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A NON-EXISTENCE THEOREM
FOR TRANSLATION INVARIANT OPERATORS
ON WEIGHTED L ,-SPACES

JORGEN LOFSTROM

Abstract.

It is proved that there exists no non-trivial translation invariant operators
on L,(w), if w belongs to a class of rapidly varying weight functions, including
for instance w(x)=exp (+|x|%), a>1.

0. Introduction.

Translation invariant operators are frequently used in several branches of
analysis, for instance in approximation- and interpolation theory or in the
study of partial differential operators. On the Lebesgue space L, translation
invariant operators can be represented as convolutions with a tempered
distribution. After Fourier transformation the translation invariant operator
will then be disguised as a “Fourier multiplier”. See Hormander [1]. The L,-
theory for translation invariant operators can be extended, at least partly, to
weighted L,-spaces, (which we denote L,(w)) for certain weight functions w
closely connected to positive polynomials. See e.g. Triebel [3] and Léfstrom
[2]. In this note we shall consider weight functions w with a “bad” behaviour of
infinity. As an example we mention

w(x) = exp (|x]*), a>1.

We prove that there are no translation invariant operators T on L,(w) other
than the obvious one

Tf = ¢f (c a constant).

1. Representation of translation invariant operators.

A given function w on R? is called a weight function if it is non-negative and
locally integrable with respect to the Lebesgue measure. We denote by L,(w),
1< p=oo the Banach space defined by the norm

Received May 8, 1982.



A NON-EXISTENCE THEOREM . .. 89

1/p
Iwfll, = ( J | o) f(x)l)"dx) .

A translation invariant operator T on L,(w) is a linear operator that commutes
_ with all translations. The following lemma, essentially due to Hormander [1],
represents a bounded translation invariant operator as a convolution.

LEMMA. Suppose that the weight function is locally bounded away from 0 and
00, that is for every compact set K there is a constant M >0 such that

(.Y M ' <wix)£M forall xeK.

Then every bounded translation invariant operator T on L,(w) can be uniquely
represented as a convolution with a distribution k, in the sense that

(1.2) Tf = k+f,

for all f in the class 2@ of all infinitely differentiable functions with compact
support.

The proof of this lemma for the case w=1 is given in Hérmander [1], but the
same argument works with only minor modifications in our more general case.
For the convenience of the reader we reproduce the arguments here.

Proor. First we shall prove that

(L.3) DX(Tf) = T(D*), fe2.

Here D* denotes an arbitrary derivative in the distribution sense, but it is
clearly enough to prove the formula in the case D*=D,=0d/dx,. Thus let us
write

SulX1s X050y X)) = fXg+hXg,. .0, Xg)

h

Ay = Dy f=h7'(fi=f) = —h7! L (h—1)(D1f)dt .

We shall prove that 4, —» 0 in L,(w) as h — 0.
Let K, be the support of fand let K be the set of all x at distance not more
than 1 from K,. From (1.1) we then conclude that

W(Xg, Xg,. ., Xg) S MPw(x;+1,X5...,X%5) ,

if x € K, |t|<1. Thus

h
wld,| = lh" L lh—tl|(wDif)dt| .



90 JORGEN LOFSTROM
Hence

h
Iwdill, = ih”’ L lh—tlde|lwDif1l, ,

which implies that 4, — 0 in L,(w).
Since T is continuous and translation invariant we conclude that

h= (T = (Tf) = T(h™' (fi=f) = T(D,Sf)

in L,(w). Thus D,(Tf)=T(D,f) from which (1.3) follows. As a consequence
D*(Tf) € L,(w) for all a. But then (1.1) implies that D*(Tf) belongs locally to
L,=L,(1) for all a. Therefore Sobolev’s lemma implies that T, after correction
on a set of measure zero, is a continuous function. Moreover if B denotes the
unit ball we have the estimate

1/p
1@MW§C2(wa%wQ .

laj=d

A new application of (1.1) implies

(TNO) < C 3 (wD*l],.
i laj 24
This implies that (Tf)(0)=(kxf)(0) for some uniquely determined distri-
butions k. By translation invariance of the operators T and f— (k*f) we
conclude that (1.2) holds.

2. Definition of a class of weight functions.

We now consider weight functions w which are locally bounded away from 0
and oo in the sense explained in the lemma of the previous section. Then we let
T,(w) denote the space of distributions k which represent bounded translation
invariant operators on L,(w), via the formula (1.2). We equip T,(w) with the
operator norm.

