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UNIQUENESS OF HAHN-BANACH EXTENSIONS
AND LIFTINGS OF LINEAR DEPENDENCES

ASVALD LIMA
Abstract.

We study intersection properties of balls for a subspace M of a Banach space
E which ensures either that each linear functional on M has a unique norm-
preserving extension to E or that if f},.. ., f, € M* are such that 3, f;=0,
then every f; has a norm-preserving extension g; € E* such that 3}, g;=0. We

relate these properties to the existence of norm-1 projection in E* with kernel
M+

1. Introduction.

Let E be a real Banach space and let M be a closed subspace. The dual
space of E is denoted E* and the annihilator of M in E* is denoted M L. B(x,r)
denotes the closed ball in E with center x and radius r. The closure of a set S is
denoted S, its convex hull conv (S) and the distance from y to S by d(y, S). The
unit ball of E is written E,, and the set of extreme points of a set § is denoted
4.S.

We shall study extensions of linear functionals from M to E and we write for
f€ E*, || f| i for the norm of the restriction f | M of f to M. By M* we mean

M = {feE*: |fl=IflIum}

L(E,F) (respectively K(E,F)) denotes the space of bounded (respectively
compact) linear operators from E into F.

M-ideals were first studied by Alfsen and Effros in [1]. They called M an M-
ideal if there exists a projection P in E* such that P(E*)=M" and for all
fe E*

Il = IPfI+If=PSfIl -
One characterization of M-ideals is as follows:

M is an M-ideal in E if and only of whenever {B(a;,r;)}!-, is a finite family of
balls in E such that
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01 B(a,r) + & and MNB(a,r) + & for all

then MNN'_, B(a,r;+¢&)+ & for all £¢>0. [1], [10].

For example, ¢, is an M-ideal in [, In this paper we are looking for weaker
intersection properties which characterize those subspaces M of E such that
M* is the kernel of a norm — 1 projection in E*.

One direction of weakening the intersection properties is to start with the
characterization of semi M-ideals as defined in [10]. This leads us to
characterizations of subspaces M such that if fe M*, then f has a unique
norm-preserving extension to E. An example of this is Theorem 2.2 which says
that if M is a closed subspace of E, then we have:

Every fe M* which attains its norm on M, has a unique norm-preserving
extension to E if and only if whenever x € M, y € E with ||x||=|y||=1 and
£>0, there exists r=1 such that

M N By+rx,r+¢) N Bly—rx,r+¢) + & .

This intersection property characterize semi M-ideals if we can take r=1.

In the other direction we generalize the intersection property characterizing
M-ideals in that we require that the centers of the balls are in M. Then we get a
result that ensure that we can obtain simultaneous norm-preserving extensions
of several linear functionals. For instance, Theorem 3.1 implies that the
following statements are equivalent:

(i) If {B(a;r)}-, are balls with centers in M and N!_, B(a,r)+J in E,
then M NN?_, B(a,r;+¢)+ & for all £>0.

@) If fy,..., f, € M* are such that f, + ... +f,=0, then there exist norm-
preserving extensions g; of f; such that g, + ... +g,=0.

As shown in Corollary 4.9, if E is a smooth Banach space, then (i) with n=3
is equivalent to M* being the kernel of a norm-1 projection in E*.

In the course of these investigations, we also get characterizations of HB-
subspaces. HB subspaces were defined by Hennefeld in [6]. He said that M is
an HB subspace of E if M* is complemented by a subspace M, in E* such that
whenever f, € M, and f* e M*\ {0}, then ||f,+/ =)/ and ||f,+f*
> | f,ll. In Theorem 4.1 we show that M is an HB-subspace of E if and only if
M has property (i) above and every fe M* has a unique norm-preserving
extension to E.

We follow Sulivan [17] and say that M is (weakly) Hahn—Banach smooth
in E if every fe M* (which attains its norm on M,) has a unique norm-
preserving extension to E. By Phelps [14] and others, this has been called
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property U. With our notation we get that E is smooth if and only if every
subspace of E is weakly Hahn—Banach smooth, and E* is strictly convex if and
only if every subspace of E is Hahn-Banach smooth. We call the intersection
property in (i) the n.E. intersection property (n.E.I.P.) This resemble the n.k.
intersection property as defined in [12].

