Hahn-Banach smooth in E. The theorem now follows from Theorem 4.1 and Proposition 3.2.

From [9], we now get:

COROLLARY 4.7. Let $E = L_p(\mu)$ for some measure μ and 1 . A subspace <math>M of E has the 3.E.I.P. if and only if M is isometric to an $L_p(\nu)$ space.

THEOREM 4.8. Assume M has the 3.E.I.P. If M is weakly Hahn-Banach smooth in E, then M^{\perp} is the kernel of a norm-1 projection in E^* .

PROOF. For each $f \in M^*$, let P(f) denote the non-empty convex and w^* -compact set of norm-preserving extensions of f. Clearly it suffices to find a linear selection of the map $f \to P(f)$.

If $f \in M^*$ attains its norm on M_1 , let \hat{f} be the unique norm-preserving extension of f. Then $P(f) = \{\hat{f}\}$.

Assume $f,g \in M^*$ both attains their norms on M_1 . Then by Theorem 3.1, we get $||f-g|| = ||\widehat{f}-\widehat{g}||$. By the Bishop-Phelps theorem [3], the norm-attaining functionals in M^* are norm-dense. Hence we get that if $f \in M^*$, then there exists a unique $\widehat{f} \in P(f)$ such that if $f_{\alpha} \to f$ in norm and each f_{α} attain its norm, then $\widehat{f}_{\alpha} \to \widehat{f}$ in norm. The selection $f \to \widehat{f}$ is linear.

The projection is $f \to (f[M])$.

COROLLARY 4.9. Assume M is weakly Hahn-Banach smooth in E. Then M has the 3.E.I.P. if and only if $M^{\perp\perp}$ is the range of a norm-1 projection in E^{**} .

COROLLARY 4.10. Assume E is a smooth Banach space and that M is a closed subspace. If M has the 3.E.I.P., then M has the n.E.I.P. for all n, and M^{\perp} is the kernel of a norm-1 projection in E^* .

PROOF. Use Theorem 4.8, Proposition 3.2, and Theorem 2.4.

In [21] Belobrov studied Banach spaces which are Hahn-Banach smooth in their biduals.

He showed the following result under the stronger hypothesis that E is Hahn-Banach smooth (rather than weakly Hahn-Banach smooth).

THEOREM 4.11. Assume E is weakly Hahn–Banach smooth in E^{**} . The following statements are true:

- 1) If M is a closed subspace of E, then M is weakly Hahn-Banach smooth in M**
- 2) If E is the range of a norm-1 projection in E^{**} , then E is reflexive.

PROOF. 1). Let $f \in M^*$ and assume f attains its norm on M_1 . Let f_1, f_2 be two norm-preserving extensions of f to E. By 1) each f_i has a unique norm-preserving extension \hat{f}_i to E^{**} defined by $\hat{f}_i(y) = y(f_i)$. If $y \in M^{\perp \perp} = M^{**}$ and $(x_n)_n$ is a net in M converging weak* to y, then

$$\hat{f}_1(y) = y(f_1) = \lim_{\alpha} x_{\alpha}(f_1) = \lim_{\alpha} x_{\alpha}(f_2) = y(\hat{f}_2) = \hat{f}_2(y)$$
.

Thus $\hat{f}_1 = \hat{f}_2$ on $M^{\perp \perp}$.

Next let g, h be two norm-preserving extensions of f to $M^{\perp \perp}$. Then g and h have norm-preserving extensions \tilde{g} and \tilde{h} to E^{**} . Clearly $\tilde{g} = (\tilde{g}|_E)^{\hat{}}$ and $\tilde{h} = (\tilde{h}|_E)^{\hat{}}$ and by the first part of the proof, if $y \in M^{\perp \perp}$, then $g(y) = \tilde{g}(y) = \tilde{h}(y) = h(y)$. Thus f has a unique norm-preserving extension to $M^{\perp \perp} = M^{**}$.