Obviously T,(w) always contains the trivial elements cd,, ¢ constant. In
many cases there are other members of T,(w). Let us consider an example
where w1,

Take w(x)=exp (|x|*), O0<a<1. Since |x]*E£lx—y|*+|y|* we have w(x)<
w(x—y)w(y). Assuming that k is a locally integrable function we conclude
that

wxjlk*f(x) £ jR‘ wOIkWIwx=pIf (x=p)idy, fe2P.
Hence, if k € L, (w), we conclude that

Iwk= ), < lwkll lwfll, .



A NON-EXISTENCE THEOREM ... 91

Thus we have proved that L,(w)= T,(w), 1 Sp=<o0.

This example can be generalized in the following way. Assume that there is a
weight function w* such that

2.1 w(x) £ wx—yw*(y) .

Consider a measure u such that

A= L‘ w*(y)dlul(y) < oo.

Then u € T,(w) for 1<p= o0, since (as above)

wikxfl = (w¥u)*(wf),

and hence

wk=)ll, £ Alwfll, .

The objective of this note is however to consider weight functions for which
(2.1) is not satisfied. An example of this is w(x)=exp (|x]*) with a> 1. We shall
see that in this example there are no non-trivial distribution in T,(w). (For
further results on translation invariant operators on L,(w), where w is locally
bounded away from 0 and oo and (2.1) is satisfied, see Lofstrom [2], Triebel
[3]. Note that weight functions like |x|* are not treated here, since they are not
bounded away from 0. They do not satisfy (2.1) either, but nevertheless there
can be non-trivial translation invariant operators. See Young [4]).
A weight function for which (2.1) is not satisfied must clearly satisfy

x W(x—Xxg)

for some x,+0. This means that there must be a sequence (x,);° such that

2.2) w(x,)

—" 400, n— 0.
w(x, + Xo)

If w is locally bounded away from O we must have |x,| — oo. We shall now
assume that (2.2) holds not just for one particular x, but for all x, +0. We shall
also assume that the sequence (x,)? can be changed into another sequence
(x,) for which (2.2) is still valid provided that |x, — x,| ¢ for all n. Finally we
shall assume that the same sequence (x,){* will work not just for x, but also for
X}, if |xp — X0l <&, (¢ being small enough). Thus we shall assume that

w(x,)
w(x, + Xp)
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where the infimum is taken over the set |x,—x,|<¢, |xp—Xo|<e. Now it is
convenient to write x,=x,+X, Xo=Xo—y—Xx and

w(x,+ x)

@3 oY) = e )

We shall consider the class of weight functions given in the following definition.

DeriniTION. The class #” consists of all weight functions w that are locally
bounded away from 0 and oo, such that for every x, %0 there is a number £¢>0
and a sequence (x,){ such that

2.4) inf w,(x,y) > 00 as n-— 00.
|x|<e
Ivise

ExaMpLE. We shall give a fairely general example of a weight function in the
class #  starting from a quadratic form

Z a;iXiyj = (x, Ax) ,
ij

given by a non-singular symmetric matrix A. Put
Q(x) = (x,4x)
and consider first the weight function
w,(x) = expQ(x) .

We shall prove that w, € #".
Thus let x,+0 be given. Then put x,= —nA~'x, and ¢=|x,|/4. Then Q(x,)
=n%(xq, A”'x,) and thus

Q(x,+v) = n*(xp, A7 x0) —2n(x0, V) + Q(v) .
As a consequence of this we have
R,(x,y) = Q(xp+x)—Q(x,+ X0 —)
= 2n(]xol* = (xo, X +)) +Q(x) = Q(xo~) ,
which is bounded from below by
2n(Ixol* — 2elxol) — e (e, Ixo])
if |x|Ze, lyl<e In view of the choice of ¢ we conclude that

w,(x,y) = expR,(x,y) Z exp (nlx,|> —c(e, [xol) -
It follows that w; € #".
Next we assume in addition that Q(x)>0 for x30. Put
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qx) = Q)  B>1/2,

and

w,(x) = exp(q(x)) .
Then w, € #". In fact, an easy computation will show that

4%, +X)—q(x, + X0 —y) Z en®P™V(nlxol® —c (e, |xo))

> 2!