2. Uniqueness of Hahn-Banach extensions.

We shall say that a subspace M of E is Hahn—Banach smooth in E if every
functional on M has a unique norm-preserving extension to E. Moreover, M is
weakly Hahn—Banach smooth in E if every functional on M which attains its
norm on the unit ball of M has a unique norm-preserving extension to E.

M. Smith and F. Sullivan studied in [16] spaces E which are Hahn—Banach
smooth or weakly Hahn-Banach smooth in E**. They showed that if a space
E is weakly Hahn-Banach smooth in E**, then E* has the Radon-Nikodym
property.

A. E. Taylor [18] and S. R. Foguel [4] have shown that every subspace of E
is Hahn-Banach smooth in E if and only if E* is strictly convex.

From R. R. Phelps [14], we get the following theorem. We use the notation

M* = {feE*: |fll=1flnm}-

THEOREM 2.1. Let M be a closed subspace of E. The following statements are
equivalent:

1) M is Hahn—Banach smooth in E.

2) M*'is a Haar-subspace of E*, i.. if x € E*, then there exists a umque ye Mt
such that ||x —y| =d(x, M*).

3) If x,y e M* and x+y € M*, then x+y=0.

4) Every element in E* can be written in a unique way as a sum of elements from
M* and M*.

It is known that semi M-ideals are Hahn-Banach smooth [10]. Recall from
[10] that M is a semi M-ideal in E if and only if whenever x € M, y € E with
Ix|l=1=|y|ll and £¢>0, then there exists z € M such that max |tx+(y 2)|l
Sl+e We can generalize this result as follows.

THEOREM 2.2. The following statements are equivalent for a closed subspace M
of E.

1) M is weakly Hahn-Banach smooth in E.
2) If x e M, y € E with ||x|=1=y| and >0, then there existr=1and ze M
such that
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max ||rx+ (y—2)| £ r+e.
+

PROOF. 2) = 1). Let f € M* be such that | f|| =f(x) for some x € M with ||x||
=1. Let g,h € E* be norm-preserving extensions of f and let ¢>0. Then it
suffices to show that (g—h)(y)<e2| f]| for each y € E with |y| = 1.

Let r=1 and let z € M be such that miax lrx+ (y—2)| £r+e¢. Then we have

(g—m@+2rlfll = (g—hY)+2rf(x)
(g—h)(y)+g(rx)+h(rx)
grx+y—2z)+h(rx—y+2)

IIA

gl lirx+y—zl + Al - llrx—y+z|
20fN(r+e) .

1A

Hence (g—h)(y)<e2| fIl.

1) = 2). Assume 2) is false. Then there exist x € M, y € E with |x||=1=]yl
and £>0 such that

M O B(y+rx,r+¢ N Bly—rx,r+¢) = & forall r=1.
Let
A= \J By+rx,r) and B = U Bly—rx,r).

r21 rz1

Let Ay ={(x,x) € M xM}. A and B are convex, and
Ay N [(AxB)+B(0,¢)] = &

in E®,, E. By the Hahn-Banach theorem, there exist AeR and g, g, € E*
such that

SEB (g, +g)(x) < A< inf B(g,(u)+g2(v)).

(u,v)e A X

Since M is a subspace, we get g, +g, € M*. If (4,v) € Ax B, then we have
lu—@+r9ll Sr and  Jo—(y—rl =7
for all sufficiently large r. Hence

0<A< 1;1{ (g, +rx)+g,(y—rx)—rlg,ll —rlgl] .

From this we get

rlig i +rlgzll +4 < g +rx)+8.(0—rx).
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We divide by r and let r -» co. Hence

lgsll +1g2ll £ g1(x)+82(—x) = ligall + g2l -

Thus g, and —g, are norm-preserving extensions of f=g,|y. Moreover,

rlgil+riigll+4 £ g M +rigdl +g.0)+rlg.l
so that

0<4=g0)+80).
Thus g, £ —g,.

From Taylor [18], Foguel [4] and Phelps [14], we have

THEOREM 2.3. The following statements are equivalent:

1) E* is strictly convex.
2) Every closed subspace of E is Hahn—Banach smooth in E.

3) Every closed hyperplane through 0 in E is Hahn-Banach smooth in E.

The following theorem in easy.

THEOREM 2.4. The following statements are equivalent:

1) E is smooth.

101

2) Every one dimensional subspace of E is weakly Hahn—Banach smooth in E.

3) Every closed subspace of E is weakly Hahn—Banach smooth in E.