2). Here we follow Belobrov's argument. Assume P is a norm-1 projection in E^{**} with range E. Assume there exists $x^{**} \in \ker P \setminus \{0\}$. Let $f \in E^{*}$ with ||f|| = 1 and $2x^{**}(f) > ||x^{**}||$ and $x^{**}(f) \neq Px^{**}(f)$. By the Bishop-Phelps theorem we may assume f attains its norm on E_1 . P^{*} is a norm-1 projection in E^{***} with kernel E^{\perp} . Let \widehat{f} be the unique norm-preserving extension of f to E^{**} . Thus $\widehat{f} \in E^{****}$.

Then we have

$$P * \hat{f}(x^{**}) = \hat{f}(Px^{**}) = (Px^{**})(f)$$

$$+ x^{**}(f) = \hat{f}(x^{**}).$$

Moreover, if $y \in E$ with ||y|| = 1 and f(y) = ||f||, then

$$P^*\hat{f}(y) = \hat{f}(Py) = \hat{f}(y) .$$

Thus $P^*\hat{f}$ and \hat{f} are two different norm-preserving extensions of f to E^{**} . This is a contradiction. Hence $\ker P = (0)$.

5. More about liftings and intersections of balls.

We shall now dualize Theorem 3.1. We can prove the following result.

THEOREM 5.1. Assume M is a closed subspace of E. Let $n \ge 3$ be a natural number and let $\varphi: E \to E/M$ be the quotient map. The following statements are equivalent:

- 1) M^{\perp} has the n.E*.I.P.
- 2) If $x_1, \ldots, x_n \in E/M$ with $x_1 + \ldots + x_n = 0$ and $\varepsilon > 0$, then there exist $y_i \in E$ such that $\varphi(y_i) = x_i$, $y_1 + \ldots + y_n = 0$, and $||y_i|| \le ||x_i|| + \varepsilon$ for all i.
- 3) If $y_1, \ldots, y_n \in E$ with $y = y_1 + \ldots + y_n \in M$ and $\varepsilon > 0$ and $r_i = d(y_i, M)$, then there exist $x_i \in M \cap B(y_i, r_i + \varepsilon)$ such that $y = x_1 + \ldots + x_n$.

PROOF. 3) \Rightarrow 2). Let $x_1, \ldots, x_n \in E/M$ with $x_1 + \ldots + x_n = 0$ and let $\varepsilon > 0$. Choose $z_i \in E$ with $\varphi(z_i) = x_i$ and $\|z_i\| \le \|x_i\| + \varepsilon$. Let $r_i = d(z_i, M)$ and let $z = z_1 + \ldots + z_n$. Then $z \in M$ and hence, there exist $y_i \in M \cap B(z_i, r_i + \varepsilon)$ such that $z = y_1 + \ldots + y_n$. Then we have $\varphi(z_i - y_i) = x_i$, $\|z_i - y_i\| \le \|x_i\| + \varepsilon$, and $(z_1 - y_1) + \ldots + (z_n - y_n) = 0$.

- 2) \Rightarrow 3). Choose liftings z_i of $\varphi(y_i)$ as in 2) and let $x_i = y_i z_i$.
- 2) \Rightarrow 1). Let $\{B(f_i, r_i)\}_{i=1}^n$ be n balls in M^{\perp} and assume there exists $f \in E^*$ such that $||f f_i|| \le r_i$ for all i. Let $x_1, \ldots, x_n \in E/M$ with $x_1 + \ldots + x_n = 0$ and let $\varepsilon > 0$. Let y_i be as in 2). Then we have, since $f_i \in M^{\perp}$,

$$\sum_{i=1}^{n} f_{i}(x_{i}) = \sum_{i=1}^{n} f_{i}(y_{i})$$

$$= \sum_{i=1}^{n} (f_{i} - f)(y_{i})$$

$$\leq \sum_{i=1}^{n} r_{i} ||y_{i}||$$

$$\leq \sum_{i=1}^{n} r_{i}(||x_{i}|| + \varepsilon).$$

Since $\varepsilon > 0$ is arbitrary, we get

$$\sum_{i=1}^{n} f_{i}(x_{i}) \leq \sum_{i=1}^{n} r_{i} \|x_{i}\|.$$

By Theorem 1.2 in [10], it follows that $M^{\perp} \cap \bigcap_{i=1}^{n} B(f_i, r_i) \neq \emptyset$.