’

from which the result follows.

Finally we observe that if w € #” and w is symmetric, that is w(—x)=w(x)
for all x, then w™! € #/, and as a consequence w* € ¥ for all real s=+0. This
follows at once from the identity

l/w())n-‘-x) = w(_Yn_x0+y) — W(xn+.Y)
1wy, +x0-y) W(—y,—Xo +Xo—X) w(x,+ Xxo—X)

where y,= —x,—x,.
Now it follows that

exp (- QW) e W

for every a>1 and every real s+0. In particular we see that
exp(x|xIHe#w, a>1. .

Another particular case yields

exp(i y xixi> eEW .

i*j

3. A non-existence theorem.

Let #  be the class of weight functions defined at the end of the preceding
section.

THEOREM. Suppose that w € W. Then there are no non-trivial bounded
translation invariant operators on L,(w). More precisely, if k € T,(w) then
k=cdy, (c a constant).

Proor. First we consider the case p=o00. Then there is a constant B such
that

G.n wx)lk+f(x)] = Bsupw(y)If (),
y

for all fe 2.
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Now take x4 %0 and choose ¢>0 and (x,){ according to the definition of the
class # . Let 1, denote the translation operator defined by

(@ f)x) = f(x—h).

Moreover put

Jx) = f(—x).
Then

k*f(X) = <k’1x]> = <k0’Tx+x0]> ’

where
ko = 1.k .

After these preparations we shall evaluate (3.1) in the point x=x,, with f
replaced by tx.,,%‘?. Here ¥ is an arbitrary function in £ with support in |y|
<é¢. Then 7x,,+x0f= ¥, and (3.1) implies
w(x,)I[<ko, ¥ £ Bsupw(y)|¥(x,+Xo—y)| S Bsup w(x,+xo—1)[|¥ll -
y

Inl<e

Hence k, is a bounded measure(u, on |y| <g, such that

inf w..(O,y)’j dluly) £ B.
Iyl<e

Iyl <e

By the assumption on w this is impossible unless u vanishes on |y| <e.

We have proved that for every x,+0 there is a number ¢>0 such that k
=1_,./Ko vanishes on |x—x,| <& Thus k is a linear combination of §, and its
derivatives. But then (3.1) implies that k=cd,.

Next we consider the case 1< p< oo, which will be treated quite similarly.
Since k € T,(w) we now have the basic estimate

(2 [ weomescopas =8 [ wonronea,

for all fe 2. Choose x,+0, ¢ and (x,)T as above, and localize (3.2) at the point
x,, replacing f by tx"HO'T’ as above. Writing x=x,+ ¢ we have

kxf(x) = <ko,t¥) .
Thus (3.2) implies (for all 6>0)
(3.3 J” (Wl +O)I<ko, T YOI dE < Jnn (W(xn+x0 —m)I ¥ (M))? dn .
sl<o nl <

We shall now prove that k vanishes on [x — x| <¢, i.e. that {(kq, ¥)> =0 for all
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¥ € 9 with support in |y| <e¢. Assume this were not the case. Then there is a
¥ € 2 such that

Cho, ¥ = 1.

Now the function & — (ko,7,¥) is continuous and has the value 1 at the
origin. Thus, choosing é <¢ small enough, we have that [Cky, 1,7 )(>1/2 for
|€] < 4. Since ¥ is a fixed bounded function we conclude from (3.3) that

j (Wi, + )y dE < ZBH‘I’HOOJ (wix,+xo—n)dn ,
l¢1<s

Inl<e

and hence

&l<o

nl <t

This violates the assumption on w. Again we conclude that k= cd,. The proof is
complete.

The theorem implies that if w € % then the only choice for k in the estimate

IwkN)I, = Bliwfll,,

is the trivial one k= cd,. It is easily seen from the proof of the theorem that we
have the following more general result.

COROLLARY. Suppose that w, and w, are two weight functions such that w, and
1/w, are locally bounded. For a given sequence (x,)g write

Wo (X, +X)

* = .
or ) Wy (X, +Xo =)

Assume that for some x,+0 there is a sequence (x,);° and a number £>0 such
that

inf wf(x,y)—> 00 asn— 0.

FES
Then an estimate of the form

Iwo kI, = Blwiflp fe2,

implies that k vanishes in a neighbourhood of x,.
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