4) Every closed hyperplane through 0 in E is weakly Hahn—Banach smooth in E.

PrOOF. 1) = 3) = 4) and 3) = 2) = 1) are trivial.

4) = 1). Assume 1) is false. Then there exist x € E, | x||=1 and f g € E* with
f+g such that ||f|l=f(x)=1=g(x)=|gll. Let M= (ker fNkerg)+R-{x}.
Then M is a closed hyperplane such that f=g on M and | f||=|f|l». Thus f
and g are norm-preserving extensions of f|y, and M is not weakly Hahn-

Banach smooth.

Lima and Uttersrud [20] have given a characterization of smooth Banach
spaces as follows: E is smooth if and only if UX , B(nx,n) is a half-space

whenever ||x|=1.

This is related to Vlasov’s theorem characterizing preduals of strictly convex
spaces [19]. Taking Vlasov’s theorem as a starting point, we can find a
characterization of Hahn—-Banach smooth subspaces of E similar to Theorem

2.2,
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We shall use this result in the proof of Theorem 4.5. There we prove that if

K(E) is Hahn-Banach smooth in L(E), then E is Hahn-Banach smooth in
E**,

THEOREM 2.5. Let M be a closed subspace of E. The following statements are
equivalent:
1) M is Hahn—Banach smooth in E.
2) Ifez0,y € EN M and (a,)-, is a sequence in M such that ||a,|| £1+¢ and

lapss—a,ll < 1+ for all n21,

o+l

then MN A, N A, + , where

A, = anjl B(y+(—1)ian,n+28—%); i=1,2.

PROOF. 1) = 2). Assume there exist €20, y € E\ M and a sequence (a,)3%,
as in 2) such that M N A, N 4, = . Define

2
Then A;=B;+ B(0,¢/2). Since ||la,|<1+¢ and {a,,,—a,| <1+¢/2""1, we get

B; = ..L=J1 B(y+(—1)‘a,,,n+§e——28—">.

. 3 € . 3 £
y€ B<y+(—1)'a,,,n+§s—?) c B<y+(—1)‘a,,+,,n+1+§e——2-"—+—l~> .

Thus B; is convex for i=1,2.

Let 4y be as in the proof of Theorem 2.2. Then Ay and B, x B, can be
strongly separated. Thus as in the proof of Theorem 2.2 there exist g,h € E*
and A>0 such that g+h e M* and

A2 inf (g(by)+h(by)

Thus we get

is inf(g(v—a,)+h(y+a,)—(ugu+uhu)(n+-§-s—§;)>-

Since ||a,|| £n+3¢—¢/2", we find by dividing by n and then letting n -+ oo, that
. a,
lgl+1Al = lim (h—g)<;-) < lg—hll .

Thus ||g|l + ||All = |lg —h|l. Hence it follows that
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3
umWmeQH3s~§)+zg(g+munwh—9w»~

A

3 €
(g+h0)+I1h—gl '(n+58—§> :

and

0 <A< (g+h0).
Thus shows that M is not Hahn-Banach smooth in E.

2) = 1). Assume for contradiction that there exists f € M*, | f || =1 such that
fhas two different norm-preserving extensions g,h € E*. Let y € E\ M be such
that g(y)*h(y). Without loss of generality, we may assume E=M®R-{y}.
Define N=kergNkerhcE. Clearly N M and dimE/N=2. Now g,h e N+
and | gl + |l =llg+hl|=2. Choose ¢ € E/N such that 1=c||=g(c)=h(c).
Notice that if z € B(c, 1), then g(z)=0 and h(z) =0.

We now follow Vlasov’s reasoning:

Put ¢,=nc. Let Q be the quotient map onto E/N. Let C,=Q~!(c,). Since
g=h exactly on M, we get that C,< M. Let r,=n—¢/2". First choose a, € C,
with ||a, || £1 +e&. Next assume that a;,. . .,a, has been found such that q, € C,
and |la, 4, —all Sryeq—re for k=1,2,...,n—1. Since a, € C,, we have

d(amcn+1) = “cn+l—cn" = 1<rn+1_rn'

Thus we can find a,,, € C,,, such that ||la,,, —a,| £r,4 —r,. Since r,, —71,

=14¢/2""!, we have found a sequence in M as in 2). By 2) there exist z € M
and n such that for i=1,2.

|W+PU%-ﬂ§n+k—%§n+k.