1) \Rightarrow 2). This is similar to the proof of 1) \Rightarrow 3) in Theorem 3.1.

Note that if M is proximinal, then we can take $\varepsilon = 0$ in Theorem 4.1. If M is the kernel of a norm 1 projection or M^{\perp} is the image of a norm 1 projection, then M^{\perp} has the n.E.*I.P. for all n.

PROPOSITION 5.2. Assume M has the Haar property, i.e. for each $x \in E$, there is a unique $y \in M$ such that ||x-y|| = d(x, M). Then M^{\perp} has the 3.E.*I.P. if and only if M is the kernel of a norm 1 projection.

PROOF. Let P be a norm 1 projection in E with ker P = M. Then P^* is a norm 1 projection in E^* with range M^{\perp} . Hence M^{\perp} has the n.E.*I.P. for all n. Assume conversely that M^{\perp} has the 3.E.*I.P. Let

$$M^{\Theta} = \{x \in E : ||x|| = d(x, M)\}.$$

Clearly $M \cap M^{\ominus} = (0)$ and $M + M^{\ominus} = E$. It suffices to show that M^{\ominus} is a linear subspace. Let $x_1, x_2 \in M^{\ominus}$. Then we can write $x_1 + x_2 = -x_3 + x$ where $x_3 \in M^{\ominus}$ and $x \in M$. Since we can take $\varepsilon = 0$ in Theorem 5.1 and $M \cap B(x_i, ||x_i||) = \{0\}$, it follows from 3) in Theorem 5.1 that x = 0. Thus M^{\ominus} is a linear subspace of E. The projection in E onto M^{\ominus} with kernel E has norm 1.

REFERENCES

- 1. E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173.
- 2. W. W. Comfort and H. Gordon, Inner product spaces and the tri-spherical intersection property, Proc. Amer. Math. Soc. 12 (1961), 327-329.
- J. Diestel and J. J. Uhl, Vector measures, (Math. Surveys 15), Amer. Math. Soc., Providence, R.I., 1977.
- 4. S. R. Foguel, On a theorem of A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325.
- 5. E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math.-Verein. 32 (1923), 175-176.
- 6. J. Hennefeld, A note on M-ideals in B(X), Proc. Amer. Math. Soc. 78 (1980), 89-92.
- 7. J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
- 8. S. Kakutani, Some characterizations of Euclidean space, Japan J. Math. 16 (1939), 93-97.
- 9. E. Lacey, The isometric theory of classical Banach spaces (Grundlehren Math. Wiss. 208), Springer-Verlag, Berlin Heidelberg New York, 1974.
- Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62.
- 11. Å. Lima, On M-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36.
- 12. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 1-112.
- 13. J. Lindenstrauss and H. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325-349.
- 14. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- 15. K. Saatkamp, Schnitteigenschaften und Beste Approximation, Dissertation, Bonn, 1979.
- M. A. Smith and F. Sullivan, Extremely smooth Banach spaces in Banach Spaces of Analytic Functions (Lecture Notes on Math. 604), Springer-Verlag, Berlin - Heidelberg - New York, 1977.
- F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331.
- 18. A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538-547.
- 19. L. P. Vlasov, Approximative properties of sets in normed linear spaces, Russian Math. Surveys 28 (1973), 1-66.
- Å. Lima and U. Uttersrud, Centers of symmetry in finite intersections of valls in Banach spaces, Israel J. Math. 44 (1983), 189-200.
- 21. P. K. Belobrov, Minimal extension of linear functionals to second dual spaces, Mat. Zametki 27 (1980), 439-445.

DEPARTMENT OF MATHEMATICS AND STATISTICS NORWEGIAN AGRICULTURAL UNIVERSITY N-1432 ÅS-NLH NORWAY