This can be written as

max ||la,+ ) —2)| £ n+2¢.
+

Hence

n+2e 2 max|g(a,) gy —2)l
+

= miax lg(c) gy —2)

max |n+ (y—2)|
+

n+ig(y—2) .
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Thus 2e2|g(y—2)|.
Similarly 2¢2|h(y — 2)|.
Since z € M, we have g(z)=h(z)=f(z). Thus

lg)—h) = 4¢.

Starting with a sufficiently small ¢>0, we obtain a contradiction.

We shall use Theorem 2.5 in section 4. But first we need some results about
another intersection property.

3. Liftings and intersections of balls.
We shall assume M is a closed subspace of E. Let fi,.. ., f, € M* with f;

+...+f,=0. We shall find conditions on M which ensure the existence of
norm-preserving extensions f; such that f, + ... +f,=0 in E*.

DEFINITION. Let n=3 be a natural number. We shall say that M has the n.E.
intersection property (n.E.LP.) if whenever {B(a, )}, are n closed balls in M
with N?_, B(a,,r)+ & in E, then MNN'_, B(a,r;+¢)+ & for all ¢>0.

The following result is the main theorem.

THEOREM 3.1. Let n=3. The following statements are equivalent:

1) M has the n.E1P.

2) M+ has the n.E**1.P.

3) If fi,....f, € M* are such that fi+...+f,=0, then there exist norm-
preserving extensions f; to E such that f, + ...+ f,=o0.

4 If fi,..., [, € E* with fi+...+f,=fe M* and r;=d(f,, M'), then there
exist h; € Mt N B(f,r)) such that hy+ ... +h,=f.

PRrooF. 2) = 1) follows from the “principle of local reflexivity” [13] since we
can identify M1+ with M**,

3) = 1). Let {B(a;,r)}!=, be n balls in M such that N?_, B(a;,r)+ & in E.
Let fi,...,f, € M* be such that fi+...+f,=0. By 3) there exist norm-
preserving extensions f; such that f, + ... +f,=0.

Let a e N, B(a,r).

Then we have
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me) ifw

n
< Y nlfl
=1

=

an

- i=

By Theorem 1.1 in [10], we get that

M N N B(a,r;+¢) + & forall e>0.
i=1

1) = 3). We introduce sets Acs(M*®...&M ) and
BS (E*®...®E™)y as follows:

A= {(fl""’fn) : i f;=0 and Zl:l "f1"§1}

i=1

and

B = {(gl,---,g..) + L &=0and 3 IIgillél}.

Let Q: (E*®. ..@E*),u - (M*@..‘Q-)M*),.; be defined by

Q(gl’ . ’gn (gllMa~ . -;gnlM) .

Q(B) is a convex w*-compact subset of 4. Clearly it suffices to show that Q(B)
=A. Assume for contradiction that there exists (f},...,f,) € A\ Q(B). By the
Hahn-Banach theorem there exist a,,...,a, € M such that

S @ >1= sup 3 gla).
i=1

(81,-.-,8)€B i=1
By Theorem 1.1 in [10], we have N?_, B(a,1+¢)#+ & in E for all £>0, and
M N N B(a,ri+¢) = &  for some ¢>0.
i=1

3) < 4) is trivial.
4) = 2) follows by using Theorem 1.2 in [10]

Note that it follows from the proof of 1) = 3) that we can take all r,=1 in
the definition of the n.E.ILP. This also follows from Theorem 4.3 in [12].
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REMARKS.

a) Let E=C[0,1] and let M be a subspace of E isometric to ;. Since [, has the
3.2.1.P. but not the 4.2.1.P.,, it follows that M has the 3.E.L.P. but not the
4ELP.

b) Let E=12 and let M={(x,y,2) € E: x+y+2z=0}. It is easy to see that M
does not have the 3.E.I.P.

c) From the “principle of local reflexivity”, it easily follows that every Banach
space M has the n.M**LP. for all n.

From Theorem 3.1 and the proof of Theorem 59 in [12] we get the
following result.

ProposiTION 3.2. The statements below are related as follows
1)=2)=3)<=4):

1) There exists a norm 1 projection in E with range M.

2) There exists a norm 1 projection in E* with kernel M*.

3) M has the n.E.LP. for all n.

4) For each Banach space Y such that M** < Y < E** and dim Y/M** =1, there
is a norm 1 projection from Y onto M**.

REMARKS.

a) Clearly 2) # 1) in Proposition 3.2, but we do not know if 3) = 2).

b) We do not know if there exists a number k=4 such that if M has the
k.EI1P., then M has the n.EL.P. for all n=k.

¢) Using Helly’s theorem [5], we get that if dim M =k<o0o and M has the
(k+1). ELP., then M has the n.E.LLP. for all n.

d) From Proposition 3.2 and [8], we get that E is isometric to a Hilbert space
if and only if every two-dimensional subspace of E has the 3.E.LP. This
result was first proved by Comfort and Gordon in [2].

We refer to [10] for the definition of M-ideals and semi M-ideals. An easy
corollary of Theorem 3.1 is the following result.

COROLLARY 3.3. Assume M is a semi M-ideal in E. Then the following
statements are equivalent:

1) M is an M-ideal in E.
2) M has the n.ELP. for all n.
3) M has the 3.E1P.
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An easy corollary of this result and the Remarks above, is the following
result of Saatkamp [15].

COROLLARY 3.4. If M is a semi M-ideal in M**, then M is an M-ideal in M**.
From a result of J. Johnson [7], we get:

ProposiTION 3.5. If F or E* has the metric approximation property, then
K(E, F) has the n.L(E, F).LP. for all n. Moreover, if also K(E, F) is a semi M-
ideal in L(E,F), then K(E, F) is an M-ideal.

We shall end this section by considering which subspaces of L, (u)-spaces
and predual L, (u)-spaces have the n.E.L.P.

PRrOPOSITION 3.6. Let E=L, () and let M be a closed subspace of M. Then M
has the 3.E.LP. if and only if M is the range of a norm-1 projection in E.

PrOOF. One way is trivial.

Assume M has the 3.ELP. Then M has the 3.21.P. By Theorem 4.3,
Theorem 3.12, and Corollary 3.3 in [10], it follows that M is isometric to an
L, (v)-space. By Theorem 6.3 in [9] it follows that M is the range of a norm-1
projection in E.

PRrROPOSITION 3.7. Assume E*=L,(n) and that M is a subspace of E. Then M
has the 4.E.LP. if and only if M* is the kernel of a norm-1 projection in E*.

Proor. Use proposition 3.8 and Theorem 2.17 in [10].

4. HB-subspaces.

Hennefeld [6] call a subspace M of E a HB-subspace if M* is complemented
by a subspace M, such that whenever f, € M, and f*e M*\ {0}, then
Ife+fHZIf ) and [ £+, 1> 1 £l

We use the notation M*={fe E*: | fll=Iflm}

THEOREM 4.1. The following statements are equivalent:
1) M is a HB-subspace of E.
2) M?* is a linear subspace.
3) If fi,fo. fs € M* with f +f,+f; € M*, then f, +f,+f3=0.
4) M is Hahn—Banach smooth in E and has the 3.E1.P.
5) M is Hahn—Banach smooth in E and has the n.E1P. for all n=3.
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PROOF. 5) = 4) is trivial.

4) = 3) follows from Theorem 3.1 since f e M* implies that f is a norm-
preserving extension of f|y.

3) = 2). Let f}, f, € M*. Then we can write f; +f,= —f; +f where f; € M*
and fe M+,

By 3) fi+fi=~fs€ M*.

2) = 5). Let fe M* and let g,h € E* be norm-preserving extensions of f.
Then g,h € M* and g—h € M*. Thus g—h=0and M is Hahn-Banach smooth
in E. Let P be the projection in E* with range M* and kernel M*. Then |P| =1
and M has the n.EL.P. by Proposition 3.2.

1) = 5) follows from Lemma 1.2 and 1.3 in [6].

5) = 1). Define M, =M?". Clearly if fe M* and g € M*\ {0}, then || f+g|
2 f+glpu=lfll and || f+gll>|f| since M is Hahn-Banach smooth.

COROLLARY 4.2. M is a HB-subspace of M** if and only if M is Hahn—Banach
smooth in M**.

COROLLARY 4.3. If M is a HB-subspace of M**, then M* has the Radon—
Nikodym property.

ProoF. It follows from [16] and Corollary 4.2.

COROLLARY 4.4. If E* or F has the metric approximation property, then
K(E,F) is a HB-subspace of L(E,F) if and only if K(E,F) is Hahn—Banach
smooth in L(E,F).

In [11], we proved that if K(E) is an M-ideal in L(E), then E is an M-ideal in
E**. A similar result is true for HB-subspaces.

THEOREM 4.5. Assume K(E) is a HB-subspace of L(E). Then E is a HB-
subspace of E**. In particular E* has the Radon-Nikodym property.

Note that similar results are true if we replace the word HB-subspace by
Hahn-Banach smooth or by weakly Hahn—Banach smooth.

ProoF. By Proposition 3.6 and Theorem 4.1, it suffices to show that E is
Hahn-Banach smooth in E**. To this end we use Theorem 2.5.

Let £>0 and let y € E**\ E. Clearly we may assume that |)y||=y(f) for
some f € E* with || f|| =1. (We use the Bishop-Phelps theorem.) Let (a,);%, be
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a sequence in E such that ||la,||<1+¢ and |a,,, —a,| S1+¢/2"*. Define
S, € K(E) by

S, () = f(wWa, .
Then ||S,|S1+¢ and |S,,,—S,|S1+¢g2"*L
By Theorem 2.5 there exist Te K(E) and n such that

max |S,+ (I—=T)| < n+2£—§£; .
+

Thus

n+2e—g/2" = max |S** + (I — T*%)|
+

1%

max [|S**y + (y— T**)|
+
= max ||a, + (y— T**y)| .
+

‘Since T is compact, we have T**y e E. Thus E is Hahn-Banach smooth in
E** by Theorem 2.5.

THEOREM 4.6. Assume M is a closed subspace of E and that E is smooth and
reflexive. Then the following statements are equivalent:

1) M is the range of a norm 1 projection in E.
2) M has the n.E.LP. for all n=3.

3) M has the 3.ELP.

4) M is a HB-subspace of E.

Proor. Since E is smooth and reflexive, it follows that M is Hahn-Banach
smooth in E. The theorem now follows from Theorem 4.1 and Proposition 3.2.

From [9], we now get:

COROLLARY 4.7. Let E =L () for some measure p and 1 <p<oo. A subspace
M of E has the 3.ELP. if and only if M is isometric to an L,(v) space.

THEOREM 4.8. Assume M has the 3.E.LP. If M is weakly Hahn—Banach smooth
in E, then M* is the kernel of a norm-1 projection in E*.

Proor. For each fe M*, let P(f) denote the non-empty convex and w*-
compact set of norm-preserving extensions of f. Clearly it suffices to find a
linear selection of the map f-» P(f).



110 ASVALD LIMA

If fe M* attains its norm on M|, let f be the unique norm-preserving
extension of £ Then P(f)={f}.

Assume f, g € M* both attains their norms on M,. Then by Theorem 3.1, we
get || f—gl = /—gll. By the Bishop—Phelps theorem [3], the norm-attaining
functionals in M* are norm-dense. Hence we get that if fe M*, then there

exists a unique f e P(f) such that if f, -» fin norm and each f, attain its norm,
then f, — fin norm. The selection f — f is linear.
The projection is f — (f |u) .

CoOROLLARY 4.9. Assume M is weakly Hahn—Banach smooth in E. Then M has
the 3.ELP. if and only if M** is the range of a norm-1 projection in E**.

COROLLARY 4.10. Assume E is a smooth Banach space and that M is a closed
subspace. If M has the 3.ELP., then M has the n.E.LP. for all n, and M* is the
kernel of a norm-1 projection in E*.

Proor. Use Theorem 4.8, Proposition 3.2, and Theorem 2.4.

In [21] Belobrov studied Banach spaces which are Hahn—Banach smooth in
their biduals.

He showed the following result under the stronger hypothesis that E is
Hahn-Banach smooth (rather than weakly Hahn-Banach smooth).

THEOREM 4.11. Assume E is weakly Hahn—Banach smooth in E**. The
following statements are true:

1) If M is a closed subspace of E, then M is weakly Hahn—-Banach smooth in
M**,
2) If E is the range of a norm-1 projection in E**, then E is reflexive.

Proor. 1). Let f € M* and assume f attains its norm on M. Let f}, f, be two
norm-preserving extensions of f to E. By 1) each f; has a unique norm-
preserving extension f; to E** defined by f,(3) =y(f). If y € M*+=M** and
(x,), is a net in M converging weak* to y, then

fl()’) = y(f) = limx,(f;) = ]i:nxa(fz) = J’(fz) = fz()’)

Thus f,=f, on M**. -

Next let g, h be two norm-preserving extensions of fto M**. Then g and
h have norm-preserving extensions § and i to E**. Clearly g=(glp) and
F=(hlz) and by the first part of the proof, if y € M**, then g(y)=g()=h(y)
=h(y). Thus f has a unique norm-preserving extension to M*+=M**.
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2). Here we follow Belobrov’s argument. Assume P is a norm-1 projection in
E** with range E. Assume there exists x** € ker P\ {0}. Let f € E* with | f||

=1 and 2x**(f)>|x**| and x**(f)+Px**(f). By the Bishop-Phelps
theorem we may assume f attains its norm on E,. P* is a norm-1 projection

in E*** with kernel E*. Let f be the unique norm-preserving extension of f
to E**. Thus fe E***,

Then we have
P*f(x**) = f(Px**) = (Px**)(f)

F X**(f) = J(x**).
Moreover, if y € E with |ly||=1 and f(y)=| f||, then

P*f(y) = f(Py) = f(y).

Thus P*fand fare two different norm-preserving extensions of fto E**. This is
a contradiction. Hence ker P= (0).

5. More about liftings and intersections of balls.
We shall now dualize Theorem 3.1. We can prove the following result.

THEOREM 5.1. Assume M is a closed subspace of E. Let n=3 be a natural

number and let ¢: E -+ E/M be the quotient map. The following statements are
equivalent :

1) M* has the n.E*1.P.

2) If x4,...,x, € E/M with x;+...+x,=0 and ¢>0, then there exist y, € E
such that @(y)=x;, y;+ ... +y,=0, and ||y;|| S ||x;| +¢ for all i.

3) If yi,...,y, € E with y=y,+...+y,€ M and ¢>0 and r,=d(y;, M), then
there exist x; € M N\ B(y;,r;+¢) such that y=x,+ ... +Xx,.

Proor. 3) = 2). Let x,,...,x,€ E/M with x;+...+x,=0 and let ¢>0.
Choose z; € E with ¢(z;)=x; and ||z;| £ ||x;|| +¢&. Let r;=d(z;, M) and let z=2z,
+...+4z, Then -z € M and hence, there exist y; € M N B(z,,r;+¢) such that
z=y,+...+y, Then we have ¢(z;—y)=x; lz;—yill Slx;ll +¢, and (z, —y,)
+...+(z,—y)=0.

2) = 3). Choose liftings z; of ¢(y;) as in 2) and let x;=y;—z;.

2) = 1). Let {B(f,r)}!-, be n balls in M* and assume there exists f ¢ E*
such that || f—f;| <r, for all i. Let x,,...,x, € E/M with x; + ... +x,=0 and
let £>0. Let y, be as in 2). Then we have, since f; e M*,
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7x) = ¥ £

i=1

- ¥ (=00

Z rillyil

i=1
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i=1

1A

Since ¢>0 is arbitrary, we get

filx) = Z rillxll .

1 i=1

e

]

By Theorem 1.2 in [10], it follows that M*NN_, B(f,r)+ J.

1) = 2). This is similar to the proof of 1) = 3) in Theorem 3.1.

Note that if M is proximinal, then we can take e=0 in Theorem 4.1.
If M is the kernel of a norm 1 projection or M* is the image of a norm 1
projection, then M* has the n.E.*LP. for all n.

PROPOSITION 5.2. Assume M has the Haar property, i.e. for each x € E, there is
a unique y € M such that |x—y|=d(x,M). Then M* has the 3.E.*LP. if and
only if M is the kernel of a norm 1 projection.

ProoF. Let P be a norm 1 projection in E with ker P=M. Then P* is a norm
1 projection in E* with range M. Hence M* has the n.E.*LP. for all n.
Assume conversely that M* has the 3.E.*LP. Let

Me={xeE: |x|=d(x,M)}.

Clearly M N M® = (0) and M + M® =E. It suffices to show that M® is a linear
subspace. Let x,,x, € M®. Then we can write x;+Xx,=—x;+x where
x3€ M® and xe M. Since we can take ¢=0 in Theorem 5.1 and
M N B(x;, || x;]))= {0}, it follows from 3) in Theorem 5.1 that x=0. Thus M® is a
linear subspace of E. The projection in E onto M® with kernel M has norm 1.